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Plant behaviors across levels of cellular organization, from biochemical components to tissues and organs, relate and reflect
growth habitats. Quantification of the relationship between behaviors captured in various phenotypic characteristics and
growth habitats can help reveal molecular mechanisms of plant adaptation. The aim of this article is to introduce the power
of using statistics originally developed in the field of geographic variability analysis together with prominent network models
in elucidating principles of biological organization. We provide a critical systematic review of the existing statistical and
network-based approaches that can be employed to determine patterns of covariation from both uni- and multivariate
phenotypic characteristics in plants. We demonstrate that parameter-independent network-based approaches result in
robust insights about phenotypic covariation. These insights can be quantified and tested by applying well-established
statistics combining the network structure with the phenotypic characteristics. We show that the reviewed network-based
approaches are applicable from the level of genes to the study of individuals in a population of Arabidopsis thaliana. Finally,
we demonstrate that the patterns of covariation can be generalized to quantifiable biological principles of organization.
Therefore, these network-based approaches facilitate not only interpretation of large-scale data sets, but also prediction of
biochemical and biological behaviors based on measurable characteristics.

INTRODUCTION

The behaviors of biochemical components, from DNA and
proteins to metabolites, in biological entities across all levels of
cellular organization, from single cells to whole organisms, partly
depend on the space in which they operate and interact.
Advances in the development of novel (semi-)automated tech-
nologies have facilitated high-throughput quantification not only
of biochemical components, resulting in particular molecular
phenotypes (e.g., gene expression, protein abundances, and
metabolite levels), but also complex physiological traits (e.g.,
flowering time and yield) and morphological properties (e.g., cell
and leaf shape and shoot size) in plants. The problem of iden-
tifying the extent to which spatial constraints shape plant
behaviors, within and across individuals, resulting in particular
genetic makeup and varying phenotypes captured in tran-
scriptomics, proteomics, and metabolomics data sets, is par-
ticularly relevant in the study of plants as sessile organisms.
Resolving this problem requires analyses of patterns of co-
variation in characteristics of interrelated biochemical/biological
entities. For instance, one may investigate the relation between
geographic distances and genetic differences, the relationship
between covariation of expression levels of genes and their

functional characterization, as well as the relation of chromo-
somal gene locations, chromatin remodeling, or DNA coiling and
gene expression levels (Zupancic et al., 2001; Marshall, 2002;
Blanco et al., 2008; Ha et al., 2011; Sobetzko et al., 2012).
To analyze the patterns of covariation in characteristics of

studied entities (e.g., individuals of a population and molecular
components), it is necessary to specify a measure quantifying
the distance between two entities. The distance measure can be
used to determine which entities are to be treated as related.
The related entities can be represented by a network of nodes,
denoting the entities, and edges, representing the relatedness.
One can then investigate covariation for a given set of charac-
teristics only over related entities. Moreover, due to the network
abstraction, covariation can be examined not only in a geo-
graphic space, but also a more general setting.
It then becomes apparent that the networks and any patterns of

covariation are expected to depend on the sampled entities and
the distances between them. Since, for biological entities, and
especially plants, spatial location usually determines the growth
habitat to which they are exposed, it is important to examine if
a pattern of covariation can be robustly found across diverse
environmental conditions typical for the habitat. Moreover, char-
acteristics of biochemical and biological entities depend on not
only the spatial aspects but also the timing of physiological and
developmental events (e.g., flowering time), which are often tightly
regulated. Therefore, the determined patterns of covariation
should be investigated for robustness with respect to the time-
dependent behavior of the analyzed entities.
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The identification of a biologically meaningful and robust
pattern of covariation in characteristics of biochemical and bi-
ological entities renders it possible to predict the behavior of
entities based on their measurable characteristics. Thus, such
a pattern of covariation can be regarded as a principle of bi-
ological organization. For instance, a robust pattern of genetic
diversity can be used to specify the likeliest geographic location
of an individual specified only by its genetic makeup. Analo-
gously, a robust pattern in a given molecular function of genes
with similar expression levels can be employed to characterize
genes of unknown function. Therefore, approaches for de-
termining patterns of covariation can find wide application
across different fields in biology, from molecular physiology and
genetics to ecology.

