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Tone-in-noise detection has been studied for decades; however, it is not completely understood

what cue or cues are used by listeners for this task. Model predictions based on energy in the critical

band are generally more successful than those based on temporal cues, except when the energy cue

is not available. Nevertheless, neither energy nor temporal cues can explain the predictable variance

for all listeners. In this study, it was hypothesized that better predictions of listeners’ detection

performance could be obtained using a nonlinear combination of energy and temporal cues, even

when the energy cue was not available. The combination of different cues was achieved using the

logarithmic likelihood-ratio test (LRT), an optimal detector in signal detection theory. A nonlinear

LRT-based combination of cues was proposed, given that the cues have Gaussian distributions and

the covariance matrices of cue values from noise-alone and tone-plus-noise conditions are different.

Predictions of listeners’ detection performance for three different sets of reproducible noises were

computed with the proposed model. Results showed that predictions for hit rates approached the

predictable variance for all three datasets, even when an energy cue was not available.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4807815]
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I. INTRODUCTION

Detecting signals in noise is important for everyday

activities, such as detecting speech in background noise and

discriminating sounds in noisy environments. People with

hearing loss have difficulty communicating in background

noise even when using hearing aids. Thus, it is essential to

understand how people with normal hearing can detect sig-

nals in noise in order to help design more effective hearing-

aid devices. Tone-in-noise detection has been studied for

decades as a stepping stone to find the cues that listeners use

to detect more complex sounds in noise.

In early tone-in-noise detection studies, noise wave-

forms were generated randomly for each trial such that no

waveform was tested twice (Blodgett et al., 1958, 1962;

Dolan and Robinson, 1967). Detection performance was

averaged across listeners and waveforms. However, Gilkey

et al. (1985) found that detection performance varied among

listeners and waveforms by inspecting the detection perform-

ance for a set of pre-generated waveforms. Because these

waveforms were stored and could be “reproduced” exactly,

they were referred to as reproducible noises. Using reproduc-

ible noise waveforms it is possible to compare each listener’s

detection performance for individual waveforms and to

make detailed tests of different model predictions.

In detection tests, listeners’ performance is described by

the proportion of correct identification of tone presence for

tone-plus-noise waveforms (hit rate), and the proportion of

“tone present” responses for noise-alone waveforms (false-

alarm, FA rate). The set of hit and FA rates for a given en-

semble of reproducible noise maskers has been referred to as

a detection pattern (Davidson et al., 2006).

In order to identify the cues used by listeners to detect a

tone in noise in the diotic condition, several single-cue mod-

els based on energy or temporal cues have been used to pre-

dict listeners’ detection patterns. In each model, a set of

decision variables (DVs) that represent a particular feature

of the corresponding reproducible waveforms is compared

with the listeners’ detection patterns. A description of sev-

eral models in the literature is presented below. In particular,

several commonly used energy and temporal cues and their

performance in predicting listeners’ detection patterns are

described.

The critical-band model (CB; Fletcher, 1940) focuses on

energy within a critical bandwidth of the tone frequency,

whereas the multiple-detector model (MD; Gilkey and

Robinson, 1986) considers energy within and outside a criti-

cal bandwidth. Although these energy-based models provide

satisfactory predictions of the detection patterns, the CB

model fails at predicting the roving-level stimulus condition,
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in which the level of stimulus is randomly varied for each

trial (Kidd et al., 1989). Because the CB model predictions

are based on the absolute energy within one filter bandwidth

and stimulus levels are not fixed in each trial, “tone pre-

sence” would be predicted for a high-level noise-alone stim-

ulus. The MD model is robust for roving-level noises and

yields significantly better predictions than the CB model for

most listeners in the wideband condition; however, the MD

model computations involve fitting to the data (Davidson

et al., 2009a). Fitting the data was avoided in this study in

order to achieve a generic model for different types of stimuli

and to prevent the risk of over-fitting the data, i.e., adjusting

the parameters of variables for individual listeners to better

match each detection pattern. In addition, the MD model is

not applicable for waveforms whose bandwidths are smaller

than one critical bandwidth, because this model requires com-

parison of energy in different frequency bands. Thus, the CB

model was used to describe the energy cue in this study.

