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ABSTRACT

Motivation: Converting a pyrosequencing signal into a nucleotide se-

quence appears highly challenging when signal intensities are low

(unitary peak heights 55) or when complex signals are produced by

several target amplicons. In these cases, the pyrosequencing software

fails to provide correct nucleotide sequences. Accordingly, the object-

ive was to develop the AdvISER-PYRO algorithm, performing an auto-

mated, fast and reliable analysis of pyrosequencing signals that

circumvents those limitations.

Results: In the current mycobacterial amplicon genotyping applica-

tion, AdvISER-PYRO performed much better than the pyrosequencing

software in the following two situations: when converting Single

Amplicon Sample (SAS) signals into a correct single sequence

(97.2% versus 56.5%), and when translating Multiple Amplicon

Sample (MAS) signals into the correct sequence pair (74.5%).

Availability: AdvISER-PYRO is implemented in an R package (http://

sites.uclouvain.be/md-ctma/index.php/softwares) and can be used in

broad range of clinical applications including multiplex pyrosequen-

cing and oncogene re-sequencing in heterogeneous tumor cell

samples.
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1 INTRODUCTION

Pyrosequencing is a DNA sequencing technology that has many

applications including rapid genotyping of a broad spectrum of

bacteria. In this type of application, bacterial 16S rRNA gene

sequence is a commonly used target for identifying organisms at

the species and even strain level (Ronaghi and Elahi, 2002). High

throughput sequencing (NGS) is now emerging as a powerful

technology able to characterize at the finest scale the diversity

in natural microbial and viral populations (Rosen et al., 2012).

However, NGS is expensive and requires complex sample

preparation and elaborate data analysis. Despite the increased

use of NGS for the study of microbial diversity, pyrosequencing

therefore remains a cost-effective solution for genotyping a por-

tion of the bacterial genome that allows rapid bacterial or viral

genotyping as well as rapid assessment of microbial antibiotic

resistance (Amoako et al., 2012; Deccache et al., 2011).
Pyrosequencing is based on pyrophosphate release during

nucleotide incorporation (Ronaghi, 2001). The four possible

nucleotides are sequentially dispensed in a predetermined

order. The first chemi-luminescent signal produced during nu-

cleotide incorporation is detected by a charge-coupled device

camera in the pyrosequencer and displayed in a pyrogramTM.

The pyrogramTM can then be converted automatically into a

nucleotide sequence by dedicated software or visually by an

experienced operator. The number of incorporated nucleotides

at each position is computed from the corresponding peak

height. The pyrosequencing data analysis software frequently

produces reading errors in homopolymer regions due to the

nonlinear light response following incorporation of consecutive

identical nucleotides. However, pyrosequencing software inter-

pretation is mostly reliable when a pyrogramTM with intermedi-

ate (45) unitary peak heights (i.e. the peak heights observed

after incorporation of a single nucleotide) is obtained from a

Single Amplicon Sample (SAS, i.e. a sample that includes a

single target amplicon), as in Figure 1A where unitary peak

heights are close to 30.
Two main situations generate signals preventing automated

translation into a correct nucleotide sequence. This happens

first when a sample contains a very low DNA concentration,

which induces a signal with peak heights close to the noise

level (Fig. 1B). It happens also when the pyrogramTM compiles

signals from a Multiple Amplicon Sample (MAS, i.e. a sample

that includes multiple target amplicons). In this case, the complex

signal reflects indeed the integration of signals produced by each

amplicon (Fig. 1C). The pyrosequencing data analysis software is

not able to distinguish each amplicon-specific signal; hence, it has

a limited capacity to produce correct amplicon-specific nucleo-

tide sequences. In such situations, the only option left is a cum-

bersome, time-consuming and usually very inefficient visual

interpretation.*To whom correspondence should be addressed.
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MAS signals are generated in numerous diagnostic applica-

tions. A first one is dedicated to multiplex pyrosequencing. In

this case, several primers are used simultaneously, which leads to

overlapping of primer-specific pyrosequencing signals. The

mPSQed and the MultiPSQ softwares were recently developed

to aid researchers in designing and analyzing multiplex pyrose-

quencing assays (Dabrowski and Nitsche, 2012; Dabrowski

et al., 2013). The mPSQed software can be used to avoid situ-

ations where competing signals from SNPs in different sequences

cancel each other out. The MultiPSQ software enables the ana-

lysis of multiplex pyrograms originating from various pyrose-

quencing primers. A second application is found in clinical

molecular diagnostic laboratories testing mutations in KRAS,

BRAF, PIK3CA and EGFR genes (Chen et al., 2012; Shen

and Qin, 2012; Sundström et al., 2010). Recently, a virtual pyr-

ogram generator (Pyromaker) was developed to resolve complex

pyrosequencing results (Chen et al., 2012) and could be used to

generate simulated pyrogramTM based on user inputs. The inter-

pretation of MAS-pyrosequencing signals was also addressed by

Shen et al. who developed a pyrosequencing data analysis soft-

ware for EGFR, KRAS and BRAF mutation analysis (Shen and

Qin, 2012). The software aimed at identifying the presence of

mutated cells as well as their proportions. In a first step, this

software compared peak heights with a known wild-type peak

pattern. If the signal did not fit with the expected wild-type pat-

tern, the software compared it with the mutant peak patterns.

When a mutation was identified, the percentage of the candidate

mutant gene in the specimen was computed using a built-in for-

mula specific for each mutation. The main drawback of this

software was the need for a built-in formula, defined specifically

for each mutation and not based on objective parameter compu-

tation exploiting a statistical method. A third application that

generates MAS signals is related to samples including a hetero-

geneous microbial population. In this context, a novel approach

based on a single Sanger-sequencing reaction was recently pro-

posed for identifying each microbial population from the original

population mixture (Amir and Zuk, 2011). This novel approach

was based on the reconstruction of a sparse signal using a small

number of measurements.
Sparse representations of signals have received a lot of atten-

tion in recent years (Huang and Aviyente, 2007; Zheng et al.,

2011). The problem solved by sparse representation is to look for

a compact representation of signals in terms of linear combin-

ation of atoms in an over-complete dictionary [i.e. a dictionary

including a number of atoms (p) that exceeds the dimension of

the signal space (n)]. In the present study, each atom of the dic-

tionary corresponds to a pyrosequencing signal generated from a

known amplicon. For a y testing signal of length n, the issue for

sparse representation is to find a vector �j (j¼ 1 , . . . , p) such that

the following objective function is minimized:

Xn
i¼1

yi �
Xp
j¼1

�jxij

 !2

þ ljj�jjj0 ð1Þ

where xij is i
th element of the jth atom, and jj�jjj0 is the L0�norm

of vector �j and is equivalent to its number of nonzero compo-

nents. After having constructed the model, the values of �j re-
gression coefficients are used for identifying which of the atoms

are contributing to the y testing signal. Unfortunately, finding

the solution to this problem is NP-hard. However, a solution can

be obtained by replacing the L0�norm by a Lp�norm penalty on

the regression coefficients. L1�norm penalties are used in lasso

regression while L2�norm penalties are used in ridge regression

and a combination of L1� and L2�norm penalties are used in

Elastic Net (ELNET) (Tibshirani, 1996; Zou and Hastie, 2005).
To the best of our knowledge, it is the first time that sparse

representation of signals is used to analyze pyrosequencing

signals. Accordingly, the objective of the present study was to

develop a new algorithm for improving the analysis of pyrose-

quencing signals. This algorithm, called AdvISER-PYRO, de-

ciphers each amplicon-specific signal that contributes to the

resulting global signal. In the present study, AdvISER-PYRO

was used to identify mycobacterial species by pyrosequencing.

Considering the likely existence of heterogenous mycobacterial

populations in a clinical specimen, this case study appears par-

ticularly relevant. Indeed, the identification of causative myco-

bacterial agents in infected samples can be affected by the

presence of other ubiquitous mycobacterial species (Covert

et al., 1999). Moreover, coinfection with Mycobacterium tuber-

culosis (MTB) and nontuberculous mycobacteria (NTB) in clin-

ical samples, and notably in AIDS patients, can easily be

overlooked when using conventional identification methods,

and presents therefore a real challenge in diagnosis and treat-

ment. This probably explains at least partially why evidence of

dual infection with MTB and NTB is scanty (Gopinath and

Singh, 2009). The performance of AdvISER-PYRO in identify-

ing mycobacterial amplicons was assessed using signals generated

by SAS (n¼ 220) and MAS (n¼ 144), the latter containing two

Fig. 1. Examples of pyrosequencing signal. (A) Pyrosequencing signal obtained with high DNA concentration in an SAS. The noise intensity is close to

105 while intensities of unitary peaks are close to 135. The unitary peak heights are therefore close to 30. (B) Pyrosequencing signal obtained with low

DNA concentration in an SAS. The unitary peak heights are close to 2.5. (C): Pyrosequencing signal obtained with an MAS including two distinct

amplicons
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distinct amplicons. For SAS signals, the AdvISER-PYRO per-

formance was compared with the percentage of correct identifi-

cation obtained with the pyrosequencing data analysis software

(PSQTM 96 MA Software V.2.1.1, Biotage AB, Sweden) and re-

flecting the pyrogramTM translation into a correct nucleotide

sequence.

2 METHODS

Signals were generated with a pyrosequencer PSQTM 96 MA (Biotage

AB, Sweden), following successive dispensation of 26 nucleotides. The

predefined order of dispensation of these nucleotides was determined

according to the sequence tag corresponding to a hypervariable region

of the Mycobacterium genome. Accordingly, dispensed nucleotides pro-

duced distinct pyrogramTM peaks, each peak height being proportional to

the number of identical nucleotides consecutively incorporated. In this

study, a signal is defined as the global pattern integrating the 26 succes-

sive peak heights.

All amplicons of the current Mycobacterium target sequence started

with the same single nucleotide. Accordingly, the first peak height was

named ‘First Unitary Peak Height’ (FUPH) and was used as an indicator

of the global signal intensity. Pyrosequencing was performed as classically

described. In brief, theMycobacterium target sequence was first amplified

by PCR. The PCR amplification was carried out using a couple of for-

ward and biotinylated reverse primers. The biotinylated amplicons were

immobilized on streptavidin-coated magnetic beads and denaturated.

After denaturation, the biotinylated single-stranded amplicon was iso-

lated and allowed to hybridize with a sequencing primer. Owing to the

close relatedness of some mycobacterial species (e.g. M.marinum and

M.ulcerans) on one hand, and the genetic heterogeneity within other spe-

cies (e.g. M.gordonae), a single amplicon can correspond to more than

one mycobacterial species and conversely, a mycobacterial species can be

associated with more than one specific amplicon (Table 1).

Pyrosequencing signals were generated from SAS (n¼ 220) and MAS

(n¼ 144). SAS were generated from single mycobacterial clinical isolates.

Three distinct types of MAS were analyzed in the current study. MAS-1

were generated by mixing in various proportion (50/50%; 33/66%) the

amplification products generated from two separate PCR performed on

two distinct mycobacterial clinical isolates (n¼ 84). MAS-2 were gener-

ated with a single PCR performed on a reconstructed sample where DNA

from two distinct mycobacterial clinical isolates were mixed in various

proportions (10/90%; 25/75%; 50/50%; 75/25%; 90/10%) (n¼ 45).

MAS-3 were generated with a single PCR performed on natural clinical

samples from patients with a mycobacterial co-infection (n¼ 15). In

MAS-2 and MAS-3, the final proportion of both amplicons after PCR

amplification was unknown because of the amplicon-specific efficiency of

the PCR reaction likely altering the initial DNA proportions. The esti-

mated proportion of the minor amplicon could therefore vary widely

between 0.1% and 50.0%.

All SAS and MAS signals were divided into training (SAS, n¼ 99),

validation (SAS, n¼ 103; MAS, n¼ 122) and test (SAS, n¼ 18; MAS,

n¼ 22) datasets. A standardized learning dictionary was constructed

based on signals from the training dataset. AdvISER-PYRO hyperpara-

meters were tuned on the validation dataset while performance was as-

sessed on the test dataset. Given the small size of the test dataset, a

bootstrap method was also applied to provide a reliable evaluation of

AdvISER-PYRO performance.

In parallel, all PyrogramsTM from SAS were also analyzed with the

pyrosequencing data analysis software (PSQTM 96 MA Software V.2.1.1,

Biotage AB, Sweden) and translated into nucleotide sequences.

3 ALGORITHM

The first step in developing the AdvISER-PYRO was to create a

standardized learning dictionary from the training dataset (SAS,

n¼ 99) that included at least one signal (i.e. the global pattern

integrating the 26 successive peak heights) for each amplicon.

Standardization of the dictionary was performed by dividing

each signal (i.e. the 26 successive peak heights) by its correspond-
ing FUPH. After standardization, all signals in the learning

dictionary were therefore characterized by a FUPH equal to 1.

