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Abstract

Long-term memories are likely stored in the synaptic weights of neuronal networks in the brain. The storage capacity of
such networks depends on the degree of plasticity of their synapses. Highly plastic synapses allow for strong memories, but
these are quickly overwritten. On the other hand, less labile synapses result in long-lasting but weak memories. Here we
show that the trade-off between memory strength and memory lifetime can be overcome by partitioning the memory
system into multiple regions characterized by different levels of synaptic plasticity and transferring memory information
from the more to less plastic region. The improvement in memory lifetime is proportional to the number of memory
regions, and the initial memory strength can be orders of magnitude larger than in a non-partitioned memory system. This
model provides a fundamental computational reason for memory consolidation processes at the systems level.
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Introduction

Memories are stored and retained through a series of complex,

highly coupled processes that operate on different timescales. In

particular, it is widely believed that after the initial encoding of a

sensory-motor experience, a series of molecular, cellular, and

system-level alterations lead to the stabilization of an initial

memory representation (memory consolidation). Some of these

alterations occur at the level of local synapses, while others involve

the reorganization and consolidation of different types of

memories in different brain areas. Studies of patient HM revealed

that medial temporal lobe lesions severely impair the ability to

consolidate new memories, whereas temporally remote memories

remain intact [1]. These results and more recent work (see e.g. [2])

suggest that there may be distinct memory systems, and that

memories, or some of their components, are temporarily stored in

the medial temporal lobe and then transferred to other areas of the

cortex. Is there any fundamental computational reason for

transferring memories from one area to another? Here we

consider memory models consisting of several stages, with each

stage representing a region of cortex characterized by a particular

level of synaptic plasticity. Memories are continuously transferred

from regions with more labile synapses to regions with reduced but

longer-lasting synaptic modifications. Here we refer to each region

as a stage in the memory transfer process. We find that such a

multi-stage memory model significantly outperforms single-stage

models, both in terms of the memory lifetimes and the strength of

the stored memory. In particular, memory lifetimes are extended

by a factor that is proportional to the number of memory stages.

In a memory system that is continually receiving and storing

new information, synaptic strengths representing old memories

must be protected from being overwritten during the storage of

new information. Failure to provide such protection results in

memory lifetimes that are catastrophically low, scaling only

logarithmically with the number of synapses [3–5]. On the other

hand, protecting old memories too rigidly causes memory traces of

new information to be extremely weak, being represented by a

small number of synapses. This is one of the aspects of the classic

plasticity-rigidity dilemma (see also [6–8]). Synapses that are

highly plastic are good at storing new memories but poor at

retaining old ones. Less plastic synapses are good at preserving

memories, but poor at storing new ones.

A possible solution to this dilemma is to introduce complexity

into synaptic modification in the form of metaplasticity, by which

the degree of plasticity at a single synapse changes depending on

the history of previous synaptic modifications. Such complex

synapses are endowed with mechanisms operating on many

timescales, leading to a power-law decay of the memory traces, as

is widely observed in experiments on forgetting [9,10]. Further-

more, complex synapses can vastly outperform previous models

due to an efficient interaction between these mechanisms [11]. We

now show that allowing for a diversity of timescales can also

greatly enhance memory performance at the systems level, even if

individual synapses themselves are not complex. We do this by

considering memory systems that are partitioned into different

regions, the stages mentioned above, characterized by different

degrees of synaptic plasticity. In other words, we extend the

previous idea of considering multiple timescales at single synapses

to multiple timescales of plasticity across different cortical areas.

To determine how best to partition such a memory system, we

take the point of view of an engineer who is given a large
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population of synapses, each characterized by a specific degree of

plasticity. Because we want to focus on mechanisms of memory

consolidation at the systems level, we use a simple binary model in

which synaptic efficacies take two possible values, weak and strong.

Previous work has shown that binary synapses are representative

of a much wider class of more realistic synaptic models [5]. It

seems likely that the mechanisms for storing new memories exploit

structural aspects and similarities with previously stored informa-

tion (see e.g. semantic memories). In our work, we are interested in

different mechanisms responsible for storing new information that

has already been preprocessed in this way and is thus

incompressible. For this reason, we restrict consideration to

memories that are unstructured (random) and do not have any

correlation with previously stored information (uncorrelated).

After constructing multi-state models, we estimate and compare

their memory performance both in terms of memory lifetime and

the overall strength of their memory traces.

Results

The importance of synaptic heterogeneity
We first analyzed a homogeneous model (single partition), in

which all the synapses have the same learning rate (see Fig. 1). We

consider a situation in which new uncorrelated memories are

stored at a constant rate. Synapses are assumed to be stable in the

absence of any overwriting due to the learning of new memories.

Each memory is stored by modifying a randomly selected subset of

synapses. As the synapses are assumed to be bistable, we reduce all

the complex processes leading to long term modifications to the

probability that a synapse makes a transition to a different state. As

memories are random and uncorrelated, the synaptic transitions

induced by different memories will be stochastic and independent.

To track a particular memory we take the point of view of an

ideal observer who has access to the values of the strengths of all

the synapses relevant to a particular memory trace (see also [11]).

Of course in the brain the readout is implemented by complex

neural circuitry, and the estimates of the strength of the memory

trace based on the ideal observer approach provide us with an

upper bound of the memory performance. However, given the

remarkable memory capacity of biological systems, it is not

unreasonable to assume that specialized circuits exist which can

perform a nearly optimal readout, and we will describe later a

neural circuit that replicates the performance of an ideal observer.

More quantitatively, to track a memory, we observe the state of

an ensemble of N synapses and calculate the memory signal,

defined as the correlation between the state of the ensemble at a

time t and the pattern of synaptic modifications induced by the

event of interest at time t~0. Specifically, we can formalize this

model description by assigning the value 1 to a potentiated synapse

and {1 to a depressed one. Similarly, a plasticity event is assigned

a value 1 if it is potentiating and {1 if depressing. We then define

a vector of length N, Jt where Jt
i [f{1,1g is the state of synapse i

at time t. Similarly, the memories are also vectors of length N, mt,

where mt
i[f{1,1g is the plasticity event to which synapse i is

subjected at time t. If we choose to track the memory presented at

time t�, then we define the memory trace as the signal at time t,

which is just the dot product of two vectors, St{t�~mt� :Jt. The

signal itself is a stochastic variable, since the updating of the

synaptic states is stochastic. This means that if one runs several

simulations presenting exactly the same memories, the signal will

be different each time, see right hand side of Fig. 1a. The mean

signal, understood as the signal averaged over many realizations of

the Markov process, can be computed analytically. For the

homogeneous model, a continuous-time approximation to the

mean signal takes the simple form of an exponential,

S(t)~qNe{qt, where N is the total number of synapses and q is

the learning rate, see Methods and Text S1 for details. We must

compare this mean signal to the size of fluctuations in the model,

i.e the noise.