Here, we aim to provide a critical systematic review of the
existing statistical and network-based approaches for revealing
and further investigating patterns of covariation. First, we show
how one can use measured characteristics of entities to arrive at
distance matrices. We then demonstrate that comparison of the
resulting distance matrices with classical statistical approaches
often does not result in robust patterns of covariation across
various characteristics. We in turn systematically review the
approaches that extract networks from the distance matrices
and focus on the properties they must satisfy to ensure ro-
bustness of any pattern of covariation. We also present a de-
tailed overview of the statistics, originating in geostatistics and
geographic variability analysis, that can be employed to quantify
network-based covariation of characteristics in uni- and multi-
variate settings. In addition, we illustrate how these statistics
relate to other well-studied network properties. On the level of
biological entities, we apply these methods to show how
multivariate high-throughput data can be integrated across 92
diverse Arabidopsis thaliana accessions to reveal relations
between molecular factors and geographic location, thus pro-
viding insights in local adaptation. On the molecular level, with
the help of these methods, we show how similarities in gene
expression reflect the function annotation in Arabidopsis, thus
providing a quantifiable principle useful in predicting functional
characterization.

FROM HIGH-THROUGHPUT DATA TO
DISTANCE MATRICES

For the purpose of illustrating the main concepts of the reviewed
methods, we assume that there are n entities. Each entity, i, 1 #

i # n, is described by two properties with corresponding data
profiles, denoted by Xi and Yi. The data profiles Xi and Yi are
collections of p and q characteristics, represented as vectors.
Gathering all Xi and Yi data profiles over all n entities results in two
matrices, X and Y, respectively. For instance, if the entities are
Arabidopsis accessions, the data matrix X may consist of the
longitude and latitude of their geographic origin, while the data
matrix Ymay be given by the metabolic levels or single-nucleotide
polymorphisms (SNPs) of each accession. On the other hand, if
the entities are Arabidopsis genes, the data matrix X may consist
of their expression levels across various experiments, while the
data matrix Y may be given by the characterization of genes’
function annotation as terms of a chosen ontology (e.g., MapMan

[Thimm et al., 2004] or GO [Harris et al., 2004]) for the considered
genes; similarly, if the entities are metabolites, X and Y may in-
clude the levels under same experimental scenarios in Arabi-
dopsis and tomato (Solanum lycopersicum), respectively. Therefore,
the particular characteristics gathered in the data matrices
X and Y would depend on the biological question.
For a pair of data profiles (vectors), Xi and Xj, from the entities

i and j, 1 # i, j # n, a distance measure m results in a number,
denoted by m(Xi, Xj), quantifying the distance between the two
data profiles. A distance measure m is symmetric if its value
does not depend on the order of the data profiles, for example,
m(Xi, Xj) = m(Xj, Xi). In the following, we assume that the distance
measure m is such that higher values denote larger distances.
The Euclidean distance and modifications of Pearson correlation
coefficient are commonly used distance measures.

COMPARISON OF DISTANCE MATRICES

Equipped with the concept of a distance measure, there are two
possible approaches to investigate the relationship between the
data matrices X and Y regarding the distances of the included
data profiles. In the first approach, one relies on applying two
(not necessarily different) distance measures, mX and mY, on the
data profiles in the matrices X and Y, resulting in two distance
matrices, DX and DY, respectively. One can test the congruence
between the distance matrices using the Mantel test or RV co-
efficient, or determine an empirical variogram.
The Mantel test, often used in ecological studies (Reynolds,

2003; Cushman and Landguth, 2010), quantifies the correlation
between two matrices over the same set of entities, as is the
case here. Let dX

ij and dY
ij denote the distances between the data

profiles of the entities i and j in X and Y, respectively. The Mantel
correlation is given by the following expression (Mantel, 1967):

rM ¼ 2
nðn21Þ22

∑n
i¼1∑

n
j¼1

�
dX
ij 2DX

�

sDX

�
dY
ij 2DY

�

sDY

;

where DX and DY denote the means, while sDX and sDY denote
the standard deviations of DX and DY, respectively. Like Pearson
correlation coefficient, rM takes values in the range [21,1] whose
statistical significance can be estimated empirically by permu-
tation test (Smouse et al., 1986). However, it also shares the
same disadvantages with Pearson correlation that presence of
outliers may alter not only the value but also the sign of corre-
lation (Gravetter and Wallnau, 2010).
The RV coefficient characterizes the congruence between two

matrices over the same set of entities n. It is given by the nor-
malized scalar product of the two matrices, ranging in the
interval [0,1], whose statistical significance can be determined
analytically (Robert and Escoufier, 1976). With both statistics,
the presence of a pattern of spatial covariation may be severely
obscured by considering the covariation between pairs of enti-
ties that are not necessarily related (i.e., are at large distance),
leading to nonrobust findings. To illustrate, let us consider as
entities 20 Arabidopsis accessions with geographic origin in
Germany, so that X contains their longitude and latitude and
Y gathers the levels for 49 metabolites measured under
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near-optimal growth condition (see Supplemental Data Set 1
online). We next generate the distance matrices DX and DY from
the geographic locations and the z-normalized metabolite pro-
files, respectively. The resulting Mantel correlation coefficient
indicates an apparently positive but nonsignificant correlation.
In addition, the RV coefficient for X and Y shows a small but
nonsignificant congruence between the two matrices (Figure 1,
inset).

