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Abstract

Introduction: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a
small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce
profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial
genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how
genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations
affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear
associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to
examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic
mutation rates.

Results: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but
that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid
usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer
specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy;
genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes
with higher AAUB.

Conclusion: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial
genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid
usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this
study.
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Introduction

The base composition in prokaryotes sampled from GenBank

varies from 25% to 86% AT (Anaeromyxobacter dehalogenans strain

2CP-C and Candidatus Zinderia insecticola strain CARI, respec-

tively). In some bacteria as much as 1% of the genomic base

composition can change due to mutations in as little as 1400 years

[1] resulting in a considerable impact on protein evolution due to

the high fraction of protein coding DNA in microbial genomes [2].

Therefore, one of the central questions in prokaryotic evolution is

what drives the direction of these mutations [3]? More precisely, is

there a mutational bias towards AT-richness or GC-richness? If so,

how does phylogenetic ‘inertia’ affect the mutational direction and

to what degree are environmental factors responsible? How is all

this affecting protein evolution? Laboratory experiments, statisti-

cal- and bioinformatical methods suggest that mutation towards

AT-richness in prokaryotes may be due to loss of certain repair

genes [4] and/or lack of selective constraints on the organisms

usually termed collectively as selective pressures [5–7]. However, it

has been more complicated to resolve what drives mutation in the

direction towards GC-richness. Several findings indicate that

microbial genomes become more GC-rich because they are

subjected to stronger selective pressures [8,9]. Gene conversion

may result in GC-enriched genes which have been found to have

elevated expression rates resulting in increased fitness (the ratio of

viable offspring over total offspring for a particular species) [1].

GC-rich genomes have also been found to consist of less ‘random’

oligonucleotide frequency distributions [10–12]. In the present

work we explore how these mutational biases are associated with

both genomic amino acid usage bias and codon usage bias, which

we define as the over-expression, or under-expression, of one or

several specific amino acids or codons over others (hence, not to be

confused with codon adaption indexes such as CAI [13]). We term

these measures Amino Acid Usage Bias (AAUB) and Codon Usage

Bias (CUB) respectively, and both are identically calculated using

the empirical standard deviation on all amino acid- and codon
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(trinucleotide) frequencies for each genome. High values of AAUB

(or CUB) is interpreted as one or more amino acids (or codons)

being preferred (or avoided) over the remaining, while low values

of AAUB (or CUB) is understood as a more balanced genomic

amino acid (or codon) preference. In addition, we discuss possible

influences on amino acid- and codon-usage from purifying

selection, random mutations and selective pressures in general

using the concept of relative entropy [11]. This was carried out by

first downloading 2032 microbial genomes from GenBank (See

Table S1) (http://www.ncbi.nlm.nih.gov/genome/) and then

analyzing both amino acid- and codon frequencies using principal

component analysis (PCA). Furthermore, we applied a General-

ized Additive Mixed-effects Model (GAMM) [14,15] to analyze

explanatory variables such as genomic %AT, genome size, relative

entropy, AAUB and CUB, many of which exhibiting non-linear

trends as well as hierarchical structures of dependency ranging

from strong within species to weak within phyla.

Results

Amino Acid Usage in Prokaryotes
Whole genome amino acid frequencies were calculated from the

2032 microbial genomes downloaded from NCBI GenBank.

These amino acid frequencies were grouped using hierarchical,

complete linkage clustering with Euclidean distance. The outcome

of the cluster analysis can be observed from the heatmap in

Figure 1, where the amino acid frequencies are colored with

respect to occurrence; dark color - low frequency, light color - high

frequency. We see from Figure 1 that amino acid usage is strongly

linked with genomic %AT. A corresponding principal component

analysis (PCA) carried out on the amino acid frequencies (see

Figure 2) revealed that the first component explained over 80% of

the variation in the data, indicating substantial similarity in amino

acid usage between prokaryotes. A regression analysis between the

first principal component and genomic %AT revealed an

association of R2 = 0.9 (p,0.001), while a regression analysis

between the second principal component and phyla resulted in an

association of R2 = 0.74 (p,0.001). Hence, while the first principal

component to a large extent described genomic %AT, the second

component described phylogenetic influence. From the heatmap

clustering and PCA we found that Isoleucine (I), Lysine (K),

Phenylalanine (F), Asparagine (N), Tyrosine (Y), and to a lesser

degree Serine (S) and Glutamic acid (E) were the most over-

represented amino acids in AT-rich genomes (first principal

component). Of these I, F and Y are hydrophobic, while K and E

are positively and negatively charged, respectively, and S is

uncharged. Lysine (K) was found to be the most over-represented

amino acid in AT-rich genomes using PCA. In GC-rich

prokaryotes we found that Glycine (G), Valine (V), Arginine (R),

Proline (P), Alanine (A), and, to a lesser extent, Threonine (T),

Histidine (H) and Tryptophan (W) were the most over-represented

amino acids. Of these, V, A, W are hydrophobic, T is uncharged,

and R and H are positively charged. The PCA analysis indicated

that Alanine (A) was the most over-represented and characteristic

amino acid for GC-rich bacteria. Cysteine (C), Leucine (L),

Methionine (M), Aspartic acid (D) and Glutamine (Q), were found

to be more evenly distributed in both AT- and GC-rich bacteria,

while C, Q, L and D tended more towards the second principal

component (phylogenic influence), indicating that these amino

acids are more preferred by certain phylogenetic groups than

others (see Figure 1). L and M (not visible, placed in the middle of

both principal components) are hydrophobic, Q is uncharged,

while D has negative charge and appears to be slightly more over-

represented in GC-rich than in AT-rich genomes.

Codon Usage in Prokaryotes
Figure 3 shows that there is a strong association between

genomic codon frequencies and AT content. This is also supported

by regression analysis fitted with genomic %AT for all prokaryotes

as the response variable and all 64 codon frequencies as predictor

variables. A positive linear association was found between genomic

%AT (p,0.001, R2 = 0.97) and the following codons: AAA

(Lysine), AAG (Lysine), AAT (Asparagine), AGA (Arginine),

ATT (Isoleucine), GGG (Glycine), GCT (Alanine), GTT (Valine),

CGA (Arginine), CCC (Proline), TCA (Serine), TCC (Serine),

TCT (Serine), TTT (Phenylalanine), all p,0.05. A negative

association was only found for the codon CTC (Leucine). PCA

performed on the codon frequencies (See Figure S1) revealed that

20 components described 99% of the variation, one of which

explained 80%. Similar to the PCA carried out for amino acids the

first principal component exhibited a strong association with

genomic %AT (R2 = 0.96, p,0.001), while the second principal

component was associated with phylogeny (R2 = 0.35, p,0.001),

although considerably less than what was observed for the amino

acid based PCA (R2 = 0.74).

Relative Entropy as a Measure of Cumulated Mutations
The concept of relative entropy is a cornerstone in information

theory where it designates the divergence of one quantity

measured against another [11,16]. We use relative entropy to

assess the information potential of codon (trinucleotide) frequen-

cies. Since we are interested in the information potential of

genomic codon frequencies we calculate the distance between

observed codon frequencies and estimated codon frequencies with

the Kullback-Leibler divergence (KL) (see Material and Methods

section). The estimated codon frequencies are calculated using

genomic nucleotide frequencies and represent therefore what we

would expect if the neighboring nucleotides in codons were

completely independent and determined only by average genomic

%AT. Increased KL divergence denotes bias and is less likely to

happen by chance as opposed to decreased KL divergence, which

is more likely to happen by chance. Somewhat simplified and

assuming mutations are random, KL can be thought of as a

measure of genomic mutations accumulated over generations and

time. We interpret KL to be a measure that is inversely

proportional to the amount of acquired genomic mutations in

the sense that decreasing KL is interpreted as increased rates of

accumulated mutations under relaxed purifying selection. Since

purifying selection removes deleterious mutations [17] it is

reasonable to assume that species having been subjected to strong

purifying selection have higher KL than species who have not.

However, since loss of specific DNA repair genes like mutM and

mutY have been associated both with increased mutations [4] and

higher levels of genomic %AT, directly equating the KL measure

with selective pressure may be misleading. It has been argued that

the presence of specific tRNA genes may exert decisive influence

on codon usage, and therefore also KL as discussed here, but this

is controversial [18,19].

The Regression Models
To examine differences between relative entropy as measured

using KL, AAUB, CUB and genomic %AT, we fitted several

regression models. Since many of the above-mentioned factors

were connected in a non-linear way and closely related organisms

tend to have many similar properties causing cluster effects

standard regression models could not be used. For example, some

organisms are of more medical, commercial and scientific interest

than others. These organisms, and their closely related species and

strains, tend to be sequenced in larger numbers than organisms of
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lesser interest and statistical analysis involving such organisms may

result in inaccurate regression models due to hierarchical

clustering effects. For instance, the model organism Escherichia coli,

had at the time of writing (October 2012) 54 fully assembled

strains available at Genbank (not including 8 Shigellas), while

another model organism, Bacillus subtilis, only had five strains

available. Further, taxonomic inference between different strains

and species can also be challenging; while the a-Proteobacterial

Figure 1. Heatmap of amino acid usage. The heatmap shows amino acid frequencies taken from 2032 bacterial genomes. Light colors represent
higher frequencies while darker colors represent lower frequencies. The red and blue colors on the top bar represent GC content, where dark red and
blue indicates AT- and GC-rich genomes, respectively. Genomes having GC/AT content close to 50% are represented by lighter grey colors. The
bottom bar shows colors designating each genome’s phylum, which are detailed in the figure.
doi:10.1371/journal.pone.0069878.g001
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genus Brucella consist of similar species [20], the Cyanobacterial

species Prochlorococcus marinus vary greatly at the strain level [21]. In

addition, although bacterial phyla like the Gram-positive Firmicutes

and Actinobacteria are predominantly AT- and GC-rich, respec-

tively, others like a- and c-Proteobacteria contain species with a wide

range of AT/GC-richness. Hence, since standard regression

models assume somewhat independent observations, similar

genomic properties within species, genera and phyla as described

above can induce bias into the models, resulting in erroneous

conclusions. A class of regression models collectively termed

mixed-effects models [22] can, however, account for variance

differences between groups such as species, genus or phylum.

Since groups having a hierarchical structure can also be modeled

using mixed effects regression we considered species, genus and

phylum, respectively as independent levels in a hierarchical

structure assuming variance to be similar within but different

between levels. Similar levels of genomic %AT within species,

genus and phylum, respectively were modeled as a random slope

effect thereby accounting for progressive differences within each

level. In other words, we assume that AT content is more similar

within species, then genera and finally phyla. One class of

regression models, called Generalized Additive Mixed-effects

Models (GAMM) [14,15], can handle non-linear associations

and mixed effects modeling, and below we demonstrate the use of

such models to examine associations between AAUB, CUB,

genomic %AT and relative entropy. The regression models

goodness-of-fit were assessed using Akaike’s Information Criterion

(AIC) [23].

The Link between Amino Acid and Codon Usage Bias
We examined the link between codon frequency bias (CUB) and

amino acid frequency bias (AAUB) for 2032 genomes (2152

chromosomes) with all plasmids removed. Figure 4 shows a

GAMM regression with AAUB for each chromosome as the

response and CUB as the only predictor, modeled using a

smoothing spline. The left panel shows that there are considerable

clustering effects due to greater similarity between phylogenetically

close organisms. The right panel is the same regression model but

with phylum, genus and strain added as hierarchical random

effects with respect to AT content. It can be seen that the non-

specified cluster effects have been reduced considerably. Further-

more, we found a clear, but weakly non-linear, association

between AAUB and CUB. The non-linearity of the association

indicates that there are fundamental differences between AAUB

and CUB. Indeed, Figure 5 shows that AAUB (right panel) is more

asymmetrically distributed with respect to genomic %AT as

compared with CUB (left panel), which is more evenly distributed

across AT- and GC- rich genomes. The marked trailing genomes

that can be seen from Figure 5 are all strains of the insect symbiont

Candidatus Carsonella ruddii, an organism known to have one of

the smallest prokaryotic genomes (,160 kb), and Candidatus

Zinderia insecticola (also an insect symbiont) which has a slightly

larger genome than Candidatus Carsonella ruddii and marginally

higher AT content (86.5% AT compared to 86% AT for

Candidatus Carsonella). An additional outlying genome can also

be observed; the genome belongs to another insect-symbiont,

Candidatus Hodgkinia cicadicola, which is a 58.4% GC a-

Proteobacterium with the smallest bacterial genome known to date

(,144 kb). To examine which phylum had the highest and lowest

AAUB we performed a standard ANOVA/linear regression type

analysis which revealed that for bacterial phyla containing more

than 20 species, Bacteroides (93 species) and Firmicutes (424 species)

had the lowest and the second lowest average AAUB, respectively,

while Actinobacteria (214 species) and b-Proteobacteria (169 species)

had the respectively highest and second highest AAUB. The

archaeal phylum Halobacteriales (21 species) had an average AAUB

second only to the bacterial Actinobacteriales (214 species).

