Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Jul;60(1):162–170. doi: 10.1172/JCI108752

Effects of Acetazolamide on Proximal Tubule Cl, Na, and HCO3 Transport in Normal and Acidotic Dogs during Distal Blockade

Shyan-Yih Chou 1,2, Jerome G Porush 1,2, Paul A Slater 1,2, Carlos D Flombaum 1,2, Tahir Shafi 1,2, Paul A Fein 1,2
PMCID: PMC372354  PMID: 874081

Abstract

It has been suggested that the establishment of a tubular fluid to plasma chloride gradient in the late proximal tubule by the reabsorption of bicarbonate (and other anions) in the early proximal tubule is responsible for a significant part of sodium chloride and water reabsorption in the proximal tubule. In the present study the effects of acetazolamide on proximal tubule water and electrolyte excretion were examined in 6 normal dogs and 10 chronic ammonium chloride-loaded dogs during distal blockade produced by ethacrynic acid and chlorothiazide administration. During distal blockade control urine/plasma osmolality and urine/plasma sodium were close to unity in all experiments. Urine/plasma chloride and urine/plasma bicarbonate were 1.21±0.02 and 0.75±0.07 in normal and 1.24±0.01 and 0.04±0.01 in acidotic dogs, respectively. After the administration of acetazolamide (20 mg/kg i.v.), there was a significant increase in urine flow, absolute and fractional excretion of sodium, bicarbonate, and chloride in all animals. Associated with these effects, urine/plasma osmolality and urine/plasma sodium remained unchanged but urine/plasma chloride decreased significantly to 1.15±0.01 in normal and to 1.19±0.01 in acidotic dogs. In acidotic dogs there was a significant correlation between the increase in bicarbonate, sodium, or chloride excretion after acetazolamide and the plasma bicarbonate level (range 6.8-12.5 meq/liter). These data demonstrate a significant effect of acetazolamide on bicarbonate, sodium, and chloride reabsorption in the proximal tubule even in the face of severe acidosis. Moreover, the data suggest that the decrease in chloride reabsorption (and accompanying sodium) after acetazolamide is related to the decrease in bicarbonate reabsorption and the associated decrease in the transtubular chloride gradient.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniou L. D., Shalhoub R. J., Gallagher P., O'Connell J. M. Renal transport of Na, Ca, Mg, and K during volume expansion and distal blockade. Am J Physiol. 1971 Mar;220(3):816–822. doi: 10.1152/ajplegacy.1971.220.3.816. [DOI] [PubMed] [Google Scholar]
  2. Bank N., Aynedjian H. S., Weinstein S. W. A microperfusion study of phosphate reabsorption by the rat proximal renal tubule. Effect of parathyroid hormone. J Clin Invest. 1974 Nov;54(5):1040–1048. doi: 10.1172/JCI107847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barratt L. J., Rector F. C., Jr, Kokko J. P., Seldin D. W. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest. 1974 Feb;53(2):454–464. doi: 10.1172/JCI107579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck L. H., Goldberg M. Effects of acetazolamide and parathyroidectomy on renal transport of sodium, calcium, and phosphate. Am J Physiol. 1973 May;224(5):1136–1142. doi: 10.1152/ajplegacy.1973.224.5.1136. [DOI] [PubMed] [Google Scholar]
  5. Beck L. H., Senesky D., Goldberg M. Sodium-independent active potassium reabsorption in proximal tubule of the dog. J Clin Invest. 1973 Oct;52(10):2641–2645. doi: 10.1172/JCI107456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett C. M., Clapp J. R., Berliner R. W. Micropuncture study of the proximal and distal tubule in the dog. Am J Physiol. 1967 Nov;213(5):1254–1262. doi: 10.1152/ajplegacy.1967.213.5.1254. [DOI] [PubMed] [Google Scholar]