FROM DISTANCE MATRICES TO VARIOGRAMS

Another technique of choice when analyzing covariation in
space is based on the empirical variogram that quantifies how
distances in a given property vary with spatial separation. Given
the two distance matrices DX and DY, let N(k) denote the set of
pairs of entities i and j, 1# i, j# n, such that dX

ij ¼ k, and let |N(k)|
be the number of such (i, j) pairs. The empirical variogram is then
defined as follows (Clark, 1979):

gðkÞ ¼ 1
jN ðkÞj∑ði; jÞ∈NðkÞ

�
dY
ij

�2
;

where k varies in the range of DX. In practice, instead of de-
termining g(k) for individual values of k, first the distances in DX are
binned and the expression above is applied on pairs of entities
whose differences lies in a corresponding bin. For instance, on

the example of the 20 Arabidopsis accession with four bins, each
covering a range of 50 miles (mi), as shown in Figure 1, we ob-
serve that from the first to the third bin, there is a slight increase
in the mean g, indicating that accessions further apart are more
variable in their metabolic phenotype than those closer together.
This behavior is lost for pairs of accessions having a large dis-
tance (fourth bin). By examining the results when eight bins, each
covering a range of 25 mi in Figure 1, it appears that the mean in
the first bin is larger compared with that of the second, suggesting
that the relation between geographic distance and metabolic
profiles is more diverse even for geographically close accessions.
As with any procedure that depends on binning, as shown in the
example, the results are sensitive with respect to the chosen size
of the bin. Although there are optimal statistical designs for robust
estimation of variograms (Cressie, 1993), this is of little value
when dealing with a priori sampled and well-characterized Arab-
idopsis accessions.
Platt et al. (2010) used the concept of the variogram on X

gathering the geographic location of 5707 plants and Y given
by 135 SNPs spread across the genome, with mX given by the
Euclidean distance and two versions of mY: the fraction of
nonmatching alleles and the fraction of those belonging to the
same haplogroup. To account for the drawbacks of using dif-
ferent binning sizes, Platt et al. examined the variograms with
three sizes (i.e., 0.5, 10, and 150 km) for the North American and
Eurasian accessions. By fitting linear and exponential models to

Figure 1. Statistics Based on Distance Matrices and Empirical Variogram.

The Mantel correlation coefficient and RV coefficient between the distance matrices DX and DY from the geographic locations and the z-normalized
metabolite profiles, respectively, of 20 Arabidopsis accessions. Approximations of the Euclidean distances due to Earth curvature are performed by
converting the longitude and latitude from radial units to miles by multiplying the values with 53 and 69.1 mi. The Mantel correlation is calculated
between the two distance matrices via the ecodist R package (Goslee and Urban, 2007), whereas the RV coefficient for X and Y is determined via the
FactoMineR package in R (Lê et al., 2008). The values are given in the inlay. The variogram is determined based on DX and DY with four bins and eight
bins, each covering a range of 50 and 25 mi, respectively. The mean g for each bin is represented by a point. The size of the point corresponds to the
number of pairs in the bin. Furthermore, the SD of each bin is represented by error bars. The empirical variograms are determined by a modified function
of the geoR R package (Ribeiro and Diggle, 2001).
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the obtained empirical variograms without any smoothing,
nonstandard in the field of geostatistics (Clark, 1979), the au-
thors concluded that Arabidopsis exhibits a measure of isolation
by distance. However, we emphasize that this claim and its
robustness are not statistically and quantitatively supported with
the applied approach.

FROM DISTANCE MATRICES TO
PROXIMITY-BASED NETWORKS

In the second approach, one first applies a distance measure mX

on the data matrix X and employs the resulting distance matrix
DX to define which entities are to be considered as related. This
procedure generates a network G, in which the set of nodes,
V(G), represents the entities and edges (links), in the set, E(G),
denote the pairs of entities which are related. The problem
of detecting patterns of covariation then becomes one of in-
vestigating how the values in Y vary only over the neighbors (i.e.,
the entities whose corresponding nodes are connected by an
edge in the network and not over all pairs of entities). In the
following, we describe and illustrate some of the most promi-
nently used classes of networks that capture different notions of
relatedness.