The memory noise is given by the size of fluctuations in the

overlap between uncorrelated patterns, which here is approxi-

mately
ffiffiffiffiffi
N
p

, see Text S1 for details. Therefore, the signal-to-noise

ratio SNR(t)~S(t)=
ffiffiffiffiffi
N
p

~q
ffiffiffiffiffi
N
p

e{qt. One can track a particular

memory only until it has grown so weak it cannot be discerned

from any other random memory. Memory lifetime, which is one

measure of the memory performance, is then simply defined as the

maximum time over which a memory can be detected. More

quantitatively it is the maximum time over which the SNR is

larger than 1. The scaling properties of the memory performance

that we will derive do not depend on the specific critical SNR

value that is chosen. Moreover, it is known that the scaling

properties derived from the SNR are conserved in more realistic

models of memory storage and memory retrieval with integrate-

and-fire neurons and spike driven synaptic dynamics (see e.g. [12]).

As we mentioned, the dynamics of the Markov model we

consider are stochastic. Therefore, throughout the paper, we will

discuss results from stochastic models for which we have derived

corresponding mean-field descriptions. Fig. 1b shows the mean-

field result for two extreme cases when all synapses have the same

degree of plasticity. If the synapses are fast and the transition

probability is high (q*1), then the memory is very vivid

immediately after it is stored and the amount of information

stored per memory is large, as indicated by the large initial SNR

(*
ffiffiffiffiffi
N
p

). However the memory is quickly overwritten as new

memories are stored. In particular, the memory lifetime scales as

log N which is extremely inefficient: doubling the lifetime requires

squaring the number of synapses.

It is possible to extend lifetimes by reducing the learning rate,

and in particular by letting the learning rate scale with the number

of synapses. For the smallest q that still allows one to store

sufficient information per memory (i.e. that allows for an initial

Author Summary

Memory is critical to virtually all aspects of behavior, which
may explain why memory is such a complex phenomenon
involving numerous interacting mechanisms that operate
across multiple brain regions. Many of these mechanisms
cooperate to transform initially fragile memories into more
permanent ones (memory consolidation). The process of
memory consolidation starts at the level of individual
synaptic connections, but it ultimately involves circuit
reorganization in multiple brain regions. We show that
there is a computational advantage in partitioning
memory systems into subsystems that operate on different
timescales. Individual subsystems cannot both store large
amounts of information about new memories, and, at the
same time, preserve older memories for long periods of
time. Subsystems with highly plastic synapses (fast
subsystems) are good at storing new memories but bad
at retaining old ones, whereas subsystems with less plastic
synapses (slow subsystems) can preserve old memories
but cannot store detailed new memories. Here we propose
a model of a multi-stage memory system that exhibits the
good features of both its fast and its slow subsystems. Our
model incorporates some of the important design princi-
ples of any memory system and allows us to interpret in a
new way what we know about brain memory.

Memory Consolidation in Partitioned Neural Systems
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SNR,1), q*1=
ffiffiffiffiffi
N
p

, the memory lifetimes are extended by a

factor that is proportional to 1=q*
ffiffiffiffiffi
N
p

. This trade-off between

memory lifetime and initial SNR (i.e. the amount of information

stored per memory) cannot be circumvented through the addition

of a large number of synaptic states without fine-tuning the

balance of potentiation and depression [5].

These shortcomings can be partially overcome by allowing for

heterogeneity in the transition probabilities within an ensemble of

synapses. Specifically, if there are n equally sized groups of

synapses, each with a different transition probability qk

(k~1,:::,n), then the most plastic ones will provide a strong initial

SNR while the least plastic ones will ensure long lifetimes.

Intermediate time-scales are needed to bridge the gap between the

extreme values. In Fig. 1c we plot the SNR as a function of time.

Transition probabilities are taken to be of the form

qk~�qqq(k{1)=(n{1), where q1~�qq is the fastest learning rate,

qn~�qqq is the slowest learning rate and q%1. Time is expressed

in terms of the number of uncorrelated memories on the lower

axis, and we choose an arbitrary rate of new uncorrelated

memories (one per hour) to give an idea of the different orders of

magnitudes of the timescales that are at play (from hours to years).

This model, which we call the heterogeneous model is already an

interesting compromise in terms of memory performance: as we

increase the number of synapses, if the slowest learning rate is

scaled as qn*1=
ffiffiffiffiffi
N
p

, then both the initial SNR and the memory

lifetime scale advantageously with the number of synapses

(*
ffiffiffiffiffi
N
p

). Moreover, the model has the desirable property that

the memory decay is a power law over a wide range of timescales,

as observed in several experiments on forgetting [13].

The importance of memory transfer
In the heterogeneous model, the synapses operate on different

timescales independently from each other. We now show that the

performance can be significantly improved by introducing a feed-

forward structure of interactions from the most plastic group to the

least plastic group of synapses. How is this possible? While the least

plastic synapses can retain memories for long times, their memory

trace is weak. However, this memory trace can be boosted through

periodic rewriting of already-stored memories. If a memory is still

present in one of the groups of synapses (called hereafter a

‘memory stage’), the stored information can be used to rewrite the

memory in the downstream stages, even long after the occurrence

of the event that created the memory.

It is important to notice that not all types of rewriting can

significantly improve all the aspects of the memory performance.

For example, if all memories are simply reactivated the same

number of times, then the overall learning rate changes, so that the

initial memory trace becomes stronger, but the memory lifetimes

Figure 1. Heterogeneity in synaptic learning rates is desirable. a. Upper left: Each synapse is updated stochastically in response to a plasticity
event, and encodes one bit of information of one specific memory because it has only two states. For this reason, we can assign a color to each
synapse which represents the memory that is stored. Lower left: Memories are encoded by subjecting N synapses to a pattern of plasticity events,
here illustrated by different colors. These patterns, and hence the memories, are random and uncorrelated. The strength of a memory is defined as
the correlation between the pattern of synaptic weights and the event being tracked. The degradation of encoded memories is due to the learning of
new memories. Only four memories are explicitly tracked in this example: red, green, blue, gray. Those synapses whose state is correlated with
previous memories are colored black. Right: Synaptic updating is stochastic in the model leading to variability in the signal for different realizations
given the same sequence of events (dotted lines). A mean-field description of the stochastic dynamics captures signal strength averaged over many
realizations. We measure the signal-to-noise ratio (SNR) which is the signal relative to fluctuations in the overlap of uncorrelated memories. b. There is
a trade-off between the initial SNR and the memory lifetime: A large initial SNR can be achieved if the probability q of a synapse changing state is
high (q*1), although the decay is rapid, i.e. the memory lifetime scales as log N=q, where N is the total number of synapses. Long lifetimes can be

achieved for small q although the initial SNR is weak. Memory lifetime can be as large as
ffiffiffiffiffi
N
p

, when q*1=
ffiffiffiffiffi
N
p

. SNR vs time curves are shown for
q~0:8 and q~8|10{4 and N~109 . c. In a heterogeneous population of synapses in which many qs are present, one can partially overcome the

trade-off (black line). The initial SNR scales as
ffiffiffiffiffi
N
p

log(qn), where qn is the learning rate corresponding to the slowest population. The memory lifetime

scales as 1=qn*
ffiffiffiffiffi
N
p

. Here there are 50 different qs, i~f1,::,50g where qi~0:8=1000(i{1)=(50{1) and N=50 synapses of each type. N~109.
doi:10.1371/journal.pcbi.1003146.g001
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are reduced by the same factor. Rather, an alternative strategy is

to reactivate and rewrite a combination of multiple memories, one

which has a stronger correlation with recent memories and a

weaker correlation with the remote ones.