Two types of temporal cues are robust to the roving-

level condition: envelope and fine-structure. The envelope-

slope model (ES; Richards, 1992; Zhang, 2004; Davidson

et al., 2006) examines the changes in envelope fluctuations.

Adding a tone to a narrowband noise results in a decrease in

envelope fluctuations, thus lower values of the DV for the ES

model indicate a tone-plus-noise waveform. This model can be

applied to wideband noises because the output of narrowband

cochlear filters is analyzed in the model computation.

The phase-opponency model (PO; Carney et al., 2002),

based on fine-structure, i.e., the fast fluctuations in the stimu-

lus, uses responses from a coincidence detector that receives

inputs from two model auditory-nerve fibers to predict tone

presence. Because the two auditory-nerve fibers are tuned to

frequencies symmetrically located around the tone frequency

and have phase responses that differ by 180� at the tone

frequency, the addition of a tone to a noise waveform yields

fewer spike responses from the coincidence detector.

Therefore, a lower value of the DV for the PO model indi-

cates a tone-plus-noise waveform. In addition to the ES and

PO models, the Dau et al. (1996a) and Breebaart et al.
(2001) template-matching models also use temporal cues. In

these models, detection results are based on comparing the

internal test waveform representation with the pre-stored

waveform representation in the template. However, previous

studies have shown that these template-matching models do

not yield predictions that were significantly correlated to the

detection patterns for the ensemble of reproducible wave-

forms used in this study (Davidson et al., 2009a). Thus,

the ES and PO models were used to evaluate the temporal

features of the stimulus waveforms in this study.

Although previous studies have reported that correla-

tions between predictions of some diotic models and

listeners’ detection patterns are statistically significant, the

amounts of variance in the detection patterns that are

explained by these models are substantially lower than the

predictable variance (Davidson et al., 2009a). The predict-

able variance is computed as the squared mean of the corre-

lations between detection patterns of individuals and those

of the average listener (the mean of the detection patterns

from individual listeners). Detection patterns differ for each

listener; the predictable variance describes the proportion of

the variation in detection patterns that is common among all

listeners. Thus, the predictable variance is used as a bench-

mark for model predictions.

The goal of this study was to test the hypothesis that

significantly better predictions for diotic detection could be

obtained by using models that combine different cues, i.e.,

multiple-cue models. Given that different cues represent dif-

ferent features of a waveform, it is reasonable to argue that

the combination of different cues can capture more informa-

tion about a waveform than any single cue. Davidson et al.
(2009b) reported that a multiple-cue model, based on a linear

combination of envelope and fine-structure cues, results in

poor predictions of listeners’ detection patterns. However,

energy and temporal cues are correlated, and a simple linear

combination of cues is ineffective in characterizing the inter-

action among cues (Davidson et al., 2009a).

In this study, a nonlinear multiple-cue model was pro-

posed to predict listeners’ detection patterns, where the

model takes into account the statistical correlations among

energy and temporal cues in cue combination. The likeli-

hood ratio test (LRT) is an optimal detector for a two-

alternative (binary) hypothesis testing (Van Trees, 1968) and

is thus a useful tool for tone-in-noise detection data. The

LRT-based detection model has previously been used by

Siebert (1970), Colburn (1973), and Heinz et al. (2001) to

predict frequency, interaural time, and level discrimination

data, respectively, based on model auditory-nerve responses.

In this study, the DV of the nonlinear multiple-cue model

was computed as the logarithmic likelihood ratio of cue

values given tone-plus-noise and noise-alone waveforms.

Distributions of the values of single cues were computed

from a set of randomly generated noise-alone and tone-plus-

noise waveforms that was different from the reproducible

waveforms used for the detection task. Because of the differ-

ence between the covariance matrices of cue values for

noise-alone and tone-plus-noise waveforms, the expression

for the DV is a quadratic function in terms of cue values,

implying a nonlinear combination of cues. In addition, the

DV also includes cross-products of single cues that charac-

terize the pair-wise interactions between cues.

In summary, a nonlinear cue-combination model which

optimally combines energy, envelope, and fine-structure

cues is presented in this study. It was shown that model pre-

dictions based on the nonlinear multiple-cue model

improved significantly compared with those based on single-

cue or linear multiple-cue models.