The notion of relatedness will depend on the number of sam-
pled entities as well as the type of data in X describing their
positions. For instance, what may be considered related in geo-
graphic terms, where X gathers the geographic location of an
entity, does not necessarily coincide with relatedness of X in
terms of gene or metabolic regulation. Nevertheless, the relation
of relatedness must satisfy a set of necessary properties in order
to be applicable in a statistical setting: (1) no entity is related to
itself, (2) if the entity i is related to the entity j, so is j to i, and (3) the
relatedness between i and j is unique, in the sense that it does not
depend on the choice of parameter values. These properties
translate into the following network characteristics: (1) there are
no loop edges on single nodes, (2) the edges are undirected,
describing symmetric relationships, and (3) the network is unique.
An additional property may also include the connectedness of the
network, whereby any two nodes are connected by a path.

There are certainly several relations that satisfy these properties
and operate on the distance matrix DX, resulting in different
classes of networks. In the closest pairs (CP) network, a single
edge is established between two entities i and j if their distance is
the smallest one over all pairs of entities. Since this network in-
cludes a single edge, it is disconnected in all cases except when
there exists an entity that is equidistant and closest to all other
entities. While the problem of finding the CPs is computationally
interesting, the CP network does not capture relatedness over all
entities. For the 20 Arabidopsis accessions in Figure 1, the CP
network is visualized in Figure 2A. In the nearest neighbors (NN)
network, two entities i and j are connected by an edge if there
exists no entity l for which the distance between i and l is smaller
than the distance between i and j (i.e., dX

il < dX
ij ). However, entity j

being the nearest to entity i does not in general imply that i is the
nearest to j, so this relation is not symmetric (Figure 2B). The NN
network is in general disconnected and includes the CP network.
Moreover, the generalization of the NN network to consider the k

NNs does not suffer only from asymmetry, but also depends
on the value of the parameter k, which violates the uniqueness
property (see Figure 2B for k = 3). A heuristic resembling the kNN
network, and suffering the same drawbacks, was recently em-
ployed by Anastasio et al. (2011) to determine Arabidopsis
accessions with erroneous data on their origin based on their
discrepancy from the isolation by distance observed by Platt et al.
(2010).
The minimum spanning tree (MST) network spans all entities

(i.e., the network is connected), so that the sum of the distances
between the entities connected by an edge is the smallest over
all connected networks (Figure 2C). The MST network is unique
if all distances are distinct and contains the NN network as
a subnetwork. Let di denote the smallest of the distances be-
tween entity i and any other entity. In the sphere of influence (SI)
network, the entities i and j are connected by an edge if the
spheres with radii di and dj centered in i and j, respectively, in-
tersect in more than one point (Figure 2A). Like the MST net-
work, the SI network also contains the NN network. While the SI
relation is symmetric and defines a unique network, the resulting
network is not necessarily connected (e.g., five components in
Figure 2A).
The concept of relative neighborhood (RN) guarantees that

the network is unique and connected. In an RN network,
two entities i and j are connected by an edge if for any other
entity l, l � i, j, dX

ij # maxfdX
il ;d

X
lj g holds (i.e., l does not lie in the

intersection of the two spheres centered at i and j of radius dX
ij )

(Toussaint, 1980) (Figure 2C). Since the MST network is con-
tained in the RN network, the latter is connected (Jaromczyk and
Toussaint, 1992). Moreover, for a given distance matrix DX, the
RN network is unique. The Gabriel neighborhood of two entities i
and j is defined as the smallest sphere through i and j (Figure
2C). Since the sphere is of radius dX

ij =2, the Gabriel neighbor-
hood is contained in the RN. Like in the RN network, an edge is
established between i and j in the Gabriel neighborhood network
if the corresponding neighborhood is empty. Delaunay tri-
angulation (DT) network is partitioning of the space into simpli-
ces in such a way that a simplex is a part of DT if the sphere
through its nodes, representing the entities, contains no other
nodes (Figure 2D). When the number of entities that lie on
a sphere is larger than the dimension of the space, the DT
network is not unique (de Berg et al., 2008). It has been shown
that the RN network is contained in the DT network. For further
extensions and discussion of the properties for these classes of
networks, we direct the interested reader to Veltkamp (1992) and
Aldous and Shun (2010).
To introduce the next class of networks, we assume that each

entity is associated with a subset of entities. The subset asso-
ciated with entity i can be determined based on the distribution/
ranking of distances in dX

ij . In the class of proximity networks
then two entities i and j are connected by an edge if the subset
of i contains j and vice versa (Mutwil et al., 2011). Moreover, in
the class of intersection networks, two entities i and j are adja-
cent if the intersection of the associated subsets is nonempty
(Karo�nski et al., 1999). The proximity networks can be regarded
as a symmetric variant of the NN network, while the intersection
networks can be viewed as a complement of the empty neigh-
borhood in the definitions above.
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Figure 2. Visualization of Different Network Classes.