We have built a model, which we will call the memory transfer

model, that implements this idea. We consider N synapses divided

into n interacting stages. We assume that all the stages have the

same size and that synapse i in stage k can influence a counterpart

synapse i in stage kz1. In particular, synapses in the first stage

undergo stochastic event-driven transitions as before (Fig. 2a).

They therefore encode each new memory as it is presented. On

the other hand, synapses in downstream stages update their state

stochastically after each memory is encoded in the first stage.

Specifically, at time t, a memory mt of length N=n consisting of

a random pattern of potentiating (mt
i~1) and depressing

(mt
i~{1) events is presented to the N=n synapses in stage one,

which have synaptic state Jt
1. Synapse i is subjected either to a

potentiating (mt
i~1) or to a depressing (mt

i~{1) event with

probability 1/2, and is updated with a probability q1 as in the

previous models. Therefore, the updating for synapses in stage 1 is

identical to that for ensemble 1 in the synaptic model with

heterogeneous transition probabilities which we discussed previ-

ously. Now, however, we assume that a synapse i in stage 2 is

influenced by the state of synapse i in stage 1 in the following way.

If synapse i in stage 1 is in a potentiated (depressed) state at time t

(Jt
1~1 or Jt

1~{1 respectively), then synapse i in stage 2 will

potentiate (depress) at time tz1 with probability q2. The update

rule for synapses in stage 3 proceeds analogously, but depends now

on the state of synapses in stage 2, and so on.

In other words, after each memory is stored, a random portion

of the synaptic matrix of each stage is copied to the downstream

stages with a probability that progressively decreases. We will show

later that this process of ‘‘synaptic copying’’ can actually be

mediated by neuronal activity which resembles the observed

replay activity [14–19]. Transition probabilities of the different

memory stages are the same as in the heterogeneous model:

qk!q(k{1)=(n{1). We will follow the SNR for a particular memory

by measuring the correlation of the synaptic states in each stage

with the event of interest.

Once again, we can derive a mean-field description of the

stochastic dynamics. The upshot is that the mean signal in stage

kw1 obeys the differential equation

_ssk~qk(sk{1{sk),

which expresses clearly how the signal in stage k is driven by that

in stage k{1. This is precisely the mechanism behind the

improvement of memory performance compared to the heterog-

enous model without interactions. The memory trace in the first

stage decays exponentially as new memories are encoded, as in the

homogeneous case (see Fig. 2a). Memory traces in downstream

stages start from zero, increase as the synaptic states are

propagated, and eventually decay once again to zero. Information

about all the stored memories is transferred between stages

because the synapses that are ‘‘copied’’ are correlated to all the

memories that are still represented at the particular memory stage.

The most plastic stages retain the memories for a limited time, but

during this time they transfer them to less plastic stages. This

explains why the memory traces of downstream stages are non-

monotonic functions of time: at stage k, the memory trace keeps

increasing as long as the information about the tracked memory is

still retained in stage k{1. The memory trace in the second stage

is already greater than that of an equivalent heterogeneous model

with independent synaptic groups (Fig. 2a). This effect is enhanced

as more stages are added.

The memory trace takes the form of a localized pulse that

propagates at an exponentially decreasing rate (Fig. 2b). It begins

as a sharply peaked function in the fast learning stages but slowly

spreads outward as it propagates toward the slow learning stages.

This indicates that although the memory is initially encoded only

in the first stage (presumably located in the medial temporal lobe),

at later times it is distributed across multiple stages. Nonetheless, it

has a well defined peak, meaning that at intermediate times the

memory is most strongly represented in the synaptic structure of

intermediate networks.

An analytical formula for the pulse can be derived, see Methods

and Text S1, which allows us to calculate the SNR and memory

lifetimes (Fig. 3). Now, when reading out the signal from several

stages of the memory transfer model, we must take into account

the fact that the noise will be correlated. This was not the case for

the heterogeneous model without interactions. In fact, if we

consider a naive readout which includes all n stages, the noise will

increase weakly with the number of stages. On the other hand, if

we only read out the combination of stages which maximizes the

SNR, one can show that the noise is independent of n and very

close to the uncorrelated case. In fact, this readout is equivalent to

reading out only those groups whose SNR exceeds a fixed

threshold, which could be learned, see Text S1 for more details.

Fig. 3a shows the SNR for memories in the heterogeneous

model (dashed lines) and the memory transfer model (solid lines)

for a fixed number of synapses and different numbers of groups

n~(100,200). The curves are computed using the optimal readout

described above, for which noise correlations are negligible. Both

the SNR for intermediate times and the overall lifetime of

memories increase with increasing n in the memory transfer

model. The increase in SNR is proportional to n1=4, see Fig. 3b,

while the lifetime is approximately linear in n for large enough n,

see Fig. 3c. While the initial SNR is reduced compared to the

heterogeneous model (by a factor proportional to
ffiffiffi
n
p

), it overtakes

the SNR of the heterogeneous model already at very short times

(inset of Fig. 3a).

Importantly, the memory transfer model also maintains the

propitious scaling seen in the heterogeneous model of the SNR

and memory lifetime with the number of synapses N. Specifically,

if the slowest learning rate is scaled as 1=
ffiffiffiffiffi
N
p

, then the very initial

SNR scales as
ffiffiffiffiffiffiffiffiffi
N=n

p
(but almost immediately after the memory

storage it scales as
ffiffiffiffiffi
N
p

n1=4) and the lifetime as n
ffiffiffiffiffi
N
p

=log N.

Hence the lifetime is extended by a factor that is approximately n
with respect to the memory lifetime of both the heterogeneous

model and the cascade synaptic model [11] in which the memory

consolidation process occurs entirely at the level of individual

complex synapses. The improvement looks modest on a logarith-

mic scale, as in Fig. 3a, however it becomes clear that it is a

significant amelioration when the actual timescales are considered.

