Skip to main content
. 2013 Jul 26;7:13. doi: 10.3389/fninf.2013.00013

Algorithm Spline.

Let p(1)1 be a seed point, and Q^k and Q^k+1 satisfy (4). h is the step-length.
p0(1)=p1(1)Q^1h
p(1)1 is a seed point
p2(1)=p1(i)+Q^1h
p3(1)=p2(i)+Q^2h
For i = 2: n
  p(i)0 = p(i − 1)1
  p(i)1 = end point of S(i − 1)
  p2(i)=p1(i)+Q^1h
  p3(i)=p2(i)+Q^2h
  Compute S(i), as described in (3).
  If θ ≥ 60° or FA ≤ 0.15, then Break
End