The nodes of each panel represent the geographic origin of the 20 Arabidopsis accessions, connected with an edge based on the different classes of networks.
(A) CP network (red edge) and SI network (blue edges).
(B) NN network illustrating asymmetric relations of connected edges, where, if x 2> y, y is NN of x, but x is not NN of y. The k-nearest neighborhood
network with k = 3 is shown with red edges.
(C) Gabriel neighborhood network (blue edges), MST network (red edges), and RN network (green edges).
(D) DT network.
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STATISTICS FOR CHARACTERISTICS
OF NETWORK ENTITIES

The statistics capturing patterns of covariation of a property
must explicitly consider the underlying relatedness of investigated
entities. To discern such patterns, the statistics quantify how the
property’s level for each entity covaries with those of its neigh-
bors. They can be global, as in the case of the Moran’s I (Moran,
1950) and global G (Getis and Ord, 1992), or can take into ac-
count local effects, such as the Geary’s C (Geary, 1954) and local
Moran’s I (also known as Anselin’s local indicators of spatial as-
sociation; Anselin, 1995).

For now, let us assume that we are in a univariate setting,
where each entity, i, 1 # i # n, is quantified by a single numeric
value, yi, for a given characteristics. To test for spatial clustering,
referring to a range of correlation values, one usually uses
Moran’s I or global G statistics. Moran’s I is defined by the fol-
lowing expression:

I ¼ n
∑n

i¼1∑
n
j¼1wij

∑n
i¼1∑

n
j¼1wijðyi 2 yÞ

�
yj 2 y

�

∑n
i¼1ðyi 2 yÞ2 ;

where wij denotes the weight of the edge (i, j) ∈ E(G) and takes
a value of zero if the network does not include this edge. Usually,
wij = 1 or wij = 1/k(i), where k(i) is the degree of the node repre-
senting the entity i in G. If wij = 1, then Moran’s I is equivalent to
the Pearson correlation of a modified vector with the assumption
of network homogeneity (see Supplemental Methods 1 online)
and, interestingly, corresponds to the (weighted) degree-degree
correlation (Newman, 2002). Therefore, its values are in the range
[-1,1] and can be interpreted in the same way as correlations.
Positive values indicate that the characteristic exhibits a clustered
pattern, negative values suggest dispersal, and zero denotes
homogenous distribution of values.

Here, we calculate Moran’s I for each metabolite (see
Supplemental Table 1 online) in the 20 Arabidopsis accessions
whose neighborhood structure is given by the RN network in
Figure 2C. Glc, threhalose, and erythritol all show significant
positive Moran’s I (0.67, 0.42, and 0.52, P value < 0.05), while
Phe, Ile, and Glc demonstrate dispersal, random, and clustered
behavior, respectively (Figure 3). Although useful in providing
hints for some metabolic processes associated to local adap-
tation, these findings neglect the fact that metabolite levels arise
from metabolic processes interconnected in a complex network.

The global G statistics (also known as Getis-Ord General G)
can be used to test the existence of concentrated high or low
values in a given network and are defined as follows:

G ¼ ∑n
i¼1∑

n
j¼1wijyiyj

∑n
i¼1∑

n
j¼1yiyj

:

This expression includes the assumption that for every edge
(i, j) ∈ E(G), 0# wij # 1, the value of global G is in the range [0,1].
The equivalent zG-score, obtained by analytically determined
mean and variance of the global G statistics, can be used to
assess the presence of clustering: Statistically significant values
whose zG-score is positive indicates that high values cluster
together, while negative values support the concentration of

small values. The global G statistics for the 20 accessions in
Figure 2C indicate that in the case of trehalose and Asn, high
values cluster together with wij = 1 if the two entities i and j are
connected, and wij = 0, otherwise (see Supplemental Table 1
online).
A global statistic that is more sensitive to local spatial clus-

tering is Geary’s C statistic, which is closely related to the in-
verse of Moran’s I. It can be seen as the network equivalent of
a variogram since

C ¼ n2 1
2∑n

i¼1∑
n
j¼1wij

∑n
i¼1∑

n
j¼1wij

�
yi 2 yj

�2

∑n
i¼1ðyi 2 yÞ2 :

The values for this statistic are in the range [0,2], where 1
indicates lack of spatial clustering. Values smaller than 1 are
interpreted as an indicator of clustering, while values larger than
1 suggest dispersal. An example of different values for Geary’s
C is shown in Figure 3 based on analyzing the behavior of Phe,
Ile, and Glc for the Arabidopsis accessions. The results for the
other metabolites are similar to those obtained from Moran’s I.
Moran’s I and global G have their local counterparts [i.e., in

a modified form, they can be used to assess clustering behavior
with respect to a given property in a neighborhood N(i ) of a given
entity i]. This results in the following:

Ii ¼
nðyi 2 yÞ∑j∈NðiÞwij

�
yij 2 y

�

∑n
i¼1ðyi 2 yÞ2  and

Gi ¼
∑j∈NðiÞwijyj

∑j∈NðiÞyj
:

Like the global statistics, they can be transformed into z-
scores to help interpret the local behavior of the characteristic.