Relative Entropy, Amino Acid Usage Bias and Genomic
%AT

To examine KL in all assembled prokaryotes we fitted a

GAMM regression model with KL as response and both genomic

%AT and AAUB as predictors, with phylum, genus and species as

hierarchical random effects and AT content as a random slope

effect. Figure 6 show the best model with AT content modeled

using a smoothing spline and AAUB as a linear effect with the

hierarchical random effects included. A considerable improvement

in goodness-of-fit was observed from the AIC statistic with the

inclusion of hierarchical random effects as compared to the model

without random effects (AIC = 211697 with random effects

compared to AIC = 29460 without). KL was found to decrease

with increasing AT content, meaning that the genomic codon

frequencies become more randomly distributed as genomes

become progressively more AT rich. KL was found to increase

significantly (p,0.001) with respect to AAUB, meaning that

relative entropy and amino acid usage bias are positively

associated such that genomic amino acid usage becomes more

biased with increasing KL. A gross simplification and generaliza-

tion of these results, for illustrative purposes, would be that AT-

rich genomes have a more random base composition, due to

accumulated mutations under relaxed purifying selection, than

GC-rich genomes, i.e. AT-rich genomes contain more ‘‘noise’’

while GC-rich contain more ‘‘signal’’. This may be due to GC-rich

genomes having, on average, been subjected to stronger purifying

selection than AT-rich genomes. Finally, it should be noted that

GAM(M) regression carries out a back-fitting procedure implying

that models are progressively fitted using all predictors as long as

optimizations are possible. This procedure includes transforming

Figure 2. Principal component analysis plot. The plot shows two
principal components resulting from a principal component analysis
performed on the amino acid frequencies taken from 2032 bacterial
genomes. The first principal component (PC1) was strongly associated
with genomic %AT (decreasing left to right), while the second principal
component (PC2) was associated with phyla.
doi:10.1371/journal.pone.0069878.g002
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the response, which is what is seen for AAUB and genomic %AT

regressed against KL in Figure 6.
Discussion

Codon and Amino Acid Frequencies in Microbial
Genomes

The principal component analysis applied to whole genome

amino acid- and codon frequencies on all 2032 genomes indicated

that the first two components were strongly associated with

Figure 3. Heatmap of codon usage. The heatmap shows codon frequencies from 2032 bacterial genomes. Light colors represent higher
frequencies while darker colors represent lower frequencies. The red and blue colors on the top bar indicate GC content, where dark red and blue
represents AT- and GC-rich genomes, respectively. Genomes having GC/AT content close to 50% are represented by lighter grey colors on the top
bar. The bottom bar shows colors indicating each genome’s phylum, which are described in the figure.
doi:10.1371/journal.pone.0069878.g003
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genomic %AT and phyla. While the association between genomic

%AT and the first principal component was similar for both

amino acid- and codon frequencies (R2 = 0.9 and R2 = 0.96,

respectively), the association between the second principal

component and microbial phyla differed considerably. Indeed,

phyla explained 74% of the observed variance from the second

principal component of the amino acid based PCA, but only 35%

of the codon based PCA. Hence, phyla explained approximately

39% more of the variance in the amino acid frequencies than in

the codon frequencies, indicating that genome wide amino acid

frequencies contain a substantially stronger phylogenetic signal

than codon frequencies. An asymmetric distribution of genome

wide amino acid frequencies can also be observed from the PCA in

Figure 2 where the amino acids typically found in AT-rich

microbes (left part of horizontal axis in Figure 2) center more

around the horizontal, genomic %AT associated principal

component (PC1), while the amino acids predominantly found

in GC-rich microbes (right part of horizontal axis in Figure 2) are

visibly more distributed along the vertical principal component

(PC2) associated with phylogeny. The PCA plot thus indicates that

phylogeny is more strongly influencing amino acid usage in GC-

rich microbes than in AT-rich and that AT content is influencing

amino acid usage more in AT-rich than in GC-rich microbes.