II. DESCRIPTION OF DATA

The diotic detection data was obtained from three previ-

ous experiments (Evilsizer et al., 2002; Davidson et al.,
2006; Davidson et al., 2009b). Tone frequency was 500 Hz

in all three datasets, and listeners were tested at tone levels

near their detection threshold (i.e., an overall d0 ¼ 1). In the

first two studies, the same set of 25 reproducible noise wave-

forms was used, and eight listeners were tested. The duration

of the noise waveforms was 300 ms, and the sound level was

40 dB sound pressure level (SPL). Both narrowband
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(452–552 Hz) and wideband (100–3000 Hz) noises were

tested. The spectral content of the narrowband waveform

was matched to the corresponding frequency range of the

wideband waveform. In the third study, 50 equal-energy

reproducible noise waveforms with 100-ms duration, 40 dB

SPL, and narrower bandwidth (475–525 Hz) were used

(baseline and control stimulus sets as described by Davidson

et al., 2009b). Six listeners were tested in that study. In the

present study, this dataset based on equal-energy stimuli was

useful to test whether model predictions depended more on

temporal cues in the absence of the energy cue.

In all studies, listeners responded whether they per-

ceived a tone after each single-interval trial of a noise-alone

or tone-plus-noise waveform. Detection patterns were

described in terms of hit and FA rates, based on listeners’

responses of “tone presence” (details of the experiments can

be found in Evilsizer et al., 2002; Davidson et al., 2006; and

Davidson et al., 2009b).

Figure 1 shows the detection pattern of the average lis-

tener (i.e., the average detection pattern across all individual

listeners) for the 100-Hz bandwidth waveforms in the

Evilsizer et al. (2002) and Davidson et al. (2006) studies.

The detection patterns were consistent over the course of the

experiment and were also significantly correlated across

listeners. The goal of this study was to predict the variation in

the average listener’s detection pattern across the set of

reproducible noises. Because the detection patterns were sig-

nificantly correlated among individual listeners, these listen-

ers were assumed to be using similar cues for tone-in-noise

detection. Model predictions of the response of the average

listener focused on explaining the common variance across

listeners’ performance while ignoring individual differences,

which cannot be accounted for by a single model. The quality

of the prediction was described as the proportion of variance

in the detection pattern that was explained by a given model.

III. METHODS

It was hypothesized that better predictions of

reproducible-noise detection patterns could be achieved

using nonlinear multiple-cue models that consider statistical

correlations among different cues. First, the energy, enve-

lope, and fine-structure cues used in the cue combination

step will be introduced. Next, the statistical correlations

between energy and temporal cues are examined for the

three datasets. Last, both the nonlinear LRT-based multiple-

cue and the linear multiple-cue models will be described.

A. Energy and temporal cue models

The CB (Fletcher, 1940) model, which is based on

energy within a critical bandwidth of the target frequency,

was used in the current study. The DV was computed as the

root mean square (RMS) of a fourth-order gamma-tone fil-

tered waveform (centered at 500 Hz) for all three datasets:

CB ¼ f
Ð

TG½xðtÞ�2dt=Tg1=2
, where x(t) indicates the stimulus

waveform, and G(.) represents the response of the gamma-

tone filter.

Two temporal models were used: the ES (Richards,

1992; Zhang, 2004; Davidson et al., 2006) and PO (Carney

et al., 2002) models. DVs of the ES model were based on

changes in envelope fluctuations. The envelope was com-

puted from the Hilbert transform of a fourth-order gamma-

tone filtered stimulus (centered at 500 Hz). The DV value is

reduced by addition of the tone for the ES model because

envelope fluctuation decreases. Figure 2 illustrates the aver-

aged distribution of envelope energy for noise-alone (solid

lines) and tone-plus-noise (dotted lines) stimuli in the fre-

quency domain. The insets show enlarged views of the circled

frequency region that yield the largest differences in the enve-

lope magnitude between noise-alone and tone-plus-noise

stimuli. The ES model was modified in the current study to

emphasize this frequency range by substituting the low-pass

envelope filter (cutoff frequency at 250 Hz) with a sixth-order

bandpass envelope filter centered at 120 Hz (Q¼ 1). The

computation of the modified ES cue is

ES ¼
ð

T

jH½G xðtÞð Þ�

�H½G xðtþ DtÞð Þ�jdt

��ð
T

H½G xðtÞð Þ�2dt=T

�1=2

;