FROM UNI- TO MULTIVARIATE SETTINGS

The statistics described above are suitable for application
when a single characteristic of an entity is observed. With the
advances in high-throughput technologies, biological entities
are often described by vector profiles including different system
level molecular phenotypes (e.g., transcriptomic, proteomic, and
metabolomic). To render the described statistics useful in
a multivariate setting, we employ the distance measure mY,
which is used on the data matrix Y but only for the entities which
are related (i.e., entities whose corresponding nodes are con-
nected by an edge) (Kleessen et al., 2012). Given a network G,
generated based on DY, in the simplest scenario, we determine
the weight uij of each edge (i, j) ∈ E(G) as dY

ij . Alternatively, one
may consider combining the geographic distance with the
weight uij. Irrespective of the scenario, each node is character-
ized by the mean of the weights of edges incident on it; in
other words, each node i is assigned a weight, ui, such that
ui ¼ ∑ði;jÞ∈EðGÞuij=kðiÞ, where k(i) denotes the degree (number of
neighbors) of the node i. The statistics reviewed above can then
be used with ui instead of yi.
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BRIDGING THE GAPS BETWEEN LEVELS OF BIOLOGICAL
ORGANIZATION: TWO ILLUSTRATIONS

In the following, we apply the systematically reviewed network-
based approaches together with the most widely used statistic
in two scenarios. In the first, we investigate the geographic
distribution of multivariate molecular phenotypes. In the second,
we examine the relation between coexpressed genes, captured
in a proximity network, and their functional characterizations.

Geographic Distribution of Multivariate
Molecular Phenotypes

It was recently discovered that genetically similar Arabidopsis
accessions are found closer to each other, suggesting a robust
isolation by distance (Platt et al., 2010; Anastasio et al., 2011;
Horton et al., 2012). However, these findings were obtained by
relating the genetic and geographic distances either across all
accession pairs or via parameter-dependent neighborhood
structures (e.g., kNN-like networks) restricting the analysis to
genotypic variation. The multivariate method allows for analyz-
ing the relation of multivariate high-throughput data to the
geographic origin of the accessions (Kleessen et al., 2012).

In the following, we use the RN network on 92 accessions with
data sets including a collection of SNPs (Anastasio et al., 2011;
Horton et al., 2012), flowering phenotypes (Atwell et al., 2010),
and metabolic phenotypes consisting of levels for 49 metabolites.
We chose the RN network model because it results in a unique
network that does not depend on any parameters (unlike the kNN
network model), it is sparser than other unique network models,
and it results in a connected network. The metabolic phenotypes
were obtained in three ex situ growth conditions: OpN (12 h light/
12 h dark) in which nitrogen fertilization allows close to optimal

growth; LiN (12 h light/12 h dark) in which growth is limited by
nitrogen; and LiC (8 h light/12 h dark) with high nitrogen supply,
with carbon-limited growth. Investigation of the results from the
network-based approach shows a robust isolation by distance at
the level of metabolic, flowering phenotypes, but not at the level
of genetic variability for the analyzed accessions. Nevertheless,
the isolation-by-distance model was confirmed also on SNP data
using a larger set of 170 accessions (Horton et al., 2012), sug-
gesting that the robustness of the isolation by distance based on
SNPs depends on the number of sampled individuals.
Here, we expand these findings by focusing on chemical

compound classes of metabolites and their role in biochemical
processes including carbohydrates, organic acids, central amino
acids, minor amino acids, miscellaneous, composition, as well as
photorespiration, nitrogen assimilation, and amino acid metabo-
lism (see Supplemental Methods 1 and Supplemental Table 2
online). Furthermore, we investigate the relation between geogra-
phy and four phenotypes containing characteristics grouped ac-
cording to their association with flowering (23 traits), defense (23),
ion concentrations, named ionomics (18), and development (43).
We focus on the later three categories, covering 39, 26, and 40 of
the 92 accessions, respectively (see Supplemental Table 3 online).
The relationship between the metabolic, defense-related,

ionomics, and developmental phenotypes of the neighboring
accessions is investigated using Moran’s I statistics on the RN
network. We chose to focus on Moran’s I, first, because it is
connected to (and abstracts) network topology, as described
above, and secondly, the claims made based on this statistic are
of global character. The values of Moran’s I indicate positive
relations with geographic distance for the four phenotypes
(Figure 4; see Supplemental Tables 4 and 5 online), suggesting
a robust isolation by distance. The results for the metabolite
classes corroborate the claim that not all metabolic processes

Figure 3. Metabolites Showing Clustered, Homogenous, and Dispersed Behavior.

