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Abstract
Objective—To familiarize clinicians with advances in computational disease modeling applied
to trauma and sepsis.

Data Sources—PubMed search and review of relevant medical literature.

Summary—Definitions, key methods, and applications of computational modeling to trauma and
sepsis are reviewed.

Conclusions—Computational modeling of inflammation and organ dysfunction at the cellular,
organ, whole-organism, and population levels has suggested a positive feedback cycle of
inflammation → damage → inflammation that manifests via organ-specific inflammatory
switching networks. This structure may manifest as multi-compartment “tipping points” that drive
multiple organ dysfunction. This process may be amenable to rational inflammation
reprogramming.
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INTRODUCTION
Critical illness comprises a constellation of pathophysiological derangements that ensues in
the setting of trauma, hemorrhagic shock, and sepsis. Trauma, often accompanied by
hemorrhage, is among the leading causes of morbidity and mortality worldwide, often
leading to inflammation-related late complications that include sepsis and multiple organ
dysfunction syndrome (MODS) (1–3). Sepsis alone is responsible for more than 215,000
deaths in the United States per year and an annual healthcare cost of over $16 billion (4),
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while trauma/hemorrhage is the most common cause of death for young people in the U.S.,
costing over $400 billion annually (5–7).

It is now beyond doubt that the acute immuno-inflammatory response, with its manifold
manifestations at the molecular, cellular, tissue, organ, and whole-organism levels, drives
outcomes in critical illness. Though properly regulated inflammation allows for timely
recognition and effective reaction to injury or infection, both trauma and sepsis are
manifestations of disordered and mis-compartmentalized inflammation that in turn impairs
physiological functions. This paradox of a robust, evolutionarily conserved network of
inflammation whose very structure may lead to disease(8–10) has resulted in a lack of
therapeutic options other than supportive care (11, 12). Indeed, the current lack of
therapeutic options may result from the failure to fully understand this structure, and thus
certain modes of supportive care (e.g. ventilation) may propagate inflammation and organ
damage as compared to others (13).

Over a decade ago, there was recognition of the complex interplay between inflammation
and physiology in critical illness and of the need to apply complex systems approaches such
as computational modeling to unravel this complexity (14, 15). In the context of this review,
we use the term “in silico modeling” to refer to the constellation of computational
approaches utilized in an attempt to define and, in a sense, defeat the complexity of critical
illness (Figure 1; Table 1). The advent of “omics” methodologies, with the theoretical
capability of interrogating the complete responses of cells and tissues, spurred the
application of these methodologies to critical illness (16–23); the resultant formation of the
Inflammation and the Host Response to Injury “glue” consortium (http://
www.gluegrant.org/) led to seminal contributions to the understanding of the myriad
pathways induced by injury and infection in humans(24, 25). More recently, Translational
Systems Biology has been suggested asa rational, systems engineering-oriented,
computationally-based frameworkfor integrating data derived from basic biology
experiments as well as pre-clinical studies and clinical studies(26–29). This recognition of
the need to apply such complex systems approaches critical illness led to the formation of
the Society for Complexity in Acute illness (SCAI; www.scai-med.org) in 2003, has been a
featured topic of discussion in meetings of various other scientific societies, and has been
recognized by funding agencies as an important means by which to grapple with the
multidimensional problem of critical illness. The tremendous progress and remaining
challenges of computational modeling in critical illnessare reviewed in this article.

CONCEPTS, APPROACHES, AND FRAMEWORKS FOR COMPUTATIONAL
MODELING IN CRITICAL ILLNESS

There is a fairly long history of quantitative modelingapproaches to critical illness, as
summarized in Figure 1 and detailed below. Initial studies were based on statistical, data-
driven methods that have been employed to better define the patient state and predict clinical
outcomes (e.g. the APACHEscore and numerous other scoring systems utilized in sepsis and
trauma (30)); these approaches are summarized in Table 1, which is an expansion of the
excellent summary given in (31). These methods are based on associations among variables,
and include time-tested logistic regression techniques as well as more recent tools that
enable graphical views of network interconnectivity (31). Such methods were used
predominantly in an attempt to develop better prognostic and diagnostic scoring systems for
critically ill patients, and incorporated both clinical data and levels of circulating
inflammation biomarkers in recognition of the interrelated nature of inflammation and
(patho)physiology (32–34). More recently, the advent of multiple high-content (“omic”)
technologies has resulted in a deluge of data in all fields of biology(35), including critical
illness(24, 25, 36–42). In addition, there has been an explosion in the use of multiple
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computational techniques that could be classified as “complex systems” approaches,
including signal processing techniques, multivariate dynamic clustering, and machine-
learningand network discovery algorithms based on physiologic measurements as well as
inflammation biomarkers (22, 43–47). Importantly, these systems biology and
computational biology studies verified the importance of known biological pathways in
critical illness and injury, as well as suggesting potentially novel pathways for further study
(22, 36, 48–50).

The increasing use of these techniques has led to a growing recognition that more data leads
to more possible explanations for those data; that there are multiple technical, practical, and
economic challenges to implementing these purely data-driven systems biology approaches
as diagnostic strategies; and thatinvestigators’ intuition is not up to the task of unraveling
causal mechanisms from highly-dimensional, data-based associations (3, 13, 51). In contrast
to data-driven modeling, mechanistic computational simulations depict biological
interactions (e.g. among cells, their products, and the outcomes that result under a given set
of conditions). Such computational models simulations may be used as “knowledge stores”
that may be queried as to the emergent behavior of the sum total of known or hypothesized
reductionist biological interactions (52–56); to suggest novel interactions not yet described
by experimental data(57); and to address controversies based on diverseexperimental/
clinical conditions or other experimental differences among groups studying any given
complex biological system(58). Unlike data-driven models, dynamic mechanistic models
offer the possibility of prediction outside of the time range or other specific conditions of the
data on which they were trained(3, 13, 29, 51). The primary methods of dynamic
mechanistic modeling used to datein acute inflammation and other phenomena related to
critical illnessare agent-based modeling(57, 59–62) and equation-based modeling(63–71),
though rules-based modeling has also been used for some studies of inflammatory and
immune intracellular signaling (26, 72–76). These modeling frameworks have their
respective strengths and weaknesses(26, 27, 77, 78), but have all proven valuable in the
critical care arena(8, 9, 77, 79–82).

However, as useful as mechanistic computational modeling has been in integrating known
interactions gleaned from the literature, this approach is inherently biased given the
tremendous volume of information that could, in theory, be incorporated into models and
that is deemed irrelevant or unnecessary for the degree of abstraction chosen by the modeler.
Bias is also introduced based on the level of interest devoted to a particular pathway by the
scientific community and thus ignores potentially important pathways that are less studied or
yet to be discovered. In response to this concern,there has been an attempt to couple the less-
biased data-driven approach with mechanistic mathematical modeling, in studies focused on
the acute inflammatory response(3, 9, 13, 28, 29, 51, 83, 84). In these studies, mechanistic
computational simulations were created based on biology abstracted from “omics” data (85–
90) or inferred from data-driven analysis of principal drivers (91). This type of combined
data-driven and mechanistic modeling allows for a further, intermediate validation step with
regards to hypotheses inferred from the original data. Furthermore, these studiesreflect the
maturity of computational modeling in acute illness. Importantly, this combined data-driven
and mechanistic approach is likely to be the area of study with the most growth in coming
years due to the inherent appeal of unifying – and gaining testable mechanistic insights from
– the growing repository of “omics” data.

This progression from multivariate regression models through various quasi-mechanistic
associate methods to dynamic mechanistic modeling (and the integration across methods) is
depicted in Figure 1. Below, we discuss the insights gleaned from computational modeling
in acute illness, and suggest challenges and opportunities for future work.
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KEY INSIGHTS FOR CRITICAL ILLNESS FROM COMPUTATIONAL
MODELING

Early studies utilizing complex systems approaches in critical illness suggested the concept
of “coupled oscillators” that become uncoupled as inflammation becomes dysregulated and
organ dysfunction progresses (14). More recent in silico modeling work has posed specific
hypotheses with regard to the mechanisms by which inflammation is coupled nonlinearly to
physiological (dys)function, namely due to multiple feedback loopsthat manifest at the
cellular, tissue/organ, and whole-organism levels(3, 13, 27, 51, 60–65, 67–70, 84–86, 91–
93). Positive feedback loops allow rapid ramping up of a response to biological stress, while
the negative feedback works to suppress inflammation and restore homeostasis once the
threat (infection, damaged tissue, etc.) has been eliminated.

