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Abstract
The search for the association of rare genetic variants with common diseases is of high interest,
yet challenging because of cost considerations. We present an efficient two-stage design that uses
diseased cases to first screen for rare variants at stage-1. If too few cases are found to carry any
variants, the study stops. Otherwise, the selected variants are screened at stage-2 in a larger set of
cases and controls, and the frequency of variants is compared between cases and controls by an
exact test that corrects for the stage-1 ascertainment. Simulations show that our new method
provides conservative Type-I error rates, similar to the conservative aspect of Fisher’s exact test.
We show that the probability of stopping at stage-1 increases with a smaller number of cases
screened at stage-1, a larger stage-1 continuation threshold, or a smaller carrier probability. Our
simulations also show how these factors impact the power at stage-2. To balance stopping early
when there are few variant carriers versus continuation to stage-2 when the variants have a
reasonable effect size on the phenotype, we provide guidance on designing an optimal study that
minimizes the expected sample size when the null hypothesis is true, yet achieves the desired
power.

Introduction
The frequency spectrum of genetic variants influencing susceptibility of common diseases
ranges widely from common to rare variants. Despite debates about common versus rare
variants associated with common diseases (Reich and Lander 2001; Pritchard and Cox
2002), genome-wide association studies (GWAS) have yielded reproducible associations of
common variants with a broad range of diseases (Manolio et al. 2008). Nonetheless, the
odds ratios (ORs) associated with common variants have been modest at best, often in the
range of 1.1–1.5, suggesting little clinical utility per se. Because of this, and the purging
effect of natural selection, the effects of rare variants might be much larger, with more
immediate clinical utility (Bodmer and Bonilla 2008).

The hypothesis surrounding rare variants is that a significant proportion of inherited
susceptibility for common disease is due to the summation of the effects of a series of low-
frequency variants (e.g., frequencies ranging 0.1–1%) with dominant effects (dominant
because most variants occur as heterozygous). It is also speculated that the variants act
independent of each other, representing a variety of different genes. Although individually,
or summed, the ORs for rare variants are larger than those for common GWAS SNPs (which
have minor allele frequencies >5%), say ORs on the order of 2–5 for rare variants, the
penetrance is too low (much less than 50%) to demonstrate familial clustering of disease that

© Springer-Verlag 2010

Correspondence to: Daniel J. Schaid, schaid@mayo.edu.

NIH Public Access
Author Manuscript
Hum Genet. Author manuscript; available in PMC 2013 July 26.

Published in final edited form as:
Hum Genet. 2010 June ; 127(6): 659–668. doi:10.1007/s00439-010-0811-x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



appears as a standard Mendelian segregation pattern, and too low to have reasonable power
to be detected by pedigree linkage analyses (Bodmer and Bonilla 2008).

In the search for the association of rare variants with common disease, a typical strategy is to
first screen candidate genes in a set of diseased cases, preferably enriched for rare variants
by selecting on disease diagnosis at a young age, or strong family history, anticipating that
the frequency of causal variants will be higher in selected cases than unaffected controls
(Bodmer and Bonilla 2008). Any rare variants detected in cases are then evaluated for their
frequency in an appropriate set of controls. However, this two-stage process—screening for
rare variants in cases, and then screening selected variants in controls—leads to an
“ascertainment” bias that can inflate the probability of a false-positive association, well
illustrated by Li and Leal (Li and Leal 2009). The bias comes from using the same set of
cases to screen for rare variants at stage-1 and then comparing with controls at stage-2. For
example, if the true variant frequency is rare in the population, and without association with
disease, then the two-stage process eliminates comparisons of cases that have low variant
frequencies, only bringing forward to the second stage samples for which cases have an
unusually high frequency of the rare variants, biasing upward the frequency among cases,
while leaving the controls to be unbiased. Li and Leal (Li and Leal 2009) found that the
amount of increase in Type-I error rate caused by the ascertainment bias depends on the
number of cases screened in stage-1, the ratio of cases to controls in stage-2, the number of
underlying variant sites, linkage disequilibrium among the different sites, and the variation
in the frequency of variants over different sites.

The ascertainment bias can be avoided by either using a completely different set of cases to
compare with controls at stage-2, or correcting for the ascertainment bias. Because cases can
be limited, particularly if selected for a young age at diagnosis or for a strong family history
of disease, correcting for ascertainment bias offers an appealing strategy to efficiently use
the cases.

