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Summary
In addition to genetic alterations of gains and losses, epigenetic events of promoter methylation
appear to further undermine a destabilized genomic repertoire in squamous head and neck
carcinoma (HNSCC). This review provides an overview of frequently methylated tumor
suppressor genes in benign head and neck papillomas, primary HNSCC tumors, and HNSCC cell
lines and their relevance as epigenetic markers in head and neck tumorigenesis.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers in
the world with over 500,000 cases diagnosed annually. In the United States alone, it
accounts for nearly 3.2% of all newly diagnosed cancers (1). Not only one of the most
ubiquitous, HNSCC is also one of most lethal cancers responsible for 2.1% of all cancer
deaths in the United States and is noted as the sixth most common malignant disease
worldwide (1). HNSCC carries a high mortality rate despite advances in chemotherapy and
radiation therapies. This is due mainly to the highly heterogeneous nature of the disease,
both morphologically and genetically. A current shortcoming in the prognosis and treatment
of HNSCC is a lack of methods and large study cohorts to adequately address the etiologic
complexity and diversity of the disease.

The study of human disease has focused primarily on genetic mechanisms. Dispelling the
belief that the only way to treat such conditions is by fixing or replacing damaged genes,
scientists are instead focusing on the field of epigenetics--the study of changes in gene
silencing that occur without changing the DNA sequence. Many types of epigenetic
processes have been identified--they include methylation, acetylation, phosphorylation,
ubiquitylation, and sumolyation. These processes are natural and essential to many organism
functions, but if they occur improperly, there can be major adverse health and behavioral
effects.

Epigenetic regulation is central to the biological function of all cells. Perhaps the best known
epigenetic process, in part because it has been easiest to study with existing technology, is
DNA methylation. This is the addition or removal of a methyl group (CH3).
Hypermethylation is a well described DNA modification that has been implicated in normal
mammalian development, (2, 3) imprinting (4) and X chromosome inactivation (5).
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However, recent studies have identified hypermethylation as a probable cause in the
development of various cancers (6–8). Aberrant methylation by DNA-methyltransferases in
the CpG islands of a gene’s promoter region can lead to transcriptional repression akin to
other abnormalities such as a point mutation or deletion (9). Gene transcriptional
inactivation via hypermethylation at the CpG islands within the promoter regions is an
important mechanism (10). This anomalous hypermethylation has been noted in a variety of
tumor-suppressor genes (TSGs), whose inactivation can lead many cells down the
tumorigenesis continuum (10–12). In many cancers, aberrant DNA methylation of so called
“CpG islands”, CpG-rich sequences frequently associated with promoters or first exons, is
associated with the inappropriate transcriptional silencing of critical genes (13–15). These
DNA methylation events represent an important tumor-specific marker occurring early in
tumor progression and one that can be easily detected by PCR based methods in a manner
that is minimally invasive to the patient.

Studies of sequential molecular alterations and genetic progression of pre-invasive HNSCC
have not been clearly defined. A tissue field of somatic genetic alterations precedes the
histopathological phenotypic changes of carcinoma (16). Genomic changes could be of
potential use in the diagnosis and prognosis of pre-invasive squamous head and neck
carcinoma (HNSCC) lesions and as markers for cancer risk assessment. A few studies have
shown recurring alterations of chromosome 9p21 in the early stages of HNSCC (17–19).
However, gene silencing via hypermethylation is still a relatively new idea in the
development of HNSCC and little is known about the contribution of epigenetics to the
development of neoplasia, its transformation, progression, and recurrence in HNSCC.
Therefore, epigenetic events of promoter hypermethylation are emerging as one of the most
promising molecular strategies for cancer detection and represent an important tumor-
specific marker occurring early in tumor progression.

DNA methylation in HNSCC
Numerous tumor suppressor genes have been implicated as targets for methylation in other
cancers (13–15). Promotor hypermethylation of genes in HNSCC have been reported for
p16, p14, DAP-K, RASSF1A (20–26), RARβ2 (27–29), MGMT, a DNA repair gene that
functions to remove mutagenic (O6-guanine) adducts from DNA (30), and E-cadherin, a
Ca2+- dependent cell adhesion molecule that functions in cell-cell adhesion, cell polarity,
and morphogenesis (31).

Historically, the molecular pathogenesis of cancer has been teased out one gene at a time.
The development of several new high throughput analytical methods for the analysis of
DNA, mRNA, and proteins within a cell (32–35) have permitted a more detailed molecular
characterization of the cancer genome. In HNSCC, recent comprehensive high-throughput
methods from our group and others have underscored the contribution of both genetic (36–
38) and epigenetic events (26, 39–43), often working together (44), in the development and
progression of HNSCC. In HNSCC, methylation of p16, RARβ, and MGMT suggested
early events, with incidences of methylation in HNSCC cell lines and primary tumors being
similar (27, 43–46).

Aberrant DNA methylation patterns in HNSCC have served as powerful diagnostic,
prognostic, and risk assessment biomarkers. Promoter hypermethylation pattern of the p16,
MGMT, GSTP1, and DAPK genes have been used as molecular markers for cancer cell
detection in the paired serum DNA and almost half of the HNSCC patients with methylated
tumors were found to display these epigenetic changes in the paired serum (26).

Stephen et al. Page 2

Methods Mol Biol. Author manuscript; available in PMC 2013 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A: HNSCC Cell lines
The majority of published epigenetic data in HNSCC comes from methylation specific PCR
following bisulfite treatment (MSP) (47). The success of MSP has been attributed to its
increased sensitivity, however, it generally relies on a pre-selected number of genes,
assessed one gene at a time, as opposed to high-throughput microarray based methylation
analysis (48) and multi-candidate gene applications (44). Recently, using a multi-candidate
gene approach, the Methylation Specific Multiplex Ligation-dependent Probe Amplification
(MS-MLPA) assay (MS-MLPA, Figure 1) (44, 49), we identified nine genes, TIMP3, APC,
KLK10, TP73, CDH13, IGSF4, FHIT, ESR1, and DAPK1 that were aberrantly methylated
in paired HNSCC primary A) and recurrent or metastatic (B) UMSCC-11A/11B,
UMSCC-17A/17B, and UMSCC-81A/81B cell lines (Figures 2–4)(44).

The most frequently hypermethylated genes were APC and IGSF4 observed in 3/6 cell lines,
and TP73 and DAPK1 observed in 2/6. For KLK10 and IGSF4, TIMP3 and FHIT, and
TP73, in recurrent/metastatic cell lines, promoter hypermethylation was a disease
progression event, indicating complete abrogation of tumor suppressor function for KLK10,
IGSF4, and TIMP3, and gene silencing of one of two copies of TP73. Hypermethylation of
IGSF4, TP73, CDH13, ESR1, DAPK1, and APC were primary events in UMSCC-17A
(Figure 3). Gene silencing through promoter hypermethylation was observed in 5/6 cell lines
and contributed to primary and progressive events in HNSCC (44). In addition to genetic
alterations of gains and losses, epigenetic events appear to further undermine a destabilized
genomic repertoire in HNSCC.

B: Primary HNSCC tissue
Subsequently (27), we evaluated aberrant methylation status in 28 primary HNSCC using
MS-MLPA (Figures 5, 6) and confirmed aberrant promoter methylation using conventional
Methylation Specific PCR (MSP) (47) (gel electrophoresis separation of products, Figures
7,8) and real time PCR following bisulfite treatment, Figure 9). MS-MLPA promoter
methylation profiling of 22 tumor suppressor genes (Table 1), many of which are involved
in head and neck cancer, identified RARβ, APC, and CHFR as frequent epigenetic events.
These preliminary findings of promoter hypermethylation of RARβ and APC in both early
and late stage tumors and of CHFR by MS-MLPA and MSP assays in only late stage tumors
appear to suggest an epigenetic progression continuum, with CHFR as a late event and a
putative diagnostic biomarker for late stage disease. The alterations of RARβ, APC, and
CHFR via DNA hypermethylation have several implications in HNSCC. Decreased
expression of RARβ has been associated with increased keratinizing squamous
differentiation in HNSCC cells and pharmacological doses of retinoid ATRA (9-cis-RA)
induced RARβ in HNSCC cells, resulting in restoration of a more normal differentiation
(50). More importantly, RARβ2 silencing by promoter hypermethylation was shown to be an
early event in head and neck carcinogenesis and 5-Aza-CdR restoredRARβ2 inducibility by
ATRA in most cell lines (51). The examination of the prevalence and pattern of CHFR
inactivation in human tumors found CpG methylation-dependent silencing of CHFR
expression in 40%of primary colorectal cancers, 53% of colorectal adenomas, and 30% of
primary HNSCC (52). We reported CHFR as a solely late stage 4 event, occurring in 7/28
HNSCC (27), suggesting a role for CHFR in tumor progression with potential utility as a
biomarker of late stage disease. Treatment with the methyltransferase inhibitor 5-aza-2′-
deoxycytidine induced re-expression of CHFR (52). Additionally because cancer cells that
lack CHFR expression have shown to be more susceptible to the microtubule inhibitor taxol
(52), silencing of CHFR by methylation can serve as a marker for predicting sensitivity to
particular chemotherapeutic agents. APC (adenomatosis polyposis coli), a tumor suppressor
gene, was originally implicated in colon cancer. Promoter hypermethylation of APC has
been reported in 25% of oral cancers (53) and in Barrett’s metaplasia and dysplasia (54). In
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our primary HNSCC cohort (27), APC, like RARβ, was hypermethylated in early and late
stage tumors, suggesting DNA methylation of APC and RARβ as earlier epigenetic events,
when compared to CHFR. Validation of these findings in larger HNSCC cohorts would
further support these genes as relevant epigenetic biomarkers of cancer therapy given the
reversible nature of epigenetic gene silencing.