In the example of Fig. 3a the memory lifetime extends from three

years for the heterogeneous model, to more than thirty years for

the memory transfer model. As the memory lifetime extends, the

initial signal to noise ratio decreases compared to the heteroge-

neous model (but not compared to the cascade model, for which it

decreases as 1=n, where n is the number of levels of the cascade, or

in other words, the complexity of the synapse). However, the 1=
ffiffiffi
n
p

reduction is small, and after a few memories the memory transfer

model already outperforms the heterogeneous model. In the

example of Fig. 3 the heterogeneous model has a larger SNR only

for times of the order of hours. This time interval should be

compared to the memory lifetime which is of the order of decades.

Memory Consolidation in Partitioned Neural Systems
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Neuronal implementation and the role of replay activity
The consolidation model we have described involves effective

interactions between synapses that must be mediated by neuronal

activity. We now show that it is possible to build a neuronal model

that implements these interactions. We consider a model of n
identical stages, each one consisting of Nneuron recurrently

connected McCulloch-Pitts neurons (the total number of plastic

synapses is N~n(N2
neuron{Nneuron)). Neurons in each stage are

connected by non-plastic synapses to the corresponding neurons in

the next stage (feed-forward connections). See Fig. 4a for a scheme

of the network architecture. The model operates in two different

modes: encoding and transfer. Importantly, we must now be more

careful concerning our definition of time. The unit of time we have

used up until now was simply that of the encoding of a memory,

i.e. one time step equals one memory. Now we have two different

time scales: the encoding time scale and the neuronal time scale.

The encoding time scale is just the same as before, i.e. it is the time

between learning new memories. The neuronal time scale is much

faster. Specifically, in the neuronal model we encode a new

memory and then stimulate the neurons to drive the transfer of

patterns of synaptic weights. The time-step used in the Hebbian

learning process when a memory is encoded, as well as the time-

step used during this transfer process is a neuronal time scale,

perhaps from milliseconds to hundreds of milliseconds. The time

between memory encodings, on the other hand, might be on the

order of minutes or hours, for example.

During encoding, a subset of neurons in the first stage is

activated by the event that creates the memory and the recurrent

synapses are updated according to a Hebbian rule, see Fig. 4b,c.

Specifically, one half of the neurons are randomly chosen to be

activated (s1
i ~1), while the remaining neurons are inactive (s1

i ~0),

where sk
i [f0,1g is the state of the neuron i in stage k. A synapse J1

ij

is then potentiated (J1
ij~Jz) with a probability q1 if s1

i ~s1
j and is

depressed (J1
ij~J{) with probability q1 if s1

i =s1
j , where

Jk
ij[fJ{,Jzg is a binary synapse from neuron j to neuron i in

Figure 2. The memory transfer model. a. Upper left: In the model, the state of each synapse in stage one is updated stochastically in response to
the occurrence of plasticity events. The synapses of downstream stages update their state according to the state of upstream stages. Lower left:
Memories are encoded by subjecting the N=n synapses in stage 1 of n stages to a pattern of plasticity events, here illustrated by different colors. The
correlation of synaptic states with a memory is initially zero in downstream stages, and builds up over time through feed-forward interactions. Right:
The consolidation model always outperforms the heterogeneous model without interactions at sufficiently long times. Here a two-stage model is
illustrated. The dashed line is the SNR of the second stage in the heterogeneous model. See text for details. b. The memory wave: the memory trace
(from Eq. 1) in the consolidation model travels as a localized pulse from stage to stage (starting from x*0, in fast learning stages, presumably
localized in the medial temporal lobe, and ending at x*1, in slow learning stages). Here n~50 and N~1010. Stage i has a learning rate

qi~0:8(0:001)(i{1)=(n{1) and x~(i{1)=(n{1). New memories are encoded at a rate of one per hour.
doi:10.1371/journal.pcbi.1003146.g002

Memory Consolidation in Partitioned Neural Systems
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stage k. Consistent with the previous analysis, we assume that the

neuronal patterns of activity representing the memories are

random and uncorrelated. No plasticity occurs in the synapses of

neurons in downstream stages during encoding.

During transfer, a random fraction f of neurons in each stage

is activated at one time step, and the network response then

occurs on the following time-step due to recurrent excitatory

inputs. Specifically, at time t, sk
i (t)~1 for all f Nneuron neurons

which have been activated in stage k, and otherwise sk
i (t)~0. At

time tz1 the recurrent input to a neuron i in stage k due to this

activation is hk
i (tz1)~

P
j Jk

ij s
k
j (t). If hk

i (tz1)wh then

sk
i (tz1)~1 and otherwise sk

i (tz1)~0, where h is a threshold.

At time tz2 all neurons are silenced, i.e. sk
i (tz2)~0 and then

the process is repeated T times. The initially activated neurons at

time t are completely random and in general they will not be

correlated with the neuronal representations of the stored

memories. However, the neuronal response at time tz1 will be

greatly affected by the recurrent synaptic connections. For this

reason, the activity during the response will be partially

correlated with the memories stored in the upstream stages,

similar to what happens in observed replay activity (see e.g. [14–

19]).

During transfer, the activated neurons project to counterpart

neurons in the downstream stage. Crucially, we assume here that

the long-range connections from the upstream stage to the

downstream one are up-regulated relative to the recurrent

connections in the downstream stage. In this way, the downstream

state is ‘‘taught’’ by the upstream one. In the brain this may occur

due to various mechanisms which include neuromodulatory effects

and other gating mechanisms that modulate the effective couplings

between brain regions. Cholinergic tone, in particular, has been

shown to selectively modulate hippocampal and some recurrent

cortical synapses (see [20]) as well as thalamocortical synapses

[21]. Recent studies have also shown that the interactions between

cortical and subcortical networks could be regulated by changing

Figure 3. The consolidation model yields long lifetimes and large SNR. a. The SNR for two values of n~100,200 for a fixed number of

synapses (solid lines: consolidation model, dotted lines: heterogeneous model without interactions). The initial SNR for both models scales as N1=2 . It
then decays as power law (*1=t) and finally as an exponential for tw1=qn for the heterogeneous model and for twn=qn for the consolidation model.
Three measures of interest are shown in the inset and in the bottom two panels. Inset: crossing time Tc between the SNR of the heterogeneous
model and the SNR of the consolidation model as a function of n. The heterogeneous model is better than the consolidation model only for very

recent memories (stored in the last hours, compared to memory lifetimes of years). b. The SNR scales as
ffiffiffiffiffi
N
p

n1=4 in the consolidation model when the
SNR decay is approximately a power law (symbols: simulations, line: analytics). The SNR at indicated times is plotted as a function of n for three
different values of qn . c. Lifetimes (i.e. time at which SNR = 1) in the consolidation model scale approximately as n=(�qqq) (�qq is the fastest learning rate
and �qqq is the slowest). The memory lifetime is plotted vs n for three different values of qn . N~1012 synapses evenly divided into n stages. Stage i has

a learning rate qi~0:0001(i{1)=(n{1) .
doi:10.1371/journal.pcbi.1003146.g003
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the degree of synchronization between the rhythmic activity of

different brain areas (see e.g. [22]).