The purpose of this paper is to present an efficient two-stage design that uses some (or all)
of the cases to screen for rare variants at stage-1, and then compares the frequency of
variants among cases versus controls at stage-2 by an exact test that corrects for the stage-1
ascertainment. The algorithm to compute the exact test is presented in the methods section,
along with a variety of simulation scenarios to evaluate the Type-I error rate and power of
the proposed methods. Results show that the ascertainment-corrected exact test does not
have the inflated Type-I error rates that others find when not correcting for ascertainment
(Li and Leal 2009). Simulations to evaluate power, however, illustrate the impact on the
power of the stage-1 design criteria. Guidance is provided for designing two-stage studies in
order to achieve a reasonable balance between stopping at stage-1 because of too few
variants detected among cases, versus continuing to stage-2 to achieve desired power when
the causal variants have an effect on disease susceptibility. To achieve this, we present an
optimal design that minimizes the expected sample size when the null hypothesis of no
differential carrier frequency between cases and controls is true, while maintaining the
desired power after accounting for the chance of stopping at stage-1.

Statistical methods
Because we assume rare variants with a dominant effect, so that almost all subjects that
carry a particular variant are heterozygous, we describe our methods according to carrier
probabilities, instead of allele frequencies. This is merely a matter of convenience, because
we could describe carriers as either heterozygous or homozygous (if the variants are not
rare), or as homozygous carriers (for a recessive effect). We use Table 1 to illustrate our
notation for data summarized by carrier status after completing both stage-1 and stage-2.
When multiple variants are measured, we combine across all variants so that a subject is a
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“carrier” if at least one variant is found, otherwise a non-carrier. Stage-1 data has x11
carriers among nd,1 cases, but continuation to stage-2 requires x11 ≥ t, where t is the
specified threshold of the required minimum number of carriers. The stage-2 sample has x21
carriers among nd,2 cases, and x31 carriers among nc controls. To account for screening for a
minimum number of carriers among cases in stage-1, we need to consider the probability of
stopping early at stage-1, based on the binomial density, which depends on the probability
that a case is a carrier (pd), t, and nd,1:

(1)

Furthermore, we can conceptualize the analysis of the complete data set as a partially
truncated binomial. The truncated binomial for stage-1 is

Note that this denominator correction is similar to that used for ascertainment correction for
pedigree analyses; Thomas and Gart (1971) give a nice summary of the link between the
truncated binomial distribution and classical methods for ascertainment correction of
pedigree segregation analyses. The stage-2 data are simply a product of binomial
distributions, with pd the carrier probability among cases and pc the carrier probability
among controls. The resulting log likelihood is

The first two lines of lnL represent the usual log likelihood for case–control data: the first
line combines the cases from stages 1 and 2. The third line of lnL is the correction for using
threshold t at stage-1 to decide whether to continue to stage-2. Although one could test the
null hypothesis that pd = pc with a likelihood ratio statistic, its distribution is not likely to be
well approximated by a chi-square distribution when any of the cell counts in Table 1 are
small, as expected for rare variants (particularly the count of carriers among controls).
Hence, we derived an algorithm to compute exact p values that account for the truncation in
stage-1.

Exact p values for 2-stage design
If there were no stopping at stage-1 (i.e., threshold t = 0), then one could combine the cases
from both stages to construct a 2 × 2 table, and compute the usual Fisher’s exact test to
compare the carrier frequency between cases and controls. Fisher’s exact test is based on
enumerating all possible contingency tables with fixed margins, and assigning to each table
its null probability based on the hypergeometric distribution. To allow for truncation, we
need to remove tables that are not possible according to the threshold, and restandardize the
remaining probabilities to sum to 1. A brief outline of our algorithm is as follows:

1. enumerate all possible 3 × 2 tables with fixed margin totals and compute their
hypergeometric probabilities; exclude 3 × 2 tables for which x11 < t;
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2. collapse the remaining 3 × 2 tables by summing the counts for cases from stage-1
and stage-2, to create 2 × 2 tables;

3. for the 3 × 2 tables that map into a collapsed 2 × 2 table, sum the probabilities of
the 3 × 2 tables to compute the probability of the collapsed 2 × 2 table;

4. standardize the probabilities of 2 × 2 tables to sum to 1; and

5. compute desired statistical tests on the enumerated 2 × 2 tables.

Some details about implementation of this algorithm are provided to help with
understanding. Because we want to keep all enumerated tables in computer memory, it is
helpful to first count the number of possible enumerated 3 × 2 contingency tables with fixed
margins. This is achieved by a recursive equation (2.1), or an approximation (3.2), of Gail
and Mantel (1977). To enumerate all possible 3 × 2 contingency tables, we use a
modification of the algorithm by Saunders (1984). Our modifications included translation
from Fortran77 to C, and forcing enumeration of all tables, even multiple tables that are in
the same “equivalence class”. Equivalence class tables occur when there are ties in the row
margin totals; permuting rows does not change row totals for these tied rows, or column
totals. So, to gain computational efficiency, Saunder’s algorithm computes only one
representative table from an equivalence class, its probability, and its multiplicity. The
probability for the entire equivalence class is the multiplicity times the probability. For our
purposes, however, when collapsing a 3 × 2 table into a 2 × 2 table, different 3 × 2 tables
within an equivalence class can give different 2 × 2 tables, so we need to be careful about
handling multiplicities when collapsing tables. That is, even though all 3 × 2 tables within
an equivalence class have the same probability, after collapsing, their resulting 2 × 2 tables
will not necessarily have equivalent probabilities, because they have different values in the 2
× 2 tables.

After all 3 × 2 tables are enumerated, along with their probabilities, we exclude 3 × 2 tables
that have cell count x11 < t. The retained 3 × 2 tables are then transformed to 2 × 2 tables by
summing the first two rows that correspond to the cases from the first and second stages,
hence creating the “usual” 2 × 2 tables for cases and controls. The probabilities of the
resulting 2 × 2 tables are computed as follows. First, the 2 × 2 tables are grouped into
identity classes (i.e., all 2 × 2 tables in an identity class are the same). The probability for an
identity class is computed as the sum, over all tables in an identity class, of the
hypergeometric probabilities that correspond to the original 3 × 2 tables. However, these
probabilities do not yet sum to 1.0, because of excluding some 3 × 2 tables. Hence, the final
step is to standardize the identity class probabilities by dividing each by the sum of
probabilities over all identity classes. This later step adjusts the truncation at stage-1.

After enumerating the possible 2 × 2 tables that adhere to the first-stage exclusion, and their
corresponding probabilities, a number of methods can be used to compute exact p values
(Agresti 1992). A two-sided exact p value for the usual Pearson’s chi-square statistic for a 2
× 2 table merely sums the exact probabilities for which the chi-square statistic for an
enumerated table is at least as large as the observed chi-square statistic, summing over all
possible m enumerated tables,

(2)

where  has value 1 if , 0 otherwise, for the ith enumerated table, and pi
is the probability of the table. To compute a one-sided exact test that favors a higher
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frequency of variants in cases than controls, we used a “signed” chi-square statistic.
Consider the 2 × 2 table in Table 2. The sign of (ad–bc) indicates direction with +1 favoring
cases over controls. Hence, a one-sided exact test is computed as

(3)

For p values analogous to Fisher’s exact tests, the two-sided p value is based on whether the
probability of an enumerated table is equal to or smaller than the probability of the observed
table,

(4)

The one-sided Fisher’s exact test p value, in the direction of cases having more variants than
controls, is based on the 2 × 2 table count a (the number of cases carrying the variant):

(5)

Simulation methods
We used simulations to evaluate the statistical properties of the two-stage design, including
the probability of stopping at stage-1, Type-I error rate, and power. These properties depend
on the sample sizes of the two stages, the threshold t for the minimum number of case
carriers at stage-1, and the carrier probabilities among cases (pd) and among controls (pc).
Although there are many scenarios that can give rise to the same values of pd and pc, they
are mathematically equivalent in terms of their statistical properties. Nonetheless, to provide
a sense of realism to our simulations, we parallel the simulation scenarios of Li and Leal
(2009).