AAUB is differently Distributed in AT- and GC-rich
Microbial Genomes

The observed almost linear relationship between CUB and

AAUB as observed in Figure 4 was expected, since codons code for

amino acids (albeit in a degenerative manner). With respect to

base content, we see from Figure 5 that AAUB differs between

AT- and GC-rich genomes. This means that the strongest bias in

amino acid usage is found in species with low AT content, which is

supported by numerous studies [24–27]. There are now many

indications that mutations in prokaryotes are generally AT-biased,

meaning that in absence of selective pressure prokaryotic genomes

(and possible eukaryotes) become more AT-rich [5]. It has also

been noted that organisms with AT-rich genomes in general have

less biased amino acid usage, due to lack of selective constraints

[24] which is also supported by the decrease in AAUB we observe

for AT-rich prokaryotes. Many AT-rich bacteria, from several

phyla, are often obligate intracellular organisms living in small

populations, harboring genomes that are seldom recombined and

Figure 4. Amino acid usage bias versus codon usage bias. The Figure shows a GAM regression with amino acid usage bias on the y-axis
(AAUB) as response regressed against the smooth of codon usage bias (CUB) on the x-axis. The dots represent the residuals together with the
smoothed regression line. Both left- and right panels represent the same model, but the right panel is based on a GAMM model where strain, genus
and phylum, with respect to AT content, are included as hierarchical random effects.
doi:10.1371/journal.pone.0069878.g004

Figure 5. Codon and amino acid usage bias versus genomic %AT. The panels show codon and amino acid usage bias (vertical axis, left and
right panel, respectively) plotted against genomic fraction of AT (horizontal axis) for 2032 genomes. The blue line shows what would be expected if
the codon and amino acid usage bias were perfectly symmetrical for AT and GC-rich genomes.
doi:10.1371/journal.pone.0069878.g005
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often lack repair genes [6]. Nevertheless, from our data, reduction

in AAUB appears to be a general trend linked to base composition

and, as noted above, in support of recent and similar work on the

subject.

Factors Influencing Base Composition
From a purely statistical point of view both AT- and GC-rich

genomes have access to the same number, although different

types, of codons and amino acids, but from Figure 5 it can be seen

that there are substantial differences in amino acid usage bias

between AT-rich and GC-rich organisms. As has been noted

previously, there is an association between genomic %AT and the

environment the organism is isolated from [28–30]. As mentioned

above, endosymbionts and intracellular bacteria are predominant-

ly AT-rich. GC-rich bacteria, on the other hand, are often found

in more versatile environments, having larger genomes with more

genes than AT-rich bacteria, ultimately reflecting different

selective pressures [31]. This asymmetry between genomic %AT

and protein evolution has been noted before; indeed hydropho-

bicity values linked to the secondary structures of proteins

correlate with GC content [25,32]. Moreover, proteins of GC-

rich bacteria have been found to be less susceptible to misfolding,

but more prone to unfolding [27]. AT content was also found to be

linked with population size in the sense that AT-rich bacteria were

living in small population sizes while GC-rich bacteria were

usually of intermediary population size [33].

Relative Entropy and Selective Pressures
The GAMM regression shown in Figure 6 demonstrates an

association between AT content and AAUB on one side and

relative entropy, as measured using the Kullback-Leibler diver-

gence, on the other. Since the KL measure estimates codon

frequencies using only genomic nucleotide frequencies, the

estimated codons, which are compared against the observed

codons, reflect base composition in the respective genome only,

and assume complete independence between the neighboring

nucleotides in each codon. Hence, we see from Figure 6 that the

neighboring nucleotides in codons become progressively more

independent as genomic %AT increases. The dependence of the

neighboring nucleotides in codons has been readily asserted and

measured [34], therefore we consider low relative entropy (KL) to

indicate that the species’ genome contains more cumulated

mutations, since low relative entropy indicates more random

codon frequencies, something we would expect if the mutations

would be completely independent and random. It should be noted

that although relative entropy decreased with increasing AT

content, even organisms with low KL divergence have far from

random codon frequencies. Therefore, decrease in amino acid

usage bias (i.e. a wider preference for amino acids) and increase in

genomic %AT is more likely caused by mutations under relaxed

purifying selection due to the genome-wide inherent randomness

in the estimated codon frequencies. These statistical associations

are not irrefutable truths but trends as can be seen from figures 5

and 6. The route leading less AT-rich free-living and/or

facultative symbiotic bacteria to become more AT-rich obligate

intracellular bacteria with small genomes in small populations has

been inferred for many species from many different phyla

[2,6,26,35,36]. Assuming that genome reduction may be a

consequence of increased mutation rates we (GAMM) regressed

KL against genome size, but found no association (p,0.144).

Recombination is rare between obligate intracellular bacteria, and

most such organisms seem to get by with what is provided by the

host [31]. Therefore genes that produce proteins that are not

essential are eventually shed [26]. Small, AT-rich populations

have proteins that are hydrophilic, but, as was noted above,

hydrophobicity changes with genomic %AT. Going from AT-rich

to GC-rich and larger populations, proteins from prokaryotes

become progressively more hydrophobic which points to increased

selective pressure [27]. A previous study conducted by some of us,

found that KL estimated from the DNA sequences of plasmids and

phages was, in accordance with microbes, associated with AT

content, but exhibited on average significantly lower KL than

Figure 6. GAMM regression model of KL against AT content and AAUB. The panels show a GAMM regression model with relative entropy
(KL) as response with genomic %AT and amino acid usage bias as predictors (left and right panels, respectively). Strain, genus and phylum have
additionally been included as random effects with respect to genomic %AT. The dots represent the model residuals with respect to each predictor
(AT content and AAUB) together with the spline estimated regression line. The shaded area surrounding the regression line indicates an interval of
two standard errors.
doi:10.1371/journal.pone.0069878.g006
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microbes, with plasmids having the lowest KL of all [11]. We

therefore speculate that KL differences may be maintained by the

sum of selective pressures the organism has been subjected to over

generations and manifested through genomic %AT and amino

acid usage bias, since proteins are in fact communicating with the

extracellular environment [25]. Put more simply, evolution of AT-

rich bacterial genomes appears to have been progressively more

left to chance and, conversely, bacterial genomes with high %GC

appears to have been better conserved and more strongly

subjected to purifying selection since genomic codon frequency

estimations became progressively more inaccurate with increasing

%GC. What forces could be responsible for the more biased codon

frequencies in GC-rich bacteria cannot be stated with certainty,

although repeated purging of deleterious mutations (purifying

selection) may at least explain some of the observed increase in

AAUB [17]. In addition, several other studies have reported that

GC-rich bacteria are often found in soil [3,37]; temperature and

oxygen requirement may [38,39] (or may not [38,40]) have an

impact on GC content, the availability of nitrogen [41],

population size and hydrophobicity [27] and rate of gene

expression [1] have all been associated with elevated levels of

genomic %GC in microbes. Gene regulation has also been found

to be more complex in increasingly larger genomes, also

correlating with genomic %GC [42]. Reva and Tümmler [10]

found a similar association between tetranucleotide frequencies

and genomic %GC and suggested that it could be due to the

increased energy required to stack and de-stack GC-rich

sequences, which was also pointed out by Rocha and Danchin

in a previous study [3].

Conclusions
We found that amino acid usage was strongly associated with

genomic %AT but that phylogeny appeared to exert a stronger

influence in GC-rich microbes. Furthermore, our results indicate

that whole genome based amino acid frequencies carried a

substantially stronger phylogenetic signal than codon frequencies.

An asymmetry in amino acid usage bias between AT- and GC-

rich genomes was also detected and this asymmetry was found to

be associated with relative entropy in the sense that relative

entropy was found to increase with amino acid usage bias. Since

closely related organisms tend to differ less with respect to base

composition than more distantly related species, we propose the

use of GAMM to circumvent the assumption of independence and

linearity in standard regression analysis. The negative association

found using GAMM regression between relative entropy and

amino acid usage bias indicate that genomic %AT might be an

indicator of the selective constrains. However, since the loss of

specific repair genes increases the number of cumulated mutations

and genomic %AT, regardless of the selective pressure the species

has been subjected to, establishing a direct causative link with

relative entropy is at this stage premature. Our findings also

support that genomic %AT in microbes is not independently

associated with the environment, but is additionally conditioned

on phylogeny in the sense that large differences in genomic %AT

between organisms living in similar habitats may be due to large

genomic %AT differences in their respective ancestors [43].

Nevertheless, to establish a more firm causative relationship

between selective pressures, base content and amino acid usage in

microbes more research is needed.

Materials and Methods

All 2032 genomes and corresponding open reading frames were

downloaded from NCBI Genbank (http://www.ncbi.nlm.nih.

gov/genome/) accessed October 2012 (see Table S1). All plasmids

were removed. In-house scripts were used to estimate all factors

discussed (AAUB, CUB, AT, size, KL, etc.) and are available upon

request.