where x(t) indicates the stimulus waveform, G(.) represents

the response of the gammatone filter, and H(.) is the enve-

lope extracted using the Hilbert transform. The bandpass en-

velope filter, which is similar to physiological and

psychological modulation filters, was applied to extract fre-

quency components in the range illustrated. In addition, this

filter attenuated low frequencies, which contain more energy

but less information about the presence of the tone. The

modified ES model, compared with the original ES model,

could predict 20% and 10% more of the variance in hit and

FA rates, respectively, for the average listener’s narrowband

detection patterns; whereas predictions from the modified

FIG. 1. The detection pattern of the average listener comprises hit and FA

rates for each 100-Hz bandwidth reproducible waveform averaged across

eight individual listeners. The x axis shows the index of the reproducible

noise waveforms. The insets show examples of tone-plus-noise (top) and

noise-alone (bottom) waveforms (data from Evilsizer et al., 2002; and

Davidson et al., 2006).
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ES model explained 10% less of the variance for the wide-

band hit rates than the original ES model, with no change in

the FA rates (Davidson et al., 2009a).

The PO model extracts fine-structure information

from the stimuli using a coincidence detector that receives

inputs from two model auditory-nerve fiber responses:

PO ¼
Ð

TAN1½xðtÞ� � AN2½xðtÞ�dt, where x(t) indicates the

stimulus waveform, and AN1 and AN2 denote auditory-nerve

models with two different characteristic frequencies.

Because tone responses from the two model auditory-nerve

fibers differ in phase by 180�, low DV values for the PO

model indicate tone-plus-noise waveforms.

Figure 3 shows the three models that extract the single

cues used in this study: the energy cue (the CB model), enve-

lope cue (the ES model), and fine-structure cue (the PO

model).

B. Statistical correlations between energy and
temporal cues

In order to investigate the relationship among different

cues, the dependencies between pairs of cues were analyzed

by computing the Pearson product-moment correlation coeffi-

cients between the DVs (Neter et al., 1996). Table I shows

the correlations of DVs for tone-plus-noise and noise-alone

reproducible waveforms for the three conditions; bold values

indicate DV pairs that are significantly correlated (p< 0.05,

t-test). For the computations in Table I, the tone level was

matched to the average listener’s threshold. The two temporal

DVs (ES and PO) were correlated in each dataset; the energy

(CB) and temporal DVs were also correlated, except for the

fine-structure cue in some conditions (Table I). Furthermore,

both energy and temporal DVs had distributions that were

approximately Gaussian. In Fig. 4, the distributions of each

DV are shown for large sets (n¼ 200) of randomly generated

100-Hz bandwidth noise-alone and tone-plus-noise wave-

forms, and the dotted lines show the corresponding Gaussian

fits. The correlation between the DV distribution and the

fitted Gaussian curve is shown at the top of each panel. The

distribution of hits for the ES cue is slightly asymmetric;

however, the correlation between the distribution and its

Gaussian fit is high (r¼ 0.93). Distributions of cue values for

randomly generated 2900- and 50-Hz equal-energy wave-

forms were also approximately Gaussian (not shown). In

addition, further analysis was done to investigate whether the

statistical distributions of cue values were Poisson-like.

Results showed that the mean values were significantly dif-

ferent from the variance of the distributions for each cue,

thus the cues did not have Poisson distributions.

C. Decision variable of the nonlinear LRT-based
multiple-cue model

The DV of the test waveform was calculated from the

logarithmic LRT of its cue values assuming the test wave-

form belonged to noise-alone (x ¼ N) and tone-plus-noise

(x ¼ S) categories. Eq. (1) shows the nonlinear combination

of energy and temporal cues, in which c ¼ ½c1; c2; c3�T
denotes the vector of cue values for the test waveform, c1

denotes the energy cue (CB), c2 denotes the envelope cue

(ES), and c3 denotes the fine-structure cue (PO), and n repre-

sents the number of cues (n¼ 3 in this study):

FIG. 2. Envelope power spectrum density of noise-alone (solid lines) and

tone-plus-noise (dotted lines) stimuli in narrowband (top) and wideband

(bottom) conditions. Insets show an enlarged view of the circled frequency

range where the largest difference of the envelope spectral energy between

these two stimuli is observed.