  7. Bernstein B. A., Clapp J. R. Micropuncture study of bicarbonate reabsorption by the dog nephron. Am J Physiol. 1968 Feb;214(2):251–257. doi: 10.1152/ajplegacy.1968.214.2.251. [DOI] [PubMed] [Google Scholar]
  8. Besarab A., Silva P., Ross B., Epstein F. H. Bicarbonate and sodium reabsorption by the isolated perfused kidney. Am J Physiol. 1975 May;228(5):1525–1530. doi: 10.1152/ajplegacy.1975.228.5.1525. [DOI] [PubMed] [Google Scholar]
  9. Boudry J. F., Stoner L. C., Burg M. B. Effect of acid lumen pH on potassium transport in renal cortical collecting tubules. Am J Physiol. 1976 Jan;230(1):239–244. doi: 10.1152/ajplegacy.1976.230.1.239. [DOI] [PubMed] [Google Scholar]
  10. Burg M. B., Green N. Function of the thick ascending limb of Henle's loop. Am J Physiol. 1973 Mar;224(3):659–668. doi: 10.1152/ajplegacy.1973.224.3.659. [DOI] [PubMed] [Google Scholar]
  11. Burg M. B., Green N. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 1976 Sep;10(3):221–228. doi: 10.1038/ki.1976.101. [DOI] [PubMed] [Google Scholar]
  12. Burg M., Green N. Effect of ethacrynic acid on the thick ascending limb of Henle's loop. Kidney Int. 1973 Nov;4(5):301–308. doi: 10.1038/ki.1973.121. [DOI] [PubMed] [Google Scholar]
  13. CLAPP J. R., WATSON J. F., BERLINER R. W. OSMOLALITY, BICARBONATE CONCENTRATION, AND WATER REABSORPTION IN PROXIMAL TUBULE OF THE DOG NEPHRON. Am J Physiol. 1963 Aug;205:273–280. doi: 10.1152/ajplegacy.1963.205.2.273. [DOI] [PubMed] [Google Scholar]
  14. CRAWFORD M. A., MILNE M. D., SCRIBNER B. H. The effects of changes in acid-base balance on urinary citrate in the rat. J Physiol. 1959 Dec;149:413–423. doi: 10.1113/jphysiol.1959.sp006348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chou S. Y., Ferder L. F., Levin D. L., Porush J. G. Evidence for enhanced distal tubule sodium reabsorption in chronic salt-depleted dogs. J Clin Invest. 1976 May;57(5):1142–1147. doi: 10.1172/JCI108381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Clapp J. R., Nottebohm G. A., Robinson R. R. Proximal site of action of ethacrynic acid: importance of filtration rate. Am J Physiol. 1971 May;220(5):1355–1360. doi: 10.1152/ajplegacy.1971.220.5.1355. [DOI] [PubMed] [Google Scholar]
  17. Danovitch G. M., Bricker N. S. Influence of volume expansion on NaC1 reabsorption in the diluting segments of the nephron: a study using clearance methods. Kidney Int. 1976 Sep;10(3):229–238. doi: 10.1038/ki.1976.102. [DOI] [PubMed] [Google Scholar]
  18. Earley L. E., Martino J. A., Friedler R. M. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest. 1966 Nov;45(11):1668–1684. doi: 10.1172/JCI105474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fernandez P. C., Puschett J. B. Proximal tubular actions of metolazone and chlorothiazide. Am J Physiol. 1973 Oct;225(4):954–961. doi: 10.1152/ajplegacy.1973.225.4.954. [DOI] [PubMed] [Google Scholar]
  20. Frömter E., Gessner K. Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch. 1974;351(1):69–83. doi: 10.1007/BF00603512. [DOI] [PubMed] [Google Scholar]
  21. Frömter E., Rumrich G., Ullrich K. J. Phenomenologic description of Na+, Cl- and HCO-3 absorption from proximal tubules of rat kidney. Pflugers Arch. 1973 Oct 22;343(3):189–220. doi: 10.1007/BF00586045. [DOI] [PubMed] [Google Scholar]