Measurement of AAUB and CUB
Scripts were written to estimate amino acid frequencies from

protein files and codon frequencies from DNA ORF files. Usage

bias for both amino acids and codons were calculated as the

empirical standard deviation of the resulting 20 and 64

frequencies, for each genome, respectively:

BAAUB=CUB(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~1

(xi{mAAUB=CUB)2

s

where n = 20/64 depending on whether amino acid- or codon

frequencies are used. xi and m designates amino acid-/codon-

frequency and mean frequency, respectively. The statistical

distributions of both genomic codon- and amino acid frequencies

were examined using distributional plots for several genomes

(including the most AT- and GC-rich genomes) and all cases

examined were found to be approximately normally/symmetri-

cally distributed.

Statistical Analyses
All statistical analyses were performed with the free statistical

language R [44] (‘‘http://www.R-project.org/’’). Generalized

additive mixed-effects regressions were performed using the

packages ‘‘gamm4’’ and ‘‘lme4’’ [45,46].

The codon- and amino acid frequency heatmaps were created

using the ‘‘heatmap’’ command in R, which performed hierar-

chical clustering with ‘‘complete’’ linkage (focusing on the farthest

neighbors for robustness) and ‘‘Euclidean’’ distance. PCA was

carried out using amino acid- and codon frequencies and

estimated with a correlation matrix using the ‘‘vegan’’ package

[47]. Standard linear regression was carried out between the two

first principal components and genomic %AT and phyla,

respectively.

Codon usage versus AT content was examined using linear

regression with genomic %AT for each genome i as the response

(y) with each corresponding codon frequency (x1,…,x64, 64

‘‘codons’’ in total) as predictors and the parameters

bm(0#m#64), (m = 0 for intercept) to be estimated. e is the

normally distributed model error:

yi*b0zb1x1izb2x2iz:::zb64x64iz"i

To assess the association between AAUB and CUB we used a

generalized additive model with AAUB for each genome i as the

response (y) and the corresponding CUB (x) as the predictor

modeled using a smoothing spline (s(.)):

yi*b0zs xið Þz"i ð1Þ

Again e designates the model error term and b0 the intercept. In

addition, a hierarchical mixed effects model was made (from top to

bottom) with strain/genus/phylum (j,k,l, respectively) as random

hierarchical effects (Z), all with respect to genomic %AT (w),

making the model in practice a hierarchical random slope model:
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yijkl*b0zs xijkl

� �
zZjklwijklz"ijkl ð2Þ

The difference between models (1) and (2) can be seen in

Figure 4. The comparison of AAUB between phyla was carried

out using a simple linear regression model with AAUB for each

genome i as response (y) and a categorical predictor xj, consisting of

j = 34 different phylogenetic groups and corresponding vector of

estimated parameters b1, with error e and intercept b0:

yij*b0zb1xjz"ij

Relative entropy was measured using the Kullback-Leibler

divergence of genomic codon frequencies versus estimated codon

frequencies [11], i.e. Fi(XYZ),Fi(X)Fi(Y)Fi(Z), Fi being a frequency

function for a genome i and X, Y and Z respective nucleotides {A,

G, C, T} of a codon XYZ:

KLi~
X
XYZ

Fi(XYZ)log2
Fi(XYZ)

Fi(X )Fi(Y )Fi(Z)

The sum is hence taken over all possible codon frequencies for

each genome i.

To estimate the association between KL, AAUB and AT

content we fitted a GAMM model similar to equation (2) above,

but with KL for each genome i as response and predictors AAUB

(x1) and genomic %AT (x2). Again we added strain/genus and

phylum with respect to genomic %AT as hierarchical random

slope effects:

yijkl*b0zs x1ijkl

� �
zs x2ijkl

� �
zZjklwijklz"ijkl

The goodness-of-fit of the GAMM based models were assessed

using the Akaike Information Criterion (AIC) [23].

Supporting Information

Figure S1 PCA plot of codon frequencies. The plot shows

two principal components resulting from a principal component

analysis performed on the codon frequencies taken from 2032

bacterial genomes. The first principal component (PC1) was

strongly associated with genomic %AT (decreasing left to right),

while the second principal component (PC2) was associated with

phyla.

(PDF)

Table S1 Dataset. The dataset in Excel format used in the

article. The file includes NCBI accession numbers for all DNA

sequences used.

(XLS)
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