The second step was to build a penalized linear model with the

y testing signal as response variable and all signals from
the learning dictionary as predictor variables. In this model,

the sum of regression coefficients corresponding to each ampli-

con was computed and recorded as the amplicon contribution to

the signal. As the number of observations (i.e. the length of the

signal which was n¼ 26) was smaller than the number of vari-

ables (i.e. the total number of atoms in the learning dictionary

which was P433), L1� and L2�norm penalties were applied for

estimating the regression coefficients. These penalties were the

Table 1. Correspondence between amplicons and mycobacterial species

Amplicon Mycobacterium Amplicon Mycobacterium Amplicon Mycobacterium

Amplicon1 M.avium subsp. avium Amplicon12 M.interjectum Amplicon24 M.paraffinicum

M.avium subsp. paratuberculosis Amplicon13 M.marseillense Amplicon25 M.scrofulaceum

M.avium subsp. silvaticum Amplicon14 M.intracellulare Amplicon26 M.scrofulaceum

Amplicon2 M.bohemicum Amplicon15 M.kansasii Amplicon27 M.scrofulaceum

Amplicon3 M.celatum Amplicon16 M.lentiflavum M.paraffinicum

Amplicon4 M.celatum Amplicon17 M.lentiflavum Amplicon28 M.simiae

Amplicon5 M.chelonae Amplicon18 M.malmoense Amplicon29 M.simiae

M.abscessus Amplicon19 M.marinum Amplicon30 M.szulgai

Amplicon6 M.gastri M.ulcerans Amplicon31 M.genavense

Amplicon7 M.gordonae Amplicon20 M.non chromogenicum M.triplex

Amplicon8 M.gordonae M.ratisbonense Amplicon32 M.tuberculosis

Amplicon9 M.gordonae Amplicon21 M.non chromogenicum M.bovis

Amplicon10 M.hiberniae Amplicon22 M.non chromogenicum M.africanum

Amplicon11 M.interjectum Amplicon23 M.paraffinicum Amplicon33 M.xenopi
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first two hyperparameters of AdvISER-PYRO. As the signal

contribution from each atom should have a positive value, an

additional constraint imposing this prerequisite was imple-

mented. The intercept of the model was also set to 0. The pena-

lized regression models were built using the penalized function of

the corresponding R package (Goeman, 2008).

In the third step, amplicons that significantly contributed to

the signal were selected. A specific amplicon was considered sig-

nificant when its contribution to the signal was higher than the

Significant Contribution Threshold, which was the third hyper-

parameter of AdvISER-PYRO.

4 RESULTS

4.1 Hyperparameter optimization on the validation

dataset

All signals from the validation dataset (SAS, n¼ 103; MAS,

n¼ 122) were used to evaluate and optimize AdvISER-PYRO

hyperparameters. Accordingly, the percentage of correct identi-

fication of SAS and MAS signals were computed with various

values of the L1� and L2�norm penalties and of the Significant

Contribution Threshold. For SAS and MAS signals, a right iden-

tification was recorded when AdvISER-PYRO correctly identi-

fied the unique amplicon (SAS) or the pair thereof (MAS). Any

incorrect signal identification included the wrong prediction of

an additional (false-positive) amplicon. The percentages of cor-

rect SAS and MAS signal identification using the validation

dataset are given in Table 2. It was impossible to compute the

percentage of correct identification with zero L1� and L2�norm

penalties, as the number of dimensions (P¼ 99) exceeded the

number of observations (n¼ 26).

The effects of L1� and L2�norm penalties were very different,

as generally accepted in literature. L1�norm penalty tends to

produce many regression coefficients shrunk exactly to zero

and a few other regression coefficients with comparatively little

shrinkage. At the opposite, L2�norm penalty tends to result in

all small but nonzero regression coefficients (Goeman et al.,

2012). In the current application, this second effect induced an

important decrease of the percentage of correct identification.

The effect of the SCT hyperparameter on the percentage of cor-

rect identification was different for SAS and MAS signals. With

SAS signals, higher value of SCT improved the results by

decreasing the number of false-positive results. With MAS sig-

nals, the optimal SCT value resulted from a compromise between

the minimisation of false-positive (less frequent with a high SCT

value) and false-negative (less frequent with a low SCT value)

results.