  22. Fulop M., Brazeau P. The phosphaturic effect of sodium bicarbonate and acetazolamide in dogs. J Clin Invest. 1968 May;47(5):983–991. doi: 10.1172/JCI105813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. GROLLMAN A. P., WALKER W. G., HARRISON H. C., HARRISON H. E. SITE OF REABSORPTION OF CITRATE AND CALCIUM IN THE RENAL TUBULE OF THE DOG. Am J Physiol. 1963 Oct;205:697–701. doi: 10.1152/ajplegacy.1963.205.4.697. [DOI] [PubMed] [Google Scholar]
  24. Garella S., Chazan J. A., Cohen J. J. Factors responsible for proximal sodium conservation as assessed by distal tubular blockade. Clin Sci. 1969 Dec;37(3):775–787. [PubMed] [Google Scholar]
  25. Glassman V. P., Safirstein R., DiScala V. A. Effects of metabolic acidosis on proximal tubule ion reabsorption in dog kidney. Am J Physiol. 1974 Oct;227(4):759–765. doi: 10.1152/ajplegacy.1974.227.4.759. [DOI] [PubMed] [Google Scholar]
  26. Goodman A. D., Fuisz R. E., Cahill G. F., Jr Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest. 1966 Apr;45(4):612–619. doi: 10.1172/JCI105375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Goorno W. E., Rector F. C., Jr, Seldin D. W. Relation of renal gluconeogenesis to ammonia production in the dog and rat. Am J Physiol. 1967 Oct;213(4):969–974. doi: 10.1152/ajplegacy.1967.213.4.969. [DOI] [PubMed] [Google Scholar]
  28. Green R., Giebisch G. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am J Physiol. 1975 Nov;229(5):1205–1215. doi: 10.1152/ajplegacy.1975.229.5.1205. [DOI] [PubMed] [Google Scholar]
  29. Höhmann B., Frohnert P. P., Kinne R., Baumann K. Proximal tubular lactate transport in rat kidney: a micropuncture study. Kidney Int. 1974 Apr;5(4):261–270. doi: 10.1038/ki.1974.35. [DOI] [PubMed] [Google Scholar]
  30. Jacobson H. R., Kokko J. P. Intrinsic differences in various segments of the proximal convoluted tubule. J Clin Invest. 1976 Apr;57(4):818–825. doi: 10.1172/JCI108357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Khuri R. N., Strieder W. N., Giebisch G. Effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol. 1975 Apr;228(4):1249–1261. doi: 10.1152/ajplegacy.1975.228.4.1249. [DOI] [PubMed] [Google Scholar]
  32. Kleinman L. I. Renal sodium reabsorption during saline loading and distal blockade in newborn dogs. Am J Physiol. 1975 May;228(5):1403–1408. doi: 10.1152/ajplegacy.1975.228.5.1403. [DOI] [PubMed] [Google Scholar]
  33. Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kunau R. T., Jr The influence of the carbonic anhydrase inhibitor, benzolamide (CL-11,366), on the reabsorption of chloride, sodium, and bicarbonate in the proximal tubule of the rat. J Clin Invest. 1972 Feb;51(2):294–306. doi: 10.1172/JCI106814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kunau R. T., Jr, Webb H. L., Borman S. C. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J Clin Invest. 1974 Dec;54(6):1488–1495. doi: 10.1172/JCI107897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kunau R. T., Jr, Weller D. R., Webb H. L. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest. 1975 Aug;56(2):401–407. doi: 10.1172/JCI108105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. LEAF A., SCHWARTZ W. B., RELMAN A. S. Oral administration of a potent carbonic anhydrase inhibitor (diamox). I. Changes in electrolyte and acid-base balance. N Engl J Med. 1954 May 6;250(18):759–764. doi: 10.1056/NEJM195405062501803. [DOI] [PubMed] [Google Scholar]
  38. Levin D. L., Chou S. Y., Ferder L. F., Liebman P. H., Porush J. G. The effect of the plasma bicarbonate level on proximal tubule sodium reabsorption in NH4Cl-loaded dogs. J Lab Clin Med. 1976 May;87(5):804–812. [PubMed] [Google Scholar]