FIG. 3. A schematic diagram of the CB, ES, and PO models used to extract

energy and temporal cues. In the CB model, DV was computed as the root

mean square (RMS) of a fourth-order gamma-tone filtered waveform (cen-

ter frequency 500 Hz, bandwidth equaled one critical bandwidth of tone fre-

quency). In the ES model, the envelope of a waveform was computed using

a Hilbert transform of a gamma-tone filtered waveform, and the DV was

calculated as the slope of a band-pass filtered envelope. In the PO model,

responses from two model auditory-nerve fibers that differed in phase by

180 degrees in response to the tone were applied to a coincidence detector,

and the DV was computed as the integral of the coincidence detector

responses.
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DðcÞ ¼ log
PðcjSÞ
PðcjNÞ

� �
and

PðcjxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞndetðRx;rÞ

p
� exp �1

2
ðc� lx;rÞ

TRx;r
�1ðc� lx;rÞ

� �
;

where x 2 fS;Ng; and lx;r ¼ E½cx;r�; and

Rx;r ¼ E½ðc� lx;rÞðc� lx;rÞ
T � : (1)

Pðc j xÞ represents the conditional probability of cue values

(c) given that the testing waveform belongs to category x
(x¼N or x¼ S). Because the single-cue DVs were correlated

and their values had Gaussian distributions (Fig. 4), the con-

ditional probability was computed using a multivariate

Gaussian distribution. The term of lx;r denotes the expected

value of the cue vector (cx;r) for category x computed from

the randomly generated waveforms, where r indicates the

randomly generated waveforms. The covariance matrix Rx;r

characterizes the statistical correlations among different

cues; RS;r and RN;r are different because the correlations

among different cues vary for noise-alone and tone-plus-

noise waveforms. Given that Pðc j SÞ and Pðc jNÞ have mul-

tivariate Gaussian distributions, the logarithmic LRT in

Eq. (1) can be described as

DðcÞ ¼ 1

2
log

detðRN;rÞ
detðRS;rÞ

� �

� 1

2
ðc� lS;rÞ

TR�1
S;r ðc� lS;rÞ

þ 1

2
ðc� lN;rÞ

TR�1
N;rðc� lN;rÞ : (2)

On the right-hand side of Eq. (2) a quadratic function in

terms of the cue values was obtained because RS;r and RN;r

are different. Thus, the current model is a nonlinear combi-

nation of different cues.

The logarithmic likelihood-ratio test is an optimal detec-

tor for a two-alternative detection problem (Van Trees, 1968).

This test can be interpreted as testing whether the waveform

is more likely to contain a tone or not. Specifically, because

the prior probabilities of given noise-alone or tone-plus-noise

waveforms are equal [PðNÞ ¼ PðSÞ], a DV with a value

greater than zero suggests that the current waveform is a

tone-plus-noise stimulus; a DV with a value less than zero

suggests that the current waveform is a noise-alone stimulus.

The nonlinearity of the LRT model is guaranteed as long as

the covariance matrices from noise-alone and tone-plus-noise

waveforms are different. Assuming that the two covariance

matrices were the same, then the first term in Eq. (2) would

be zero and the second-order term of cue values would cancel

out; thus, this equation would become a linear combination of

cue values, as

DðcÞ ¼ ðlT
S;r � lT

N;rÞR�1cþ 1

2
lT

N;rR
�1lN;r

� 1

2
lT

S;rR
�1lS;r; (3)