Type-I error
To evaluate the Type-I error rate, we performed simulations for four scenarios. Scenario-1
was for a single variant with carrier frequency of either 0.01 or 0.05. Scenario-2 was also for
a single variant per subject, but incorporated heterogeneity as follows. We assumed a
heterogeneous population composed of 20 subpopulations, with the carrier frequency
varying over the subpopulations from 0.01 to 0.09, at equal increments (i.e., 0.0042). Each
subject was randomly assigned to one of the 20 subpopulations, and the corresponding
carrier frequency was used to simulate carrier status.

Scenario-3 allowed multiple independent rare variants per subject (i.e., multiple different
causal variants per subject). We assumed 20 independent variants with carrier frequencies
equally spaced between 0.005 and 0.01 (i.e., increments of 0.0005). Each subject was
simulated to carry any number of the rare variants according to the 20 independent Bernoulli
trials with differing carrier probabilities. A subject was considered a carrier if the subject
had any of the 20 variants. This is equivalent to Li and Leal’s “collapsing” method (Li and
Leal 2008), a common way to combine carriers of different variants within a candidate gene,
or set of candidate genes.
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Scenario-4 was based on simulations from a coalescent model using the ms software
(Hudson 2002). Following the approach of Li and Leal (2009), we used scaled mutation
rates Neμ = 4 or 12, with an effective sample size (Ne) of 10,000, which yielded segment
lengths with an average of 80 and 100 variants, respectively, with 20–30 of the variants
having frequencies less than 0.01. To perform the simulations, we generated 100 batches of
10,000 haplotypes for a given scaled mutation rate. For each simulation, we randomly
selected a batch of haplotypes. We then determined which markers would be selected to be
the rare variants based on the allele frequencies in the batch of 10,000 haplotypes; only
markers with frequencies less than 0.01 were candidates to be the rare variants. We selected
the number of rare variants (M) to be either 5 or 10. Next, we sampled two haplotypes with
replacement from the batch to create subjects, and then randomly assigned case/control
status. The total number of variants per subject, summed over the five or ten preselected
markers, was recorded. A subject was considered a carrier if the variant sum exceeded zero.

For each scenario, we simulated genotype data for total sample sizes of 400, 1,000, and
2,000, with an equal number of cases and controls. For each of these sample sizes, we
allowed 50, 100, or all cases to be evaluated at stage-1, with the remaining cases and all
controls evaluated at stage 2. Table 3 illustrates the study designs evaluated. All simulations
were continued until 10,000 samples were obtained for stage-2 analyses, based on the
stage-1 threshold set at 0, 1, 2, or 3. For all simulations, we report the probability of
stopping at stage-1 based on the total number of simulated datasets that stopped at stage-1
divided by the total number of simulations required to obtain 10,000 simulations accepted
for stage-2.

Power
For power simulations, the carrier status of multiple rare variants was simulated for two
scenarios. In Scenario-5, we simulated either 10 or 20 variant sites with equal frequencies
that were independently distributed in the population, with equal effect sizes (i.e., OR per
allele). Hence, subjects could carry more than one variant.

Scenario-6 simulations were for multiple rare variants (M = 10 or 20) “competing” for
disease, such that a subject could carry no more than one variant. This causes the variant
sites to be weakly negatively correlated, because carrying one variant excludes the
possibility of carrying any other variants. This approach was taken because it is frequently
observed that diseased subjects carry only one variant, yet the site of the variant can differ
across different diseased subjects (e.g., multiple mutations in BRCA1 or BRCA2 genes
responsible for hereditary breast cancer). For Scenario-6, the population probability of
carrying a variant at site i out of M possible sites, was modeled as,

where ci has values 1 or 0 according to carrier status at site i, and “any” means a subject
carries any of the possible M variants (i.e., Σci = 1). The conditional probability P(ci = 1|
any) was chosen to be skewed and sum to 1,

With P(any) = 0.05, the population carrier frequencies varied from 0.0009 to 0.009 for M =
10, and from 0.0002 to 0.005 for M = 20. For P(any) = 0.02, the population carrier
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frequencies varied from 0.0004 to 0.004 for M = 10, and from 0.000095 to 0.0019 for M =
20.

For both power scenarios, genotypes were simulated conditional on case–control status,
using Bayes’ formulas. That is,

where y has values of 1 for case and 0 for control, P(y|g) is the logistic function for disease
penetrance, and P(g) is the population unconditional probability of the genotype g. For the
logistic function,

βo is the intercept, chosen to provide a specified population disease prevalence (either 0.01
for a rare disease or 0.10 for a common disease), β represents the log OR for a specific
coding of genotypes, and x(g) represents how the genotypes were coded in the model. For
Scenario-5, x(g) is the count of the number of rare variants across all sites (ranging from 0 to
twice the number of variant sites), and β is the per-allele log OR. For Scenario-6, we
assigned ORs for each of M sites by assigning the most frequent carrier site a smaller OR
and the least frequent carrier site a higher OR; ORs in between were stepped up in equal
increments. We allowed two ranges of ORs: from 1.2 to 3 to emulate moderate effects and
from 2 to 5 to emulate strong effects.

Results
Stopping early

Detailed simulation results for each scenario are available as supplemental tables upon
request, so here we summarize the main results across the different simulation scenarios.
Figure 1 presents simulation results on the probability of stopping at stage-1 according to
carrier probabilities, continuation thresholds, and the number of cases evaluated at stage-1.
For Scenario-1, the carrier probability was fixed to either 0.01 or 0.05. For Scenarios 2–4,
the carrier probability was allowed to vary, so we present in Fig. 1 the average probability
over all simulations (little variability for Scenarios 2–3; larger variability for Scenario-4 that
depended on the mutation rate and the number of variant sites). Figure 1 illustrates that the
probability of stopping at stage-1 increases with a smaller number of cases screened at
stage-1, a larger continuation threshold, or a smaller carrier probability.

Type-I error rates
Case–control comparisons are computed only for the simulated datasets that qualify for
stage-2. For Type-I error rates, it makes sense to describe error rates conditional on
continuation to stage-2, because p values are reported in this matter. Figure 2 presents a
summary of all the Type-I error rates for Scenarios 1–4 as pairwise plots of the four exact
statistical tests given in expressions 2–5: exact chi-square two-sided (Chi2) and one-sided
(Chi1), and exact Fisher two-sided (Fisher2) and one-sided (Fisher1). This figure illustrates
that both the chi-square and Fisher exact tests have Type-I error rates less than the nominal
value of 0.05, sometimes quite conservative, which occurs when cell counts are small due to
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sample size combined with small carrier probabilities. The exact distributions for the one-
sided versus two-sided chi-square statistics are generally quite similar to each other, in
contrast to the one-sided Fisher test being more conservative than the two-sided version.
Figure 2 also illustrates that the one-sided versions of the Fisher and chi-square statistics
were identical, in contrast to the two-sided chi-square statistic slightly more conservative
than the Fisher two-sided test. Because of the general similarity of the Fisher and chi-square
statistics, we focus on the Fisher test for power comparisons.

Power
Because power depends on the probability of not stopping at stage-1 and then rejecting the
null hypothesis at stage-2, we focus primarily on unconditional power,

(6)

in contrast to conditional power that depends only on the statistical comparisons performed
at stage-2. This allows us to evaluate the stage-1 design criteria (number of cases screened
and continuation threshold) on the overall power. In contrast, the conditional power based
only on stage-2 comparisons can appear overly optimistic by not recognizing that a study
could have high probability of stopping early at stage-1. However, to choose between the
one-sided versus two-sided Fisher test, we first compared the conditional power of these two
tests over all simulations for Scenarios 5 and 6. Figure 3 illustrates that the one-sided test
was uniformly more powerful than the two-sided test for all power simulations, despite the
more conservative nature of the one-sided version. Hence, we focus on the one-sided Fisher
test for the remaining comparisons.

A number of our simulation factors influence the unconditional power, including the design
criteria at stage-1 (i.e., the choice of threshold and the number of cases screened), the
disease prevalence, the effect size (in terms of OR for carrier status), the carrier frequency,
and the total sample size. Furthermore, scenario-5 allowed subjects to carry multiple
independent variants, so the more variants, the greater the risk. In contrast, scenario-6
allowed subjects to carry only one variant, so increasing the number of variants did not have
a large impact on power. To illustrate our main findings, we present in Fig. 4 simulation
results from scenario-5, with an OR = 2. The top four panels, with only 50 cases screened at
stage-1, illustrate that the unconditional power dramatically decreased as the threshold
increased from zero to three; this impact was larger when only 10 variants were simulated in
contrast to 20 variants. Increasing the number of variants increased both the probability of
carrying any variant and the disease risk. The bottom four panels of Fig. 4 illustrate greater
unconditional power and less influence of the threshold when a larger number of cases are
screened at stage one. For the columns of panels in Fig. 4, prevalence alternates between
0.01 and 0.10; there was slightly greater power for smaller disease prevalence, albeit
inconsequential. Similar results were found for an OR = 5, and for scenario six (results not
shown).

Design considerations
Our simulation results indicate that choosing too few cases (nd,1) at stage-1, or too large a
continuation threshold (t), decreases the chance of continuing to stage-2. To further evaluate
the impact of stage-1 design criteria on the probability of stopping early, we used the
binomial density to compute the probability of stopping early (expression 1). Figure 5
illustrates the probability of stopping early as it depends on the carrier probability, the
threshold, and the number of cases screened at stage-1. Because the stopping probabilities
varied broadly, Fig. 5 plots the number of cases on the log10 scale, and the stopping
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probabilities are given as contour lines, in step-sizes of 0.10. The lines are bracketed by 0.10
(blue line) and 0.90 (red line). The panels in Fig. 5 illustrate that when the carrier frequency
is quite small (0.001), there is an extremely high probability of stopping early, even with
over 1,000 cases. If the carrier frequency is 0.01, then screening 200–400 cases with a small
threshold would likely assure only a small chance of stopping early, although larger
thresholds increase the probability of stopping early with less than 200 cases. If the carrier
frequency is at least 0.05, then screening 100 cases with a threshold of 1–4 would likely
suffice.

Stopping early is good when the null hypothesis is true, but bad when the alternative
hypothesis is true. Hence, it is desirable to choose a combination of nd,1 and t that maximize
the chance of stopping early under the null, but minimize the chance under the alternative.
Quality-control studies and clinical trials often use two-stage designs, and we adopt their
approach by defining a design to be optimal if it achieves the desired unconditional power
while minimizing the expected sample size under the null hypothesis. As an approximation,
we use the following strategy to find an optimal design. For a specified carrier frequency
among controls (pc) and OR, the probability that a case would be a carrier is

Conditional power can be determined by usual methods to compute power for two
binomials, once the total sample size N and the desired Type-I error rate, α, are specified.
Recognizing that unconditional power will be less than conditional power, we consider a
range of N such that conditional power is larger than the desired power. For example, if the
desired unconditional power is 90%, we determine N to achieve conditional power of 91–
99%, in steps of 1%. For each value of N, we evaluate the probability of stopping under both
the null and alternative hypotheses for all combinations of nd,1 < N/2 and t ≤ nd,1. From this
information, we can compute expected sample sizes, under the null, for all possible designs,

as well as the unconditional power (expression 6). The optimal design is then determined by
finding the minimum of E[N|null] among all designs that have unconditional power at the
desired level. Similar to E[N|null], we also compute the expected sample size under the
alternative.

For illustrative examples, we considered two scenarios. For the first, we assumed that the
carrier frequency among controls is 0.01, and for the second, 0.05. For both scenarios, we
desired unconditional power of 90% for an OR = 5. Table 4 presents optimal designs for
these two scenarios, along with the stopping probabilities and expected sample sizes under
the null and alternative hypotheses. For Design-1, 1,058 total subjects are required, with 144
cases screened at stage-1. If at least four of these stage-1 cases carry variants, then the study
proceeds to stage-2 to screen all cases and controls. When the null hypothesis is true, there is
a 94% chance of stopping at stage-1, in contrast to only 8% chance if the alternative is true.
The expected total sample size is 196.48 if the null is true, but 984.24 if the alternative is
true. Design-2, for a carrier frequency of 0.05, requires 37 cases at stage-1, but a threshold
of 5 to continue to stage-2.
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Discussion
We present an efficient two-stage design that uses some, or even all, of the cases to screen
for rare variants at stage-1, and then compares the frequency of variants among cases versus
controls at stage-2. Our developed exact test corrects for the stage-1 ascertainment,
providing unbiased, or even conservative, Type-I error rates. This two-stage exact test is
similar in spirit to Fisher’s exact test for contingency tables, and in fact is identical to
Fisher’s exact test when there is no stopping rule for stage-1 (i.e., threshold t = 0). Although
we evaluated an exact chi-square statistic, it was quite close to the Fisher’s exact test for our
simulations, suggesting that Fisher’s one-sided exact test, corrected for ascertainment, is a
good choice.

Our simulations, and analytic evaluations, showed how the probability of stopping at stage-1
increases with a smaller number of cases screened at stage-1, a larger continuation threshold,
or a smaller carrier probability. Our simulations also showed how these factors impact the
unconditional power—the probability of not stopping times the conditional power at stage-2.
Other factors which influenced our simulated power, as expected, were disease prevalence,
the assumed genetic architecture (i.e., number of causal variants; single vs. multiple causal
variants), the magnitude of effect size, and the total sample size.

There is a trade-off between stopping early when the null hypothesis is true, implying few
cases that carry any variants, versus continuation to stage-2 when the alternative hypothesis
is true. Stopping early can reduce sequencing efforts, reducing costs of a study, but at the
price of potentially missing true causal variants. We propose choosing a combination of the
number of cases screened at stage-1 and the continuation threshold in order to minimize the
expected sample size when the null hypothesis is true, yet assure the desired unconditional
power.

Our proposed strategies offer practical solutions to design and analyze studies that first
screen disease cases for genetic variants, and then screen selected variants in a larger
number of cases and controls if a sufficient number of variants are detected at the first stage.
The simplicity of the proposed two-stage design is appealing, although greater efficiency
could be achieved by screening sequentially only one case at a time. Although sequential
screening might be impractical when assaying a relatively small number of candidate genes
because batch assays are more efficient, sequential screening might offer greater benefits for
costly whole genome sequencing.

Software
The software “trex” (for truncated exact test) is available from our Mayo web site: http://
mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm.

Hudson’s ms software: http://home.uchicago.edu/~rhudson1/source.html.
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Fig. 1.
Stopping probability at stage-1 for simulation scenarios 1–4 according to number of cases
screened at stage-1 (x-axis) and continuation threshold (labels 0–3 in panels). Carrier
probability is the probability of cases in stage-1 carrying any variant. The larger number of
lines in scene-4 represents the different mutation rates and the number of variant sites
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Fig. 2.
Type-I error rates over all simulation scenarios 1–4 for Chi-square exact tests and Fisher’s
exact tests, accounting for ascertainment based on stage-1 screening of cases
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Fig. 3.
Conditional power over simulation scenarios 5–6 for Fisher’s exact tests, accounting for
ascertainment based on stage-1 screening of cases
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Fig. 4.
Unconditional power for representative simulations (scenario-5, OR = 2) illustrating impact
on power of threshold at stage-1 (labels 0–3 in panels), number of cases screened at stage-1
(50 in top panels; 100 in bottom panels), disease prevalence (Prev), and number of variants
(10 or 20). x-axis “N-subj” is the total number of subjects
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Fig. 5.
Contour plots of the probability of stopping at stage-1 according to the continuation
threshold (x-axis) and the number of cases screened at stage-1 (y-axis). The lines represent
stopping probability contours in increments of 0.1, ranging from 0.1 (blue line) to 0.9 (red
line)
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Table 1

Table of counts for data after completing Stage-2

Carrier Non-carrier Total

Cases

 Stage-1 x11 x12 nd,1

 Stage-2 x21 x22 nd,2

 Controls x31 x32 nc

Total c1 c2 n
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Table 2

2 × 2 Table for case–control carrier status

Status Carrier Non-carrier

Cases a b

Controls c d
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Table 3

Study designs evaluated

Stage-1 Stage-2 Total

No. of cases No. of cases No. of controls

50 150 200 400

50 450 500 1,000

50 950 1,000 2,000

100 100 200 400

100 400 500 1,000

100 900 1,000 2,000

200 0 200 400

500 0 500 1,000

1,000 0 1,000 2,000
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Table 4

Optimal design options for OR = 5

Design parameters Design-1 Design-2

Prob carrier, controls 0.01 0.05

Total N 1,058 274

Powerconditional 0.98 0.99

Powerunconditional 0.90 0.90

Stage-1 cases (nd,1) 144 37

Stage-1 threshold (t) 4 5

P(stop|null) 0.94 0.96

P(stop|alt) 0.08 0.09

E[N|null] 196.48 45.52

E[N|alt] 984.24 252.48
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