4.2 Percentage of correct identification on the test dataset

All SAS (n¼ 18) and MAS signals (n¼ 22) of the test dataset

were analyzed with AdvISER-PYRO. The algorithm hyperpara-

meters were chosen according to the percentage of correct SAS-

and MAS-signal identification using the validation dataset. The

Significant Contribution Threshold was therefore set to 2 whereas

the L1� and L2�norm penalties were set to 0.05 and 0, respect-

ively. These hyperparameter values produced indeed the best

compromise between the percentage of correct identification

with SAS (94.2%) and MAS signals (77.9%).
Among the 18 SAS signals, all (100%) were correctly trans-

lated into their corresponding single sequence. Among the 22

MAS signals, 16 (72.7%) were translated into their correct se-

quence pair. The six remaining MAS signals (27.3%) were trans-

lated by AdvISER-PYRO into one correct sequence whereas

Table 2. Percentage of correct SAS- and MAS-signal identification with AdvISER-PYRO according to L1� and L2�norm penalties and the Significant

Contribution Threshold

Significant contribution threshold L1�norm SAS (n¼ 103) MAS (n¼ 122)

L2�norm L2�norm

0.00 0.01 0.05 0.10 0.50 0.00 0.01 0.05 0.10 0.50

1 0.00 / 90.3 84.5 82.5 68.9 / 62.3 58.2 52.5 29.5

0.01 89.3 89.3 84.5 82.5 68.9 65.6 62.3 59.0 52.5 29.5

0.05 89.3 90.3 84.5 82.5 68.9 67.2 62.3 59.0 52.5 29.5

0.10 89.3 90.3 84.5 82.5 68.9 66.4 61.5 59.0 52.5 29.5

0.50 89.3 90.3 84.5 82.5 68.9 65.6 63.1 59.0 51.6 29.5

2 0.00 / 94.2 93.2 91.3 83.5 / 77.0 75.4 73.0 59.0

0.01 94.2 94.2 93.2 91.3 83.5 77.9 77.0 74.6 73.0 59.0

0.05 94.2 94.2 93.2 91.3 83.5 77.9 77.0 73.8 73.0 59.0

0.10 94.2 94.2 93.2 91.3 83.5 77.9 77.0 74.6 73.0 59.0

0.50 94.2 94.2 93.2 91.3 83.5 77.0 77.9 75.4 71.3 59.0

3 0.00 / 95.1 95.1 94.2 90.3 / 66.4 66.4 65.6 59.0

0.01 95.1 95.1 95.1 94.2 90.3 66.4 66.4 65.6 65.6 59.0

0.05 95.1 95.1 95.1 94.2 90.3 66.4 66.4 66.4 65.6 59.0

0.10 95.1 95.1 95.1 94.2 90.3 66.4 66.4 66.4 65.6 59.0

0.50 95.1 95.1 95.1 94.2 90.3 67.2 65.6 65.6 64.8 58.2
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the other expected sequence from the pair was missing

(false-negative). Each false-negative sequence resulted from the

analysis of a MAS-2 signal where estimated contribution of the

corresponding minor amplicon was lower than the Significant

Contribution Threshold.

4.3 Bootstrap evaluation of the percentage of correct

identification

Given the small size of the test dataset, a 100-fold bootstrap

approach was used to obtain a reliable evaluation of the percent-

age of correct identification. The bootstrap was applied on all

SAS (n¼ 220) and MAS (n¼ 144) signals. At each iteration, the

SAS signals were randomly divided into a training (n¼ 101) and

a test dataset (n¼ 119). All MAS signals (n¼ 144) were included

in the test dataset. To limit the computation time, the AdvISER-

PYRO hyperparameters were not optimised for each iteration

(using an internal cross-validation loop) but were kept constant

across all iterations (Significant Contribution Threshold¼ 2;

L1�norm¼ 0.05, L2�norm¼ 0).
A large majority (94.4%) of SAS signals were correctly trans-

lated into their corresponding single sequence. Only few (2.5%)

SAS signals were falsely translated into two or more distinct

sequences, and these always included the correct sequence and

another sequence being not present in the sample (i.e. false-posi-

tive). The remaining SAS signals (3.1%) were translated into a

single wrong sequence.

Most MAS signals (74.5%) were correctly translated into their

corresponding sequence pair. However, the percentages of cor-

rect identification differed significantly between the three distinct

types of MAS signals. For MAS-1, most signals (93.3%) were

correctly translated into the correct sequence pair. Few MAS-1

signals (2.6%) were translated by AdvISER-PYRO into one cor-

rect sequence whereas the other expected sequence from the pair

of amplicons was missing (i.e. false-negative) or wrong. Few

MAS-1 signals (4.1%) were predicted with a third additional

sequence (i.e. false-positive). The signal contributions of both

amplicons were generally well-balanced but not perfectly repre-

sentative of the amplicon proportion within the sample. The

relative signal contribution of the minor amplicon was

37:2� 10:2% for samples with 50/50% and 22:8� 1:1% for

samples with 33/66% of both amplicons. For MAS-2 and

MAS-3, some signals (53.9% for MAS-2 and 30.7% for

MAS-3) were correctly translated into the correct sequence

pair. Some MAS-2 and MAS-3 signals (46.1% for MAS-2 and

51.5% for MAS3) were translated by AdvISER-PYRO into one

correct sequence whereas the other expected sequence from the

pair of amplicons was missing (i.e. false-negative) or wrong.

Some MAS-3 signals (17.8%) were predicted with a third add-

itional sequence (i.e. false-positive).

4.4 Comparison with the PSQTM 96 MA Software

V.2.1.1.

A leave-one-out cross-validation was applied on AdvISER-

PYRO to produce a single and unique answer for each SAS

signal. Six amplicons were excluded from the comparison be-

tween both methods. These amplicons presented a single

pyrosequencing signal that was automatically included within

the dictionary and was consequently excluded from the test data-

set. The comparison was therefore performed on 114

PyrogramsTM.
Most SAS signals (208/214; 97.2%) were correctly translated

into a single correct sequence by AdvISER-PYRO. This percent-

age of correct identification was much higher than the percentage

obtained with the PSQTM 96 MA Software V.2.1.1. that trans-

lated 121/214 (56.5%) PyrogramsTM into correct nucleotide se-

quences. Compared with this software, the percentage of correct

identification obtained with AdvISER-PYRO was particularly

high at low (FUPH 55) signal intensities (Fig. 2).

4.5 Illustration of AdvISER-PYRO application

Figure 3 illustrates the results obtained with AdvISER-PYRO

when applied on four distinct pyrosequencing signals.
In Figure 3A, a signal with a low FUPH (2.49) was generated

from a SAS. Despite this low signal-to-noise ratio, the signal was

correctly converted in the corresponding single nucleotide

sequence (amplicon 32). The correlation coefficient (r) between

the predicted values of the penalized regression model and the 26

values of the signal was higher than 0.99, confirming the identi-

fication reliability obtained with AdvISER-PYRO.
In Figure 3B, the signal was generated from a MAS-1 includ-

ing PCR product of amplicons 32 and 14 in equivalent propor-

tion (50/50%). Both amplicons were correctly identified by

AdvISER-PYRO and the signal contributions of both amplicons

were well-balanced but not perfectly equivalent (41/59%). The

correlation coefficient (r) between the predicted values of the

penalized regression model and the 26 values of the signal was

higher than 0.99, confirming the identification reliability ob-

tained with AdvISER-PYRO.

In Figure 3C, the signal was generated from an SAS including

a single amplicon, which was excluded from the dictionary. The

contributions of atoms corresponding to two distinct amplicons

(amplicons 07 and 08) are wrongly identified by AdvISER-

PYRO. However, this situation induces a low correlation coeffi-

cient (r¼ 0.759) between the predicted values of the penalized

regression model and the 26 values of the signal, pointing out

the low reliability of the AdvISER-PYRO identification and

allowing the operator to reject this result.

Fig. 2. Comparison of the percentage of correct identification as a func-

tion of signal intensities (FUPH). The comparison was performed be-

tween AdvISER-PYRO and the PSQTM 96 MA Software V.2.1.1,

using Local Polynomial Regression Models on identifications obtained

with SAS signals. The symbols on the x-axis represent the distribution of

the FUPH in the SAS dataset
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In Figure 3D, the signal was produced from a MAS-2 gener-

ated with a single PCR performed on a reconstructed sample

where DNA from two distinct mycobacterial clinical isolates

(corresponding to amplicon 32 and 14) were mixed in equal pro-

portion (50/50%). The pyrosequencing signal was perfectly

(r¼ 1) modeled as a linear combination of signals corresponding

to amplicon 32 showing that initial DNA proportion was

strongly altered after PCR amplification.