FIG. 4. DV distributions for 200 randomly generated narrowband noise-

alone (left column) and tone-plus-noise (right column) waveforms. The

x axis shows the cue values and the y axis shows the number of

instances in each bin in the histogram (20 bins in total). The label

on the x axis shows the model names. Panels in each row show the

distributions of the DVs for the CB (panel a and b), ES (panel c and

d), and PO (panel e and f) cues. In each panel, the dotted line repre-

sents a Gaussian fit to the DV distribution, and the r value at the top

indicates the correlation between the DV distribution and the Gaussian

fit.
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where R¼RS;r ¼RN;r. Furthermore, pair-wise interactions

between single cues are guaranteed as long as the cues are

correlated. Another case to consider is the assumption that

the covariance matrices from noise-alone and tone-plus-

noise waveforms are different but single cues are uncorre-

lated (i.e., the covariance matrices are diagonal). In that

case, Eq. (2) would reduce to

DðcÞ ¼ 1

2
log

detðRN;rÞ
detðRS;rÞ

� �
� 1

2

X
i

ci � ðlS;rÞi
� 	2

ðRS;rÞii

þ 1

2

X
i

ci � ðlN;rÞi
� 	2

ðRN;rÞii
; (4)

where ci is the ith cue, (RS;r)ii and (RN;r)ii are the (i,i)th
entries of the covariance matrix of the tone-plus-noise and

noise-alone waveforms. The DV described by Eq. (4) is still

nonlinear, but fails to capture the interactions between cues.

Equations (3) and (4) serve to illustrate features of the full

LRT model, which includes both a nonlinear combination of

cues and the interactions between pairs of single cues.

Figure 5 shows a schematic diagram of the computation of

the DV for the nonlinear LRT-based multiple-cue model.

D. Decision variable of the linear multiple-cue model

The DVs for a linear multiple-cue model were also com-

puted using a weighted sum of energy and temporal cues.

Performance of the linear and nonlinear cue-combination

models was compared. Equation (5) illustrates the linear

combination (LC) of energy and temporal cues, in which c1

denotes the energy cue (CB), c2 denotes the envelope cue

(ES), and c3 denotes the fine-structure cue (PO) for the test

waveform. The weights corresponding to each cue are desig-

nated as w1;x;r, w2;x;r, and w3;x;r; x denotes the waveform

category, and any term with the subscript r is computed

from a large set of randomly generated waveforms.

DV ¼ DS � DN;

Dx ¼ w1;x;rc1 þ w2;x;rc2 þ w3;x;rc3 ;

where x 2 fS;Ng; wi;x;r ¼ ½ðRx;rÞii�
�1;

and i ¼ 1; 2; 3 : (5)

For each cue, the weight equals the inverse of the var-

iance of the cue values, which corresponds to the inverse of

the (i,i)th entry in the covariance matrix Rx;r. Assuming that

listeners used a combination of energy and temporal cues in

the detection task, this linear combination would yield an

optimal estimation of the combined cue value if the energy

and temporal cues were uncorrelated (Yuille and Bulthoff,

1996); however, energy and temporal cues are typically cor-

related (Davidson et al., 2009a).

Given that the test waveform category was unknown

during the detection task, the DV was computed as the dif-

ference between the combined cues for tone-plus-noise and

noise-alone conditions. A DV with a value greater than

zero suggests that the current waveform is a tone-plus-noise

stimulus; a DV with a value less than zero suggests that the

current waveform is a noise-alone stimulus.

IV. RESULTS

It was hypothesized that if a listener used a particular

cue-combination rule to detect a tone in noise, then DVs

computed from that particular rule would be strongly corre-

lated to the listener’s detection pattern. In this section,

predictions from single-cue and multiple-cue models were

TABLE I. Correlations between energy and temporal DVs for three datasets. The bold values indicate that two DVs are significantly correlated (p< 0.05,

r> 0.40 for n¼ 25 and r> 0.28 for n¼ 50), and n denotes the number of waveforms in each study.

2900-Hz waveforms (n¼ 25) 100-Hz waveforms (n¼ 25) 50-Hz waveforms (n¼ 50)

Envelope (ES) Fine-structure (PO) Envelope (ES) Fine-structure (PO) Envelope (ES) Fine-structure (PO)

Name of cues Hit FA Hit FA Hit FA Hit FA Hit FA Hit FA

Energy (CB) 0.69 0.60 0.36 0.58 0.55 0.48 0.15 0.35 0.55 0.52 0.51 0.19

Envelope (ES) __ __ 0.48 0.74 __ __ 0.48 0.79 __ __ 0.75 0.65

FIG. 5. This schematic diagram illustrates the strategy for computing the

nonlinear combination of cues. The DV is computed by combining energy

and temporal cues using the nonlinear LRT-based multiple-cue model.