C. Delineating an epigenetic continuum in HNSCC
A tissue field of somatic genetic alterations precedes the histopathological phenotypic
changes of carcinoma (16). Genomic changes could be of potential use in the diagnosis and
prognosis of pre-invasive squamous head and neck carcinoma (HNSCC) lesions and as
markers for cancer risk assessment. Studies of sequential molecular alterations and genetic
progression of pre-invasive HNSCC have not been clearly defined. A few studies have
shown recurring alterations of chromosome 9p21 in the early stages of HNSCC (17–19).
However, gene silencing via hypermethylation is still a relatively new idea in the
development of HNSCC and little is known about the contribution of epigenetics to the
development of neoplasia, its transformation, progression, and recurrence in HNSCC.

Benign Papillomas
Papillomas are benign neoplasms of epithelium on a connective tissue core(55). They can
involve the nose and sinuses (sinonasal papillomas - SP) as well as the respiratory tract
(respiratory papillomatosis - RP) to include the larynx, trachea, and bronchi. Both SP and
RP have a tendency to recur. Recurrent respiratory (laryngeal) papillomatosis (RRP) is an
extremely rare condition (56). Inverted SP are associated with invasive squamous cell
carcinoma (SCC)(57) and a small percentage of RRP cases also progress to malignancy
(58).

Human papilloma virus (HPV) is frequently associated with sinonasal (59, 60) and laryngeal
(61–63) papillomas. Most HPV-positive cases of SP are of the inverted type (64). Benign
papillomas are preferentially associated with the low-risk HPV types 6 and 11, whereas their
malignant counterparts are exclusively positive for HPV-16 DNA(65). Studies on HPV
typing in benign laryngeal papillomas have demonstrated an association of HPV-11 with a
more aggressive course of the disease(66, 67). HPV infection in inverted papillomas (68)
and in particular HPV-11 infection in RRP(69) may be an early event in a multistep process
of malignant transformation.

Sinonasal Papillomas
Sinonasal papillomas have been categorized histologically as inverted, fungiform
(exophytic), and cylindrical cell papillomas (70). Inverted papillomas are the most
commonly occurring sinonasal papillomas followed by exophytic(57). Inverted papillomas
are benign, rare sinonasal lesions well known for their local recurrence, invasiveness and
predisposition for malignant transformation. Recurrence rates vary widely, ranging from 6%
to 33%, despite management by different surgical treatment options(71). Malignant
transformation occurs in 7 to 10% of cases (57, 72). Morphology is not useful in
determining if a lesion will recur or acquire malignant changes. A general belief is that once
excised, and in the absence of malignancy in the excised specimen, a recurrence is unlikely
to convert to malignancy(73).

Benign inverted papillomas were reported as monoclonal but lacking common genetic
alterations associated with squamous head and neck cancer(73). Therefore we evaluated 7
patients with primary and recurrent sinonasal papillomas for aberrant promoter methylation
status using MS-MLPA and confirmed aberrant methylation using conventional MSP. We
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found all 7 cases had at least one epigenetic event of aberrant DNA hypermethylation with
10 of the 22 methylation-prone genes being methylated (Table 2). Commonly methylated
genes included CDKN2B, CDKN2A, TP73, and ESR1. The CDKN2B gene, detected by
MS-MLPA (Figure 10), was a consistent target of aberrant methylation and was confirmed
by MSP (Figure 11).

Recurrent biopsies from 2 inverted papilloma cases had common epigenetic events: aberrant
methylation of CDKN2B and DAPK1 in case 1, and CDKN2B in case 2, underscoring
monoclonality for these lesions. Inactivation of the CDKN2B and CDKN2A genes at the
genomic and epigenetic level is a frequent event in human oral SCCs (74) and in HNSCC
(37, 44, 75). TP73 and ESR1 were aberrantly methylated in 2 of the 7 cases. TP73 is
involved in cell cycle regulation and can activate TP53-responsive proteins, inhibit cell
growth and induce apoptosis (76). We have reported TP73 hypermethylation in HNSCC to
be a primary as well as a disease progression event (44). ESR1 has metastasis-suppressor
properties in breast cancer cells (77), suggesting a tumor-suppressor role (78). ESR1 is
methylated in Barrett’s metaplastic and dysplastic samples as well as in some
adenocarcinoma samples suggesting that DNA hypermethylation is an early epigenetic event
in the progression of esophageal adenocarcinomas (EAC) (54). These findings support a role
for epigenetic events of promoter hypermethylation in the pathogenesis of benign inverted
and exophytic papillomas. As a consistent target of aberrant promoter hypermethylation,
CDKN2B may serve as a useful biomarker and a potential therapeutic target for gene
reactivation studies and in disease monitoring for progression.

Recurrent respiratory (laryngeal) papillomas (RRP)
Recurrent respiratory (laryngeal) papillomas (RRP) present primarily as tiny warts on the
vocal cords and can be potentially life-threatening due to airway obstruction(56). Human
papillomavirus types 6 and 11 account for 80–90% of RRP(79). Laryngeal papillomas
usually run a benign but recurrent course. In the spontaneous transformation of RP or RRP
to SCC, a progression continuum to malignancy may not be histologically and clinically
apparent, making these lesions difficult to diagnose early in the course of the transformation
of the disease. Therefore we investigated alterations in DNA methylation in recurrent
biopsies from patients with RRP to asses the contribution of promoter methylation-mediated
epigenetic events in RRP tumorigenesis. Samples from 15 subjects who had 1 to 6
subsequent biopsies were interrogated by MS-MLPA. Aberrant methylation of CDKN2B
and APC genes were most frequent, occurring in 8 of 14 cases, with dissimilar epigenetic
events in the remaining cases (Table 3). There were 5 cases that had at least one abnormally
methylated gene in a recurrent biopsy, of which the CDKN2B gene showed consistent
hypermethylation in all 5 cases (Table 4). One case demonstrated aberrant methylation of
APC and VHL promoter regions in all three biopsies.

In precancerous oral tissues(75) aberrant methylation of CDKN2B has been implicated as an
early event in the pathogenesis of oral lesions. APC is a tumor suppressor gene originally
implicated in colon cancer. Genetic and epigenetic alterations in this gene have since been
recognized in other malignancies including oral squamous cell carcinomas(53). VHL is a
tumor suppressor gene that is responsible for the Von Hippel-Lindau syndrome which is an
inherited familial cancer syndrome that makes patients susceptible to a variety of cancers,
malignant and benign. It has been found that treatment of methylated VHL tumors with a
demethylating agent results in re-expression of the VHL transcripts(80). Persistence of the
same aberrantly methylated gene in 36% of multiple recurrent biopsies (5/14) in our study
supports a monoclonal origin for RRP and permits the tracing of an epigenetic continuum
implicating key tumor suppressor genes in RRP. The high frequency of epigenetic events
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points to the utilization of gene silencing mechanisms as one of the driving forces behind the
growth of recurrent laryngeal papillomas.

Conclusion
Epigenetic events of promoter hypermethylation are emerging as one of the most promising
molecular strategies for cancer detection and represent an important tumor-specific marker
occurring early in tumor progression.
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Figure 1.
Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) with
and without HhaI. CH3 indicates methyl group; PCR, polymerase chain reaction.
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Figure 2.
Multiplex ligation-dependent probe amplification peaks with (red) and without (blue) HhaI
for the normal DNA, UMSCC-11A, and UMSCC-11B.
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Figure 3.
Multiplex ligation-dependent probe amplification peaks with (red) and without (blue) HhaI
for the normal DNA, UMSCC-17A, and UMSCC-17B.
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Figure 4.
Multiplex ligation-dependent probe amplification peaks with (red) and without (blue) HhaI
for the normal DNA, UMSCC-81A, and UMSCC-81B.
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Figure 5.
Methylation-specific multiplex ligation-dependent probe amplification probe mix without
(A and C) and with (B and D) HhaI enzyme. Fifteen peaks are seen in the control DNA
sample (B). The methylation peaks in case 7 (D) that are not present in the control DNA (B)
represent promoter hypermethylation APC, RARB, and CHFR.
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Figure 6.
Methylation-specific multiplex ligation-dependent probe amplification probe mix without
(A and C) and with HhaI enzyme (B and D) in DNA control DNA and DNA from case 15.
Methylation of APC and CHFR is seen in case 15 with HhaI digestion (D).

Stephen et al. Page 16

Methods Mol Biol. Author manuscript; available in PMC 2013 July 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Gel electrophoresis methylation-specific polymerase chain reaction results for RARB. Note
the presence of the 84–base pair (bp) methylation (M) band and the unmethylated (U) 94-bp
product in cases 4, 6, 7, and 19; the latter indicates an admixture of normal and tumor cells.
H2O indicates water; W, wild types.
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Figure 8.
Gel electrophoresis methylation-specific polymerase chain reaction (MSP) results for
CHFR. Note the presence of the 155–base pair (bp) methylation (M) band in cases 1, 4, 6, 7,
15, and 22 and the unmethylated (U) 155-bp product in cases 1, 15, and 22; the latter
indicates an admixture of normal and tumor cells. H2O indicates water.
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Figure 9.
Real-time polymerase chain reaction (PCR) with methylation-specific PCR (MSP)
methylated (M) and unmethylated (U) primers for RARB for the control specimen (A), case
4 (B), and case 8 (C). Specific melting temperature peaks are seen for control U, M, and
wild-type (W) DNA. The presence of the M melting temperature peak in case 4 indicates
promoter hypermethylation of RARB, supported by MSP gel electrophoresis (Figure 4). The
absence of an M melting temperature peak in case 8 is supported by MSP gel electrophoresis
and MS multiplex ligation-dependent probe amplification.
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Figure 10.
MS-MLPA probe mix with and without HhaI enzyme (DNA sequencer - ABI 3130). Results
for Case 1 - biopsy 1 block 2 and biopsy 2 blocks 3 and 4. Note 15 peaks in the control
DNA sample with HhaI. Presence of a peak in biopsies 1 and 2 (blocks 3 and 4) not present
in the control DNA is that of aberrantly methylated CDKN2B gene. Presence of peak for
aberrantly methylated DAPK1 in biopsy 1 block 2 and biopsy 2 block 3 not present in the
control DNA.
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Figure 11.
Methylation Specific PCR (MSP) confirmation of aberrant methylation detected by MS-
MLPA for CDKN2B. Lane 1: universal methylated control; Lane 2: universal unmethylated
control; Lanes 3 & 4: normal control, note presence of only unmethylated PCR product;
Lanes 5–16 span Cases 1–6. Note presence of methylated and unmethylated product, the
latter indicating admixture of normal and papilloma cells; Lanes 17 & 18: negative control.
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Table 1

Methylation-Specific MLPA Probe Panel (ME001)

# Gene probe Chrom Loc

1 TP73 01p36

2 CASP8 02q22.3

3 VHL 03p25.3

4 RARB 03p24

5 *MLH1 03p21.1

6 MLH1 03p21.1

CTNNB1 03p22

7 *RASSF1 03p21.3

8 RASSF1 03p21.3

9 FHIT 03p14.2

CASR 03q21

10 APC 05q21

11 ESR1 06q25.1

PARK2 06q26

CDK6 07q21.3

12 CDKN2A 09p21

13 CDKN2B 09p21

14 DAPK1 09q34.1

AI651963 10p14

CREM 10p12.1

15 PTEN 10q23.3

16 CD44 11p12

17 GSTP1 11q13

18 ATM 11q23

19 IGSF4 11q23

TNFRSF1A 12p13

TNFRSF7 12p13

20 CDKN1B 12q13.1

PAH 12q23

21 CHFR 12q24.33

22 BRCA2 13q12.3

BRCA2 13q12.3

MLH3 14q24.3

TSC2 16p13.3

CDH1 16q22.1

23 CDH13 16q24.2
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# Gene probe Chrom Loc

24 HIC1 17p13.3

25 BRCA1 17q21

BCL2 18q21.3

KLK3 19q13

26 TIMP3 22q12.3

Bolded=probes with HhaI site (n=26 probes);

*
genes with multiple probes in the promoter region
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