  39. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  40. Malnic G., De Mello Aires M., Giebisch G. Potassium transport across renal distal tubules during acid-base disturbances. Am J Physiol. 1971 Oct;221(4):1192–1208. doi: 10.1152/ajplegacy.1971.221.4.1192. [DOI] [PubMed] [Google Scholar]
  41. Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
  42. Malnic G., Mello Aires M., Lacaz Vieira F. Chloride excretion in nephrons of rat kidney during alterations of acid-base equilibrium. Am J Physiol. 1970 Jan;218(1):20–26. doi: 10.1152/ajplegacy.1970.218.1.20. [DOI] [PubMed] [Google Scholar]
  43. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  44. Maude D. L. The role of bicarbonate in proximal tubular sodium chloride transport. Kidney Int. 1974 Apr;5(4):253–260. doi: 10.1038/ki.1974.34. [DOI] [PubMed] [Google Scholar]
  45. Neumann K. H., Rector F. C., Jr Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J Clin Invest. 1976 Nov;58(5):1110–1118. doi: 10.1172/JCI108563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Puschett J. B., Goldstein S., Godshall S., Staum B. B., Goldberg M. Effects of filtration rate and plasma sodium concentration on proximal sodium transport. Am J Physiol. 1971 Sep;221(3):788–794. doi: 10.1152/ajplegacy.1971.221.3.788. [DOI] [PubMed] [Google Scholar]
  47. RADTKE H. W., Rumrich G., Kinne-saffran E., Ulrich K. J. Dual action of acetazolamide and furosemide on proximal volume absorption in the rat kidney. Kidney Int. 1972 Feb;1(2):100–105. doi: 10.1038/ki.1972.13. [DOI] [PubMed] [Google Scholar]
  48. RECTOR F. C., Jr, SELDIN D. W., ROBERTS A. D., Jr, SMITH J. S. The role of plasma CO2 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate. J Clin Invest. 1960 Nov;39:1706–1721. doi: 10.1172/JCI104193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reineck H. J., Osgood R. W., Ferris T. F., Stein J. H. Potassium transport in the distal tubule and collecting duct of the rat. Am J Physiol. 1975 Nov;229(5):1403–1409. doi: 10.1152/ajplegacy.1975.229.5.1403. [DOI] [PubMed] [Google Scholar]
  50. Rocha A. S., Kokko J. P. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973 Mar;52(3):612–623. doi: 10.1172/JCI107223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rosin J. M., Katz M. A., Rector F. C., Jr, Seldin D. W. Acetazolamide in studying sodium reabsorption in diluting segment. Am J Physiol. 1970 Dec;219(6):1731–1738. doi: 10.1152/ajplegacy.1970.219.6.1731. [DOI] [PubMed] [Google Scholar]
  52. SCHWARTZ W. B., FALBRIARD A., RELMAN A. S. An analysis of bicarbonate reabsorption during partial inhibition of carbonic anhydrase. J Clin Invest. 1958 May;37(5):744–751. doi: 10.1172/JCI103660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schafer J. A., Andreoli T. E. Anion transport processes in the mammalian superficial proximal straight tubule. J Clin Invest. 1976 Aug;58(2):500–513. doi: 10.1172/JCI108494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Seely J. F., Chirito E. Studies of the electrical potential difference in rat proximal tubule. Am J Physiol. 1975 Jul;229(1):72–80. doi: 10.1152/ajplegacy.1975.229.1.72. [DOI] [PubMed] [Google Scholar]
  55. Stein J. H., Osgood R. W., Boonjarern S., Cox J. W., Ferris T. F. Segmental sodium reabsorption in rats with mild and severe volume depletion. Am J Physiol. 1974 Aug;227(2):351–359. doi: 10.1152/ajplegacy.1974.227.2.351. [DOI] [PubMed] [Google Scholar]
  56. Ullrich K. J., Radtke H. W., Rumrich G. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pflugers Arch. 1971;330(2):149–161. doi: 10.1007/BF00643031. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES