Skip to main content
. Author manuscript; available in PMC: 2014 Jul 5.
Published in final edited form as: J Org Chem. 2013 Jun 18;78(13):6471–6487. doi: 10.1021/jo400469t

Table 4.

Optimization of the Non-Phenolic Oxidative Coupling on the Model Substrate 35

graphic file with name nihms-495857-t0004.jpg

Oxidant (equiv) Lewis Acid (equiv) Temp (Time) Solvent Results
% Yield M:P
1 PIFA (0.6) BF3·Et2O (2.5 equiv) 0 °C - rt (2 h) DCM nd nd
2 PIFA (1.02) BF3·Et2O (4 equiv) 0 °C - rt (8 h) DCM 11 3 : 2
3 PIFA (1.02) BF3·Et2O (4 equiv) −0 °C - rt (1.5 h) DCM 20 3 : 2
4 PIFA (0.8) BF3·Et2O (3 equiv) −40 °C (0.5 h) DCM 30 4 : 1
5 PIFA (0.8) BF3·Et2O (3 equiv) −78 °C (0.5 h) DCM 25a 4 : 1
6 PIDA (0.8) BF3·Et2O (3 equiv) −40 °C (2.5 h) DCM nd nd
7 Tl(OCOCF3)3 (0.8) BF3·Et2O (3 equiv) rt (15 min) MeCN nd nd
8 Tl(OCOCF3)3 (0.8) BF3·Et2O (3 equiv) −40 °C (20 min) MeCN 38 2 : 3
9 Tl(OCOCF3)3 (0.5) BF3·Et2O (2.5 equiv) −78 °C (40 min) MeCN 30 3 : 7
10 Tl(OCOCH3)3 (0.7) BF3·Et2O (3 equiv) −40 °C (1.25 h) MeCN 67a 3 : 7

PIFA: phenyliodine(III) bis(trifluoroacetate); PIDA: Phenyliodine(III) diacetate.

a

The yield is based on recovered starting material 36.

%Yield is based on isolation of both the diasteromers.

nd: not determined.