In our model we assumed that, due to strong feedforward

connections, whenever sk
i (t)~1 we have skz1

i (tz1)~1. The

pattern of activation in stage kz1 therefore follows that of stage k
during the transfer process. Importantly plasticity only occurs in

the recurrent synapses of the downstream stage kz1, i.e. stage k is

‘teaching’ stage kz1. For illustration we first consider a simple

learning rule which can perfectly copy synapses from stage k to

stage kz1, but only for the special case of f ~1=Nneuron, i.e.

single-neuron stimulation. Following this, we will consider a

learning rule which provides for accurate but not perfect copying

of synapses but which is valid for any f w1=Nneuron.

Fig. 5 shows a schematic of the transfer process when

f ~1=Nneuron. In this simplest case, only one presynaptic synapse

per neuron is activated. To successfully transfer this synapse to the

downstream stage a simple rule can be applied. First, the threshold is

set so that J{
vhvJz. If there is a presynaptic spike

(skz1
i (tz1)~1) followed by a postsynaptic spike (skz1

j (tz2)~1),

then potentiate (Jkz1
ij ~Jz) with a probability equal to the intrinsic

learning rate of the synapses, qkz1. If there is no postsynaptic spike

(skz1
j (tz2)~0) then the corresponding synapse should be depressed

(Jkz1
ij ~J{). This leads to perfect transfer.

In general f w1=Nneuron and therefore it is not possible to

perfectly separate inputs with a single threshold. Nevertheless, a

learning rule which can accurately copy the synapses in this

general case is the following. Consider two thresholds h[fhl ,hhg,
which are ‘low’ and ‘high’ respectively. On any given transfer

(there are T of them per stage) h is set to one of these two

thresholds with probability 1=2. If h~hh then if skz1
i (tz1)~1

and skz1
j (tz2)~1, then set Jkz1

ij ~Jz with a probability qkz1.

In words, this says that if despite the high threshold, the

presynaptic activity succeeded in eliciting postsynaptic activity,

then the synapses in stage k must have been strong, therefore one

should potentiate the corresponding synapses in stage kz1.

Similarly if h~hl then if skz1
i (tz1)~1 and skz1

j (tz2)~0, then

set Jkz1
ij ~J{ with a probability qkz1. In words, this says that if

despite the low threshold, the presynaptic activity did not succeed

in eliciting postsynaptic activity, then the synapses in stage k must

have been weak, therefore one should depress the corresponding

synapses in stage kz1. For this learning rule to work, both stages

k and kz1 must be privy to the value of the threshold. Therefore,

there must be some global (at least common to these two stages)

signal available. This could be achieved via a dynamical brain

state with long-range spatial correlations. For example, globally

synchronous up-state and down-state transitions [23], which are

Figure 4. The neural network implementing the memory transfer model. a A schematic representation of the neural network architecture.
Here we show stage 1 and 2, but the other memory stages are wired in the same way. Neurons are represented by triangles and synaptic connections
by circles. The axons are red, purple and orange, and the dendritic trees are black. Each neuron connects to all the neurons in the same stage
(recurrent connections, orange) and to the corresponding neuron in the downstream stage (feed-forward connections, purple). The recurrent
connections are plastic whereas the feed-forward connections are fixed. b,c memory encoding: a pattern of activity is imposed in the first stage only
and synapses are updated stochastically according to a Hebbian rule. Specifically, if both the pre and the post-synaptic neurons are simultaneously
active (b, the activity is schematically represented by trains of spikes), the synapse is potentiated. If the pre-synaptic neuron is active and the post-
synaptic neuron is inactive, the synapse is depressed (c).
doi:10.1371/journal.pcbi.1003146.g004
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Figure 5. A schematic example of the transfer process. Synapses are here transferred from stage 1 to stage 2, the same mechanism applies to
any other two consecutive stages. During the transfer process the feed-forward connections are up-regulated, and the recurrent connection of the
target stage are down-regulated. The process starts with the stimulation of a fraction f of randomly chosen neurons in stage 1 (a). The activity of the
neuron is schematically represented by a train of spikes. The axon branches of the activated neurons (in this example only one neuron is activated)
are highlighted. (b) the spontaneous activation of neuron 1, causes the activation of the corresponding neuron in stage 2 and of the stage 1 neurons
that are most strongly connected. The process of relaxation has started. (c) the recurrently connected neurons of stage 1 which are activated, excite
and activate the corresponding neurons in stage 2. As a result of the consecutive activation of the two highlighted neurons in stage 2, the synapse
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known to occur during so-called slow-wave sleep would be ideally

suited to shift neuronal thresholds. Alternatively, theta oscillations

have been shown to be coherent between hippocampus and

prefrontal cortex in awake behaving rodents during working

memory [24] and learning tasks [25] and would also be suited to

serve as a global signal for synaptic plasticity.

We have stated that this second learning rule involving two

thresholds can lead to accurate learning in the general case.

Concretely, we can completely characterize the transfer process

between any two stages via two quantities: the transfer rate �qq,

which is the fraction of synapses transferred after T replays of the

transfer process, and the accuracy of transfer y which is the

fraction of transferred synapses which were correctly transferred.

Both of these quantities depend on the stimulation fraction f and

the threshold h and can be calculated analytically, see Methods. In

short, the stimulation of neurons during the transfer process leads

to a unimodal input distribution which is approximately Gaussian

for f&1=Nneuron. The transfer rate is proportional to the area in

the tails of this distribution above the high threshold and below the

low threshold, while the accuracy is the fraction of this area which

is due only to strong synapses (above the high threshold) or to weak

synapses (below the low threshold). It is easy to see that as the

thresholds are moved away from the mean into the tails the

transfer rate will decrease while the accuracy will increase. There

is therefore a speed-accuracy tradeoff in the transfer process.

Additionally, the transfer process can be implemented even if

we relax the assumption of strong one-to-one feedforward

connections and allow for random feedforward projections, see

Text S1. In this case a two-threshold rule is still needed to obtain

performance above chance level, although an analytical descrip-

tion is no longer straightforward.