Single cues are computed from the waveform (as in Fig. 3), and combined

with a logarithmic likelihood-ratio test [shown in Eq. (1), where c1, c2, and

c3 denote the cue values).
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evaluated by computing the squared Pearson product-

moment correlation coefficient between DVs and the z-score

of listeners’ detection patterns. In the following figures, each

bar shows the proportion of predicted variance (squared

correlation between detection patterns and hit or FA rates)

for the average listener. The length of the error bar shows

the standard deviation of the predicted proportion of var-

iance across individual listeners.

Figure 6(a) shows predictions based on the energy

(CB) and temporal (ES and PO) single-cue models, as well

as the linear (LC) and nonlinear (LRT) multiple-cue models

for the 2900-Hz bandwidth waveforms. Predictions from

the CB model alone were the best among the three single-

cue models for both hit and FA rates. For multiple-cue

models, predictions based on the LC model were similar to

those of the CB model. However, predictions based on the

LRT model approached the predictable variance (squared

mean of the correlations between detection patterns of indi-

viduals and those of the average listener) for both hit and

FA rates.

Model predictions based on the energy and temporal

single-cue models, as well as the linear (LC) and nonlinear

(LRT) multiple-cue models for the 100-Hz bandwidth wave-

forms are shown in Fig. 6(b). Similar to the results for the

2900-Hz bandwidth waveforms, predictions based on the

CB model alone were the best among the three single-cue

models for both hit and FA rates, and predictions based on

the LC model were similar to those of the CB model.

Furthermore, predictions based on the LRT model met the

predictable variance for both hit and FA rates.

For the 50-Hz bandwidth equal-energy waveforms,

Fig. 6(c) shows model predictions based on the energy and

temporal single-cue models, as well as the linear (LC) and

nonlinear (LRT) multiple-cue models. In contrast to the pre-

vious two datasets, the energies of the noise-alone and tone-

plus-noise waveforms in this dataset were equalized, in an

effort to remove the energy cue. Model predictions of hit

and FA rates based on the ES model were the best among

the three single-cue models. Similar to the other two data-

sets, predictions based on the LC model were close to those

of the CB model.

Model predictions for waveforms from the three data-

sets suggested that for tone-in-noise detection listeners may

use a nonlinear combination of energy and temporal cues

that takes into account the statistical correlations of the three

cues. In order to test whether predictions from the LRT or

LC model were significantly better than those of single-cue

models, an incremental F-test was carried out to analyze the

model predictions. In Fig. 6, bars with stars indicate that the

nonlinear (LRT) model significantly improved predictions

(p< 0.05, n¼ 25 for 2900- and 100-Hz waveforms, n¼ 50

for 50-Hz equal-energy waveform). For example, for the

2900-Hz bandwidth waveforms, the single-cue CB, ES, and

PO models were able to predict 68%, 50%, and 32% of the

variance of hit rates, respectively. By combining all three

cues with the nonlinear (LRT) model, 81% of the variance in

the detection patterns could be predicted, and this amount of

predicted variance was significantly greater than that from

any of the single-cue models. For the LRT model, the

amounts of predicted variance of hit rates for all noise band-

widths were significantly greater than those based on any of

the single-cue models. The error bars indicate the standard

deviation of model predictions across individual listeners.