Moran’s I and Geary’s C for Phe, Ile, and Glc in 20 Arabidopsis accessions demonstrating dispersal, random, and clustered behavior, respectively. We
first obtained the underlying network, given by the RN network, based on their geographic origin with help of the spdep package in R (Bivand, 2013).
The z-normalized metabolite profiles are used to calculate the statistics for the profiles with wij = 1/k(i ). The color of the nodes in the network indicates
the values of the profiles of the accessions for Phe (A), Ile (B), and Glc (C), respectively.
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response in the same way in the three growth conditions. For
instance, the metabolites involved in nitrogen assimilation have
a high Moran’s I in LiC and OpN with a high nitrogen supply, but
the smallest in LiN where growth is limited by nitrogen (Figure 4).
Moreover, metabolites participating in photorespiration show
larger value for the Moran’s I in LiC compared with those in LiN
and OpN. These findings suggest that the metabolic response to
particular growth conditions is affected by geographic distance
and reflect the adaptation to specific environments. The defense-
related, ionomics, and developmental phenotypes demonstrate
a similar behavior, with a larger Moran’s I value for the ionomics
phenotypes.

Proximity Network-Based Statistics Validate
the Guilt-by-Association Principle in Gene Networks

The guilt-by-association principle (GBA) postulates that two bi-
ological entities with similar quantitative behavior have similar
functions (Eisen et al., 1998). This principle has been used for de-
veloping methods for automated prediction of gene functions based
on gene expression profiles (Oliver, 2000; Lee et al., 2010; Zhou
et al., 2002). While arguments have been provided both in favor of
the general applicability of GBA in the case of networks obtained
only using the Pearson correlation, referred to as relevance net-
works (Wolfe et al., 2005; Kinoshita and Obayashi, 2009), as well as

questioning its validity (Gillis and Pavlidis, 2011, 2012). Interestingly,
there exists no rigorous statistical assessment for the validity of this
principle with respect to spatial clustering of biological functions in
genome-wide coexpression networks. Such quantification will help
determine which gene functions indeed follow the GBA principle,
ultimately resulting in more accurate and more specific predictions.
Here, we illustrate how proximity networks extracted from

gene expression data in combination with distance measures,
quantifying the similarity of gene function annotation and the
statistics for testing spatial clustering can be used to assess the
GBA principle. The resulting quantities can be further interpreted
in a network setting. To this end, we extracted the proximity
network from a compendium of publically available microarray
experiments in Arabidopsis, following the approach of Mutwil
et al. (2011) (see Supplemental Methods 1 online).
In the extracted network, we focus on subsets of genes de-

scribed by one of the six high-level categories from MapMan
(Thimm et al., 2004), including regulation, hormones, cell wall,
cellular response, primary metabolism, and secondary metabo-
lism (Usadel et al., 2005). To assess the spatial clustering in
a multivariate setting, the ui node weights are calculated from the
semantic similarity of the gene neighbors in the proximity network
(Figure 5). The semantic similarity was determined based on
information-theoretic distance measures considering ancestral
MapMan bins, as proposed by Klie and Nikoloski (2012) (see

Figure 4. Moran’s I Statistics of Different Phenotypes for 92 Arabidopsis Accessions.

The results of the Moran’s I statistics between different classes of metabolites under three growth condition, LiN (blue), OpN (red), and LiC (green), and
the underlying network are depicted. The metabolite classes are sorted in ascending order with respect to their values of Moran’s I in OpN; Moran’s I
between defense-related (violet), ionomics (light blue), and developmental phenotypes (orange) covering 39, 26, and 40 of the 92 accessions, re-
spectively. For details about the different phenotypes, we refer the reader to Supplemental Tables 3 to 5 in Atwell et al. (2010). All values of Moran’s I are
significant with a P value < 0.05 (see Supplemental Tables 5 and 6 online).
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Supplemental Methods 1 online). The values for the Moran’s I
presented in Table 1 indicate that the there is increasing clustering
of genes with similar function starting from regulation to cellular
response and secondary metabolism. These findings can be in-
terpreted further with respect to the behavior of genes in each
category: The genes involved in secondary metabolism, involving
more linear pathways, show exceptionally high congruence with
respect to both coexpression and gene function (Figure 5).
Moreover, the genes involved in primary metabolism and cell
wall–related functions, covering tightly transcriptionally regulated
pathways, also show high values for Moran’s I. The broader
categories of genes involved in regulation and crosstalk between
pathways are, expectedly, showing the smallest Moran’s I, sug-
gesting a weak relation between gene expression and charac-
terization of their functions.