The neuronal implementation of the transfer process reveals an

important fact: the probability of correctly updating a synapse

does not depend solely on its intrinsic learning rate, but rather on

the details of the transfer process itself. In our simple model, the

transfer rate is �qq*wfqT where w is a factor which depends on the

threshold of the learning process relative to the distribution of

inputs and q is the intrinsic learning rate of the synapses in the

downstream stage. Additionally, since the likelihood of a correct

transfer is y, the rate of correct transfers is �qqy, while there is also a

‘‘corruption’’ rate equal to �qq(1{y) which is the probability of an

incorrect transfer. Obviously, if a given fraction of synapses is to be

transferred correctly, the best strategy is to make y as close to one

as possible and increase T accordingly. In the limit y?1 the

neuronal model is exactly equivalent to the mean-field model we

studied earlier with the transfer rate �qq playing the role of the

learning rate. For yv1 a modified mean-field model with a

‘‘corruption’’ term can be derived, see Text S1 for details. Fig. 6

illustrates that the neuronal implementation quantitatively repro-

duces the behavior of the synaptic mean-field model. Specifically,

the transfer rate can be modified by changing the number of

transfers T , as shown in Fig. 6a. In this case, although the intrinsic

synaptic properties have not changed at all, learning and forgetting

occur twice as fast if T is doubled. The combined SNR of ten

stages with 1000 all-to-all connected neurons each averaged over

ten realizations (symbols) is compared to the mean-field model

(line) in Fig. 6. In this case, the parameters of the neuronal model

have been chosen such that the transfer rates are equal to

�qqk~0:16(0:01)(k{1)=(n{1), and y~0:97.

Discussion

In conclusion, we showed that there is a clear computational

advantage in partitioning a memory system into distinct stages,

and in transferring memories from fast to slow stages. Memory

lifetimes are extended by a factor that is proportional to the

number of stages, without sacrificing the amount of information

stored per memory. For the same memory lifetimes, the initial

memory strength can be orders of magnitude larger than in non-

partitioned homogeneous memory systems. In the Results we

focused on the differences between the heterogeneous and the

memory system model. In Fig. S15 in Text S1 we show that the

SNR of the memory transfer model (multistage model) is always

larger than the SNR of homogeneous model for any learning rate.

This is true also when one considers that homogeneous models can

potentially store more information than the memory transfer

Figure 6. Memory consolidation in a neuronal model. a. The effective learning rate of a downstream synapse depends on the transfer process
itself. Increasing the number of transfer repetitions T increases this rate leading to faster learning and faster forgetting. Shown is SNR of each of the
first two stages. Symbols are averages of ten simulations, lines are from the mean-field model, see Methods. Here f ~0:01, Nneuron~1000, h~m+16,
and q1~q2~0:5 which gives y~0:92 and �qq*0:024 when T~1000. b. The neuronal model is well described by the mean-field synaptic model. There

are 10 stages, each with 103 all-to-all connected neurons. Parameters are chosen such that transfer rates are qi~0:16(0:01)(i{1)=(n{1). The solid line is
for a y~0:97 in the mean-field model. Shown is the combined SNR for all 10 stages.
doi:10.1371/journal.pcbi.1003146.g006

pointed by an arrow is potentiated, ending up in the same state as the corresponding synapse in stage 1. The strength of one synapse in stage 1 has
been successfully copied to the corresponding synapse in stage 2.
doi:10.1371/journal.pcbi.1003146.g005
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model. Indeed, in the homogeneous model all synapses can be

modified at the time of memory storage, not only the synapses of

the first stage. However, the main limitation of homogeneous

models with extended memory lifetimes comes from the tiny initial

SNR. If one reduces the amount of information stored per

memory to match the information stored in the memory transfer

model, it is possible to extend an already long memory lifetime but

the initial SNR reduces even further (see Text S1 for more details).

Our result complements previous studies (see e.g. [8,26,27]) on

memory consolidation that show the importance of partitioning

memory systems when new semantic memories are inserted into a

body of knowledge. Two-stage memory models were shown to be

fundamentally important to avoid catastrophic forgetting. These

studies focused mostly on ‘‘memory reorganization’’, as they

presuppose that the memories are highly organized and correlated.

We have solved a different class of problems that plague realistic

memory models even when all the problems related to memory

reorganization were solved. The problems are related to the

storage of the memory component that contains only incompress-

ible information, as in the case of random and uncorrelated

memories. These problems are not related to the structure of the

memories and to their similarity with previously stored informa-

tion, but rather they arise from the assumption that synaptic

efficacies vary in a limited range. We showed here that this

problem, discovered two decades ago [3] and partially solved by

metaplasticity [11], can also be solved efficiently at the systems

level by transferring memories from one sub-system to another.

Our neuronal model provides a novel interpretation of replay

activity. Indeed, we showed that in order to improve memory

performance, synapses should be copied from one stage to

another. The copying process occurs via the generation of

neuronal activity, that reflects the structure of the recurrent

synaptic connections to be copied. The synaptic structure, and

hence the neuronal activity, is actually correlated with all past

memories, although most strongly with recent ones. Therefore

while this activity could be mistaken for passive replay of an

individual memory, it actually provides a snapshot of all the

information contained in the upstream memory stage. There is

already experimental evidence that replay activity is not a mere

passive replay [28]. Our interpretation also implies that the

statistics of ‘‘replay’’ activity should change more quickly in fast

learning stages like the medial temporal lobe, than in slow learning

stages like pre-frontal cortex or some other areas of the cortex

[18].

Our analysis also reveals a speed-accuracy trade off that is likely

to be shared by a large class of neuronal models that implement

memory transfer: the faster the memories are transferred (i.e. when

a large number of synapses are transferred per ‘‘replay’’ and hence

a small number of repetitions T is needed), the higher the error in

the process of synaptic copying (Fig. 6a). Accuracy is achieved only

when the number of synapses transferred per ‘‘replay’’ is small and

T is sufficiently large. This consideration leads to a few

requirements that seem to be met by biological systems. In

particular, in order to have a large T , it is important that the

transfer phases are brief, if the animal is performing a task. This

implies that the synaptic mechanisms for modifying the synapses in

the downstream stages should operate on short timescales, as in

the case of Spike Timing Dependent Plasticity (STDP) (see e.g.

[29]). Alternatively, the transfer can occur during prolonged

intervals in which the memory system is off-line and does not

receive new stimuli (e.g. during sleep).

Although we have focused on the transfer of memories in our

model, the neuronal model can additionally be used to read out

memories. Specifically, the neuronal response of any stage (or

several stages) to a previously encoded pattern is larger than to a

novel pattern. This is true as long as the SNR, as we have used it in

this paper i.e. synaptic overlap, is sufficiently large. This difference

in neuronal response can be used by a read-out circuit to

distinguish between learned and novel patterns, see Text S1 for a

detailed implementation.

Our theory led to two important results which generate testable

predictions. The results are: 1) the memory performance increases

linearly with the number of memory stages, and 2) the memory

trace should vary in a non-monotonic fashion in most of the

memory stages. The first suggests that long-term memory systems

are likely to be more structured than previously thought, although

we cannot estimate here what the number of partitions should be,

given the simplicity of the model. Some degree of partitioning has

already been observed: for example graded retrograde amnesia

extends over one or two years in humans with damage to area

CA1 of the hippocampus, but can extend to over a decade if the

entire hippocampus is damaged [30]. Systematic lesion studies in

animals should reveal further partitioning in the hippocampal-

cortical pathway for consolidation of episodic memories.