The computation time for each example was 51 s on an

Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz computer.

5 DISCUSSION

The AdvISER-PYRO algorithm appears as an efficient tool that

can reliably be used to identify amplicons in pyrosequencing

signals generated by SAS or MAS. The first prerequisite is that

pyrosequencing signal analysis by AdvISER-PYRO requires the

corresponding amplicon representation in the dictionary.

Otherwise, the model produced by AdvISER-PYRO would be

wrong. In that case, the fitted values would be weakly correlated

with the pyrosequencing signal, which will allow operators to

avoid erroneous interpretation.

From this study, it also appears that a quantitative inter-

pretation of signal contributions is not feasible. Indeed, the

estimated relative contribution of each amplicon in the

MAS-2 pyrosequencing signals did not correspond to the ini-

tial ratio of each DNA target. This derives from significant

differences in PCR amplification efficiency of these DNA tar-

gets, hence to differences in the respective amount of ampli-

cons to be pyrosequenced. Moreover, the estimated relative

contribution of each amplicon in the MAS-1 pyrosequencing

signals did not correspond to the initial ratio of PCR product,

as previously reported in Amoako et al. (2012) who showed

that all primer–target association does not perform equally

well.
A second prerequisite for using AdvISER-PYRO is that each

amplicon produces a specific signal which is different from sig-

nals generated by all other amplicons expected to be produced in

the genetic identification process. If this is indeed the case, the

AdvISER-PYRO algorithm can be applied to a wide spectrum of

pyrosequencing-based genotyping applications other than myco-

bacterial species typing, and is able to analyze genotyping data

generated by various types of polymorphisms including single

nucleotide polymorphism, single nucleotide repeat sequence, de-

letion and insertion. A cyclic dispensation order can be used if it

Fig. 3. Four examples of signal identification with AdvISER-PYRO. The pyrosequencing signal is represented by vertical black lines. The contribution

of each atom is represented with boxes stacked one on top of the other
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satisfies this second prerequisite (i.e. if it produces distinct ampli-
con-specific signals). However, choosing a selected dispensation
order can be advantageous to maximise the signal differences
inherent to pyrosequencing signals produced respectively by

each type of amplicon according to the genotyping application.
Maximising signal differences could also be achieved by increas-
ing the number of dispensed nucleotides with the deleterious

consequence that long reads are associated with higher
peak height variance. Consequently, the choice of an optimal
nucleotide dispensation order is based on a difficult compromise

between the quantity and the quality of the acquired
information.
In the context of oncogene re-sequencing in heterogeneous

tumor cell samples, AdvISER-PYRO could be used as a tool
complementary to Pyromaker (Chen et al., 2012). The latter is
used to complete the representative learning dictionary by gen-
erating a theoretical pyrosequencing signal for each mutation

for which no biological sample is yet available; hence, experi-
mental signal is still lacking in the dictionary. If multiplex
pyrosequencing needs to be carried out, AdvISER-PYRO

could be applied to the analysis of complex signals obtained
with multiplex primers designed with the mPSQed software
(Dabrowski and Nitsche, 2012). In this study, AdvISER-

PYRO showed a high percentage of correct identification
with signals generated from samples containing two distinct
amplicons. Although this has not been yet tested and needs
to be validated, it should be pointed out that AdvISER-PYRO

can also be used on samples containing more than two distinct
amplicons.
In the present study, the optimisation of AdvISER-PYRO

hyperparameters was done on a validation dataset to obtain
the higher percentage of correct identification, irrespective of
the impact of a false-positive or -negative results. However,

such optimisation should ideally be performed for each genotyp-
ing application by considering the global clinical context. In
oncogene re-sequencing applications, the SCT could indeed be

defined in terms of relative contribution by estimating the Limit
of Blank (LoB) from a dilution series experiment. This LoB
could be modulated to limit the probability of either false-nega-
tive or -positive results by considering the clinical impact relative

to both types of error.
As illustrated here, AdvISER-PYRO is expected to substan-

tially help improve the reading and translation of the

pyrogramTM into a correct sequence or set of sequences in case
of SAS and MAS signals, respectively. Validation and optimiza-
tion of AdvISER-PYRO in clinical applications other than

mycobacterial genotyping are already under way.
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