FUTURE TECHNICAL AND MODELING CHALLENGES

The presented modeling approach aims at revealing patterns of
covariation in uni- and multivariate characteristics of biochemical

and biological entities embedded in space. This approach
involves testing hypothesis based on global or local statistics
that allow making claims about spatial clustering of the in-
vestigated multidimensional traits.
Here, we argued that to guarantee robustness of the

claims, it is desirable that the spatial embedding of the enti-
ties is parameter-free and, thus, unique for the sampled en-
tities. While there are network classes that could be used
robustly to investigate molecular, physiological, and mor-
phological characteristics, the challenge of determining ob-
jective criteria for selecting a network model remains. One
possibility for overcoming this challenge would be simulta-
neously to investigate the enumerated statistics from the
sparsest to the densest network model ensuring uniqueness.
The statistics on networks of different density can in turn
be used to determine the level of spatial proximity at which
dramatic shift in the statistics is observed. One may then further
examine the relevant properties of the neighbors enforced by
a particular network class that may lead to relevant biological
insights.

Figure 5. Comparison of the Subnetworks Obtained for Genes Involved in Primary (Left) and Secondary (Right) Metabolism.

The color of a node/gene corresponds to the average semantic similarity of its neighboring nodes. Genes involved in both primary and secondary
metabolism exhibit coexpression pattern that is in agreement with the function of the neighboring genes, resulting in high values of Moran’s I.

Table 1. Moran’s I Statistic and Typical (Sub)Network Properties of an Arabidopsis Coexpression Network

Moran’s I Network Properties

Subnetworks Observed Expected P Value Rel. Density Order (Genes) Singletons Components (Size >1)
Complete network 0.456519 -6.56E-05 <1e-16 0.0013 15238 0 1
Regulation 0.399287 20.00017 <1e-16 0.0015 5929 112 3
Hormones 0.442837 20.0061 0.000517 0.0054 165 112 14
Cell wall 0.478987 20.02326 0.007807 0.054 44 13 7
Response 0.705959 20.00055 <1e-16 0.0022 1828 277 54
Primary metabolism 0.809655 20.00072 <1e-16 0.008 1383 264 26
Secondary metabolism 0.967833 20.00238 <1e-16 0.0087 421 172 23

The subnetworks correspond to high-level MapMan categories obtained from Usadel et al. (2005). The observed and expected values for the Moran’s I
statistic along with its P values are given in the second, third, and fourth columns, respectively. The properties of the (sub)networks, listed in the first
column, include the relative density (i.e., the number of edges divided by the total possible number of edges on the same number of nodes), order (i.e.,
number of genes), number of singleton nodes (i.e., isolated nodes without any neighbors), and the number of connected components (of size greater
than one) and are given in the remaining columns.
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The reviewed network models applied in a geographic setting
rely on the airline distance between two entities. However,
geographic space is three dimensional and incorporates natural
barriers, like mountains or bodies of water, with variable degree
of relevance to different species. Moreover, geographic loca-
tions have other properties that vary in time due to climate
effects. An interesting challenge is to extend the existing models
to account for barriers given terrain descriptions as well as
similarity of geographically proximal locations which share
climate-related properties. In such a setting, the investigations of
high-throughput data would shed light on the relation of geo-
graphic segregation and climate with the underlying molecular
mechanisms of local adaptation.

Finally, the proposed approach for analysis of multidimensional
data profiles simultaneously considers all traits and might not
identify a pattern for the entire collection of traits. However, this
does not imply that there are no patterns of covariation in a subset
of traits. Automated selection of subsets of traits for which pat-
terns are observed remains one of the key challenges. As with
other statistical approaches, conclusions drawn from marrying off
covariation measures and spatial embedding of entities is ex-
pected to depend on the sampling scheme for the entities. Therefore,
the behavior of the network models and statistics in a bootstrap
setting remains to be further investigated. Providing methods that
could address these issues would further contribute to the re-
solving the grand challenge of identifying biologically meaningful
principles that can be used to predict the behavior of biochemical
and biological entities based on their high-throughput readouts.
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