A second prediction is related, since once the partitions have

been identified, our work suggests that most stages should exhibit

non-monotonic memory traces, although on different time-scales.

In fact, a recent imaging study with humans revealed non-

monotonic BOLD activation as a function of the age of memories

that subjects recalled [31]. Furthermore the non-monotonicity was

observed only in cortical areas and not in hippocampus. Here

multi-unit electrophysiology in animals would be desirable to

obtain high signal-to-noise ratios for measuring the memory

traces. An analysis such as the one proposed by [32,33], in which

spiking activity in rats during sleep was correlated with waking

activity, should enable us to estimate the strength of a memory

trace. We expect that the memory trace is a non-monotonic

function of time in most memory areas. The initial trace is usually

small or zero, it then increases because of the information

transferred from the upstream memory stages, and it finally

decreases as a consequence of the acquisition of new memories.

The timescales of the rising phase should reflect the dynamics of

the upstream memory stages, whereas the decay is more related to

the inherent dynamical properties of the memory stage under

consideration. Therefore, the position of the peak of the memory

trace and the timescale of the decay give important indications on

the position of the neural circuit in the memory stream and on the

distribution of parameters for the different memory stages. The

statistics of neural activity during memory transfer (replay activity)

should reflect the synaptic connections and in particular it should

contain a superposition of a few memory traces in the fast systems,

and an increasingly larger number of traces in the slower systems.

The statistics of the correlations with different memories should

change rapidly in the fast systems, and more slowly in the slow

systems (e.g. in the hippocampus the changes between two

consecutive sleeping sessions should be larger than in cortical

areas where longer-term memories are stored).

To obtain experimental evidence for these two sets of

predictions, it is important to record neural activity for prolonged

times, in general long enough to cover all the timescales of the

neural and synaptic processes that characterize a particular brain

area. This is important both to determine the time development of

the memory traces and to understand the details of the neural

dynamics responsible for memory transfer.

To estimate the SNR, one can analyze the recorded spike trains

during rest and NREM sleep, when memory transfer is expected

to occur. We believe that the strength of memory reactivation is

related to our SNR. The analysis proposed in [32,33] should allow

Memory Consolidation in Partitioned Neural Systems

PLOS Computational Biology | www.ploscompbiol.org 10 July 2013 | Volume 9 | Issue 7 | e1003146



us to estimate the templates of memories that are reactivated

during one particular epoch (the templates are the eigenvectors of

the covariance matrix that contains the correlations between the

firing rates of different neurons). The time development of the

memory trace can be then studied by projecting the activity of a

different epoch on the eigenvectors. The projections are a measure

of the memory reactivation strength and they should be

approximately a nonlinear monotonic function of the memory

signal. This analysis not only would determine whether the

memory trace is a non-monotonic function of time but it would

also allow us to estimate the parameters that characterize its shape

in different brain areas.

The memory model studied here is a simple abstraction of

complex biological systems which illustrates important general

principles. Among the numerous simplifications that we made,

there are three that deserve additional discussion. The first one is

about the representations of the random memories and the second

one is about the synaptic dynamics.

The first simplification is that we implicitly assumed that the

memory representations are dense, as all synapses are potentially

modified every time a new memory is stored. In the brain these

representations are likely to be sparse, especially in the early stages

of the memory transfer model, which probably correspond to

areas in the medial temporal lobe. Sparseness is known to be

important for increasing memory capacity [3,34,35] and one may

legitimately wonder why we did not consider more realistic sparse

representations. However, in our simplified model sparser random

representations are equivalent to lower learning rates if the

average number of potentiations and depressions are kept

balanced. If qf is the average fraction of synapses that are

modified in the first stage (coding level), then all qs of the model

should be scaled by the same factor qk?qkqf . This does not

change the scaling properties that we studied, except for a simple

rescaling of times (the x-axis of the plots should be transformed as

t?t=qf ) and SNR (SNRRSNR?qf ). In conclusion, sparseness is

certainly an important factor and we are sure that it plays a role in

the memory consolidation processes of the biological brain.

However here we focused on mechanisms that are independent

from the coding level and hence we did not discuss in detail the

effects of sparseness, which have been extensively studied

elsewhere [3,34,35].

The second simplification that merits a further discussion is that

the model synapses studied here have a single time-scale associated

with each of them. Our model can be extended to include synaptic

complexity as in [11]. In fact, allowing for multiple time-scales at

the level of the single synapse should lessen the number of stages

needed for a given level of performance. Specifically, time-scales

spanning the several orders of magnitude needed for high SNR

and long memory lifetimes can be achieved through a combina-

tion of consolidation processes both at the single synapse, and

between spatially distinct brain areas.

Methods

Here we include a brief description of the models and formulas

used to generate the figures. For a detailed and comprehensive

description of the models please refer to Text S1.

Simple models of synaptic memory storage
The homogeneous and heterogeneous synaptic models are

comprised of N stochastically updated binary synapses which

evolve in discrete time. In the homogeneous case all synapses have

the same learning rate q, while in the latter case there are n groups

of N=n synapses each. Each group k has a learning rate qk. At

each time step all N synapses are subjected to a potentiation or

depression with equal probability. The N-bit word of potentiations

and depressions constitutes the memory to be encoded. The

memory signal at time t, St is the correlation of the N synaptic

states with a particular N-bit memory, and we use superscript t to

denote evolution in discrete time. The signal-to-noise ratio (SNR)

is approximately (and is bounded below by) the signal divided byffiffiffiffiffi
N
p

, see Text S1 for more details.

To compare with these Markov models one can derive a mean-

field description which captures the memory signal averaged over

many realizations of the stochastic dynamics. This is done by

considering the probability that a given synapse is in a given state

as a function of time. Specifically, the probability of a single

synapse with learning rate q to be in the potentiated state at time

tz1 is just

ptz1
z ~pt

z(1{q=2)zpt
{q=2,

where pt
{zpt

z~1 and pz(0)~(1zq)=2.

In the case of the homogeneous synaptic model there are N
synapses with the same learning rate. The expected value of the

signal averaged over realizations is then

E(St)~N(2pt
z{1),

and so the expected signal-to-noise ratio is

SNRt~
ffiffiffiffiffi
N
p

(2pz{1):

We can approximate the finite-time equation for pz with a

continuous ordinary differential equation which, using the

definition of SNR gives

S N
:

R(t)~{q:SNR(t),

SNR(0)~qN1=2,

the solution of which is SNR(t)~qN1=2e{qt. This equation is used

to plot the curves in Fig. 1b. The heterogeneous case is analogous

with

SNR(t)~
1

N1=2

X
k

E(Sk(t)),

E(Sk(t))~
qkN

n
e{qkt,

where E(Sk(t)) is the expected signal at time t in stage k. This

equation is used to plot the solid curve in Fig. 1c. The SNR in the

heterogeneous model can be increased by reading out only some

of the groups at any one point in time, as opposed to all of them.