One of the earliest insights to come from computational modeling was the crucial role of
“late” mediators in sepsis (now known as Damage-associated Molecular Pattern [DAMP]
molecules), intracellular components whose release into the extracellular environment
signals stress, damage, or dysfunction (63), in the establishing and perpetuating the positive
feedback loop of inflammation → damage → inflammation (9, 10, 13, 27, 51, 84, 94, 95).
In silico modeling studies support the notion that this dysfunction occurs via a positive
feedback loop in which inflammation induced by pathogen-derived molecular pattern
(PAMP) molecules leads to the secondary release of DAMP molecules. In turn, DAMP’s
stimulate nearby inflammatory cells to produce more of the classical inflammatory
mediators, leading to further release of DAMP’s and therefore to self-maintaining
inflammation even after the pathogen has been cleared. The recognition that PAMP’s and
DAMP’s signal via common pathways (e.g. the Toll-like receptors) (96, 97)has helped
validate this concept at the molecular level.

The concept of inflammatory preconditioningis another key area in which in silico modeling
has yielded key insights. Inflammatory preconditioning refers to the spectrum of possible
responses to stimulation with two or more pro-inflammatory stimuli in succession, namely
responses that are equal to, greater than, or lesser than each stimulus in isolation. For
example, repeated treatment with bacterial lipopolysaccharide can lead to desensitization or
enhancement of subsequent pro-inflammatory responses that manifest at the cellular, tissue/
organ, and whole-organism levels(98, 99). In silico modeling studies using various
platforms have suggested that the aforementioned positive and negative feedback loops of
the inflammatory response can explain the various phenotypes characteristic of
inflammatory preconditioningboth in vitro and in vivo(62, 68, 74, 85, 100–102).

PERSPECTIVES AND CHALLENGES
In silico modeling has yielded both basic insights and translational applicationsin critical
illness (3, 9, 13, 27, 29, 51, 82, 84, 92). Indeed, key translational applications such as in
silico clinical trials were pioneered in the arena of critical illness (61, 64). One of these
studies suggested mechanistic reasons for the failure of neutralizing anti-TNF-α antibodies
in sepsis, due to cohort-specific beneficial and detrimental effects that ultimately resulted in
the lack of net benefit for this drug (64). Recent studies showing the potential to predict the
individual inflammatory and pathophysiologic outcomes of human subjects (103) and large,
outbred animals(91) subjected to acute inflammatory stress suggest the possibility of
predicting the outcomes of – and possibly tailoring therapy for – individual patients(29, 82).
Recently, we constructed a hybrid equation- and agent-based model that simulates blood
flow along with skin injury, inflammation, and ulcer formation(104), since pressure ulcers
are a complication that con occur in critically ill patients (105). The relationship between
pressure and the course of ulcer formation, as well as several other important characteristic

Vodovotz and Billiar Page 4

Crit Care Med. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



patterns of pressure ulcer formation, was demonstrated in this model. The equation-based
portion of this model was calibrated to data related to blood flow following experimental
pressure responses in non-injured human subjects or to data from people with spinal cord
injury (SCI). This hybrid model predicted a higher propensity to form ulcers in response to
pressure in people with SCI vs. non-injured control subjects (both as cohorts and individual
patients), and thus may serve as novel diagnostic platform for post-SCI ulcer
formation(104). Other emerging applications of computational modeling to understand
multi-factorial therapies for critical illness that reprogram the inflammatory response, such
as hemoadsorption (106, 107) also point to an exciting and valuable application of in silico
methods.

Despite this progress, many challenges remain for this rapidly-evolving field. At the most
practical level, in silico modelers must prove the translational benefit of this technology
through prospective clinical studies and ultimately through the development of
computationally-based diagnostics or therapeutics for critical illness. At the grandest scale,
the key challenge revolves around the inherently multi-scale, multi-system nature of critical
illness. As has likely occurred in many other complex biological systems (108),
inflammation may have evolved to be robust in response to a broad range of perturbations at
multiple biological scales of organization, but at a cost of fragility in key control nodes. We
speculate that the aforementioned positive and negative feedback loops manifest
dynamically as cellular, tissue/organ, and whole-organism “tipping points” that drive MODS
(13, 51). In silico modeling could therefore rise to the challenge of integrating inflammatory,
neuro-endocrine, and physiologic processes in order to unravel the multi-dimensional, multi-
compartment, and highly dynamic landscape of critical illness.
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Figure 1. The progression from measurement to modeling to modulation in sepsis and trauma
Quantitative (in silico) methods have progressed from purely association-based statistical
methods to dynamic mechanistic modeling capable of predicting the responses of patient
cohorts and individuals as well as suggesting novel therapies. Data-driven and mechanistic
modeling methods are now being integrated. Future possibilities include the design of novel
diagnostics and therapies based on in silico modeling.
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Table 1
Comparison of modeling methods and applications to sepsis and trauma

Key primary and review papers are provided to guide the reader.

Modeling method Description Examples of Applications to
sepsis/trauma

Key References

Data-driven Modeling A compendium of methods that are
primarily based on associations among data
variables. These methods can be applied to
either static or dynamic data

Prediction of likelihood to
worsen or improve clinical
state

Reviews: (31, 109, 110)

Multivariate regression Methods for exploring the relationships of
each of multiple variables to a given
outcome

Associating inflammatory
mediator levels with clinical
outcomes

Primary papers: (50, 111,
112)

Hierarchical clustering A technique for grouping multivariate data
based on similarity in vectors of values.

Highlighting the natural
variability, as well as any
overlap, in gene transcripts,
inflammatory mediators, or
physiologic/biochemical
clinical data

Primary papers:(22, 24, 50)

Principal Component Analysis A non-parametric statistical method of
reducing a multidimensional dataset to a
few principal components. These are the
components that account for the most
variability in the dataset. The underlying
hypothesis is that a variable that changes
during a specific process is important to that
process.

Suggesting principal
inflammatory drivers or
biomarkers of sepsis or
trauma, either to guide further
study directly or to suggest
which variables should be
included in a mechanistic
model.

Primary papers: (50, 91,
113)

Network Discovery Methods Methods that can suggest relationships
among variables as well as key features of
connectivity in a multivariate dataset.

Suggesting biomarkers and
possible interactions among
mediators in sepsis or trauma.

Primary papers: (22, 24, 50)

Mechanistic Modeling A compendium of methods that are
primarily based on mechanistic abstractions
that simulate key intracellular, cell/cell,
tissue/organ, organ system, or whole-
organism level, or that can tie across levels
of organization (multiscale modeling)

Gaining mechanistic
knowledge about sepsis/
trauma; simulating clinical
trials; prediction of likelihood
to worsen or improve clinical
state

Reviews: (9, 26, 27, 92,
114, 115)

Equation-based models A compendium of methods based on
ordinary or partial differential equations that
typically describe the change over time of
variables. These models are typically
deterministic but can be stochastic, and are
are based on the average behavior of
components in a well-mixed system.

Qualitatively and
quantitatively predictive
models of inflammation (at
the cellular, tissue/organ, and
whole-organism levels) in
sepsis and trauma, including
in silico clinical trials and
individual-specific models.

Primary papers:(63–65, 91,
100, 116)

Agent-based models Cellular automa models in which individual
agents interact with each other and with
their environment in a given space by
following rules that are applied in a
probabilistic manner. These models are
therefore generally stochastic.

Qualitatively and
quantitatively predictive
models of inflammation (at
the cellular, tissue/organ, and
whole-organism levels) in
sepsis and trauma, including
in silico clinical trials and
individual-specific models.

Primary papers:(60–62)

Rule-basedmodels Similar to agent-based models, rules-based
models are typically used to model detailed
biochemical intreactions among molecules.
These models are typically stochastic.

Models of inflammatory
signal transduction pathways.

Primary papers:(74, 75,
117)
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