Although the difference between LRT and ES cue is not as

large as in Fig. 6(a) and Fig. 6(b), 50 waveforms were used

in Fig. 6(c) while 25 waveforms were used in Fig. 6(a) and

Fig. 6(b). Thus, the improvement of LRT over ES is statisti-

cally significant (p¼ 0.03). In addition, the amount of pre-

dicted variance of FA rates for the 100-Hz bandwidth

FIG. 6. The proportion of variance explained by single-cue and multiple-

cue models of the average listener for the (a) 2900-Hz bandwidth, (b) 100-

Hz bandwidth, and (c) 50-Hz bandwidth waveforms. The x axis shows the

names of different models (CB: energy cue, ES: envelope cue, PO: fine-

structure cue, LC: linear combination of three cues, LRT: nonlinear logarith-

mic likelihood ratio test combination of three cues). The stars indicate that

multiple-cue model predictions were significantly improved compared with

predictions from any single-cue model (p< 0.05, n¼ 25 for 2900- and 100-

Hz waveforms, n¼ 50 for 50-Hz equal-energy waveforms). The y axis

shows the proportion of variance explained by different models. The length

of the error bar shows the standard deviation of the predicted proportion of

variance across individual listeners. The dotted lines indicate the predictable

variance for hit and FA rates.
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waveform was also significantly greater than those based on

any of the single-cue models, whereas amounts of predicted

variance of FA rates for the 2900- and the 50-Hz bandwidth

equal-energy waveforms were not significantly greater than

those based on the best single-cue model. In contrast, the

amount of predicted variance of the LC model was not

significantly greater than those of single-cue models; LC

predictions were similar in quality to the CB predictions

across all datasets and for both hits and FAs (Fig. 6).

V. DISCUSSION

In this study, model predictions for diotic detection

based on three different single cues (the CB, ES, and PO

models) and combinations of these cues (the LC and LRT

models) were tested with detection patterns for three differ-

ent sets of reproducible noise waveforms. The LRT model

provided significantly better predictions of hit rates than any

of the single-cue models for all three datasets and of

FA rates for the 100-Hz bandwidth waveforms. Using the

LRT-based detection model to predict listeners’ detection

performance is not new. Siebert (1970), Colburn (1973), and

Heinz et al. (2001) used a similar strategy to predict fre-

quency, interaural time, and level discrimination data from

model auditory-nerve fibers. However, these linear models

predicted listeners’ discrimination thresholds using Possion-

distributed model auditory-nerve responses; whereas, in the

current study, the Gaussian-distributed cue values yielded a

nonlinear cue-combination model to predict listeners’ detec-

tion patterns.

A. Alternative models based on envelope cues

For all three datasets studied here, the envelope slope

cue was robust in predicting listeners’ detection patterns.

Wojtczak and Viemeister (1999) showed that the envelope

cue was also important for understanding intensity increment

discrimination and amplitude-modulation detection experi-

ments. They found that a decision variable based on the ratio

between the maximum of the envelope and its minimum

could explain the linear relationship between the intensity in-

crement discrimination and amplitude-modulation detection

thresholds. A similar max/min statistic was tested on the

current datasets; however, this model’s predictions were not

significantly correlated to listeners’ performance. In addi-

tion, envelope energy, computed as the sum of the energy in

the non-zero frequency components, did not explain a signif-

icant amount of listeners’ performance. Thus, a decision

variable based on envelope fluctuations, such as that used

in the ES model (Richards, 1992), outperformed other

envelope-based variables for detailed predictions of perform-

ance in tone-in-noise detection tasks.

Dau et al. (1997) extended their “effective” signal proc-

essing model (Dau et al., 1996b) with a modulation filter

bank and predicted thresholds for modulation detection and

masking with random noises. Results from their study are

consistent with auditory tuning to both audio and modulation

frequency. They also showed that a bank of bandpass modu-

lation filters predicted the trends of listeners’ thresholds

across many signal and masking conditions, whereas

predictions using low-pass modulation filters (Viemeister,

1979) failed. Consistent with the implications of Dau et al.,
(1997) that envelope cues are processed in different modula-

tion frequency bands, the ES model with a bandpass modula-

tion filter was used in the current study. However, only one

bandpass modulation filter was required here, because lower

or higher modulation frequencies did not provide informa-

tion about the difference between noise-alone and 500-Hz

tone-plus-noise stimuli (Fig. 2). It was shown that this modi-

fied ES model yielded better predictions of listeners’ detec-

tion results than the original ES model.

In addition, frozen noise stimuli were used in the Dau

et al. (1996b) study of detection in noise. In that study, lis-

teners’ thresholds for detecting sinusoids of different dura-

tions, onset times, onset phases, or frequencies were

predicted by their effective model (without modulation fil-

ters) (Dau et al., 1996a). Direct comparisons between their