This optimal readout is used to plot the dashed curves in the top

panel of Fig. 3.

The memory transfer model
Once again we assume there are a total of N synapses divided

equally amongst n stages. Synapses in stage k have learning rate

qk~�qqq(k{1)=(n{1) and hence the fastest learning rate is q1~�qq and
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slowest is qn~�qqq. Synapses in stage 1 are updated every time step

in an identical fashion to those in group 1 of the heterogeneous

model above. Synapses in downstream stages however, update

according to the state of counterpart synapses in the upstream

stage. Specifically, if a synapse i in stage k is potentiated

(depressed) at time t, then synapse i in stage kz1 potentiates

(depresses) at time tz1 with probability qk. As before, the signal at

time t in stage k is written St
k. This fully defines the stochastic

model.

As before we can derive a mean-field description of the

stochastic dynamics. In this case, the probability of a given synapse

in stage 1 to be in a potentiated state at time t is

ptz1
1,z~pt

1,z(1{q1=2)zpt
1,{q1=2,

p0
1,z~(1zq1)=2,

as in the simple models. The probability of a given synapse in stage

kw1 begin in a potentiated state can be written

ptz1
k,z~pt

k,zzqk(pt
k{1,z{pt

k,z),

p0
k,z~1=2,

see Text S1 for details. These equations reflect the fact that only

synapses in stage 1 are updated due to the presentation of random,

uncorrelated memories, while synapses in downstream stages are

updated only due to the state of synapses in the preceding stage.

The expected signal in stage k is given by

E(St
k)~(N=n)(2pt

k,z{1).

The continuous time approximation to the mean-field dynamics

is given by the set of equations

_SS1~{q1S1,

_SS2~q2(S1{S2),

..

.
~..

.

_SSn~qn(Sn{1{Sn),

with initial conditions S1(0)~q1
N

n
, Sk(0)~0 for kw1 and we

write S for the expected signal. These equations are used to plot

the curves in Fig. 2a and the solid curves in the top panel of Fig. 3.

For n sufficiently large we can furthermore recast this system of

ODEs as a PDE

LS

Lt
z

�qqqx

n

LS

Lx
~

�qqqx

2n2

L2S

Lx2
,

S(x,0)~�qq
N

n
d(x),

where the spatial variable x~(k{1)=(n{1)[½0,1�. An asymptotic

solution to this equation valid for ln(q{1)=n%1, and taking now

the SNR, is

SNR(x,t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

pq{xt

s
exp½

{(
n

�qq ln q{1
(q{x{1){t)2

q{xt
�, ð1Þ

see Text S1 for details. This equation is used to plot the pulse

solution shown in Fig. 2b. An optimal SNR, in which only some of

the stages are read out, can be calculated based on Eq. 1 and is

SNR(t)~
N1=2n1=4ffiffiffi

2
p

(ln q{1)3=4t
erf(1), ð2Þ

which is valid for intermediate times where the SNR is powerlaw in

form. This equation is used to plot the curves in Fig. 3 bottom left.

Using Eqs. 1 and 2 one can calculate the lifetime of memories as

TLT~
n

�qqq ln q{1
z

1

�qqq
ln½ N1=2

21=2n3=4
�qqq:erf(1)(ln q{1)1=4�, ð3Þ

if the SNR of the pulse is above one before reaching the last stage or

TLT~
N1=2n1=4

21=2(ln q{1)3=4
erf(1), ð4Þ

is the SNR drops below one already before reaching the last

stage. Eqs. 3 and 4 are used to plot the solid curves in Fig. 3

bottom right.

Neuronal implementation of the memory transfer model
There are n stages. Each stage is made up of Nneuron all-to-all

coupled McCulloch-Pitts neurons. Each one of the

N~N2
neuron{Nneuron synapses (no self-coupling) can take on one

of two non-zero values. Specifically, the synapse from neuron j to

neuron i Jij[fJz,J{g, where Jz
wJ{. Furthermore, there are

one-to-one connections from a neuron i in stage k to a neuron i in

stage kz1. The model operates in two distinct modes: Encoding

and Transfer.

Encoding. All memories are encoded only in stage 1.

Specifically, one half of the neurons are randomly chosen to be

activated (si~1 if i[factiveg), while the remaining neurons are

inactive (si~0 if i[finactiveg). A synapse Jij is then potentiated to

Jz with a probability q1 if si~sj and is depressed with probability

q1 if si=sj .

Transfer. A fraction f of randomly chosen neurons in stage k

is activated at time t. Because of the powerful feedforward

connections, the same subset of neurons is activated in stage kz1.

The recurrent connectivity may lead to postsynaptic activation in

stage 1 neurons. Each neuron i receives an input

hi~
XNneuron

j~1

Jijsj

at time t where sj~1 if neuron j was activated and sj~0

otherwise. The input hi is a random variable which for

f Nneuron&1 is approximately Gaussian distributed with expected

mean and variance

m~(JzzJ{)
f Nneuron

2
,
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s2~(Jz{J{)2 f Nneuron

4
:

If hiwhi, where hi is the neuronal threshold, then neuron i is

activated at time tz1. Again, because of the powerful feedforward

connections, the same subset of neurons in stage 2 is activated. We

take hi~h to be the same for all neurons and assume that it can

take one of two values h[fhl ,hhg with equal likelihood during each

replay.

For a transfer process with T stimulations of a fraction f of

neurons, the fraction of synapses updated in the downstream stage,

or the transfer rate �qq, is a function of the area of the input

distribution above (below) hh (hl ). If the thresholds are placed

equidistant from the mean m, then

�qq~1{e{wfqT ,

w~(1{erf(j))

j~(h{m)=(
ffiffiffi
2
p

s):

If the fraction of synapses transferred is small then �qq*wfqT , which

is the formula given in the text. Of those synapses which are

updated, only some will be updated correctly. This is equal to the

fraction of potentiated (depressed) synapses contributing to the

total input above (below) hh (hl ), and is

y~
1

2
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pfNneuron

p e{j2

erfc(j)
: ð5Þ

Finally, the mean-field model describing the memory signal in

each stage in the neuronal model is the same as in Eqs. 1-1 where

the learning rate qi is now the transfer rate times the fraction of

correct transfers �qqiyi, and there is an additional decay term due to

incorrect transfers of the form {�qqi(1{y)(Si{1zSi) for iw1.

This mean-field model is used to make the solid curves in Fig. 6,

whereas the symbols are from the full, Markov model with

McCulloch-Pitts neurons.

Supporting Information

Text S1 Additional model information.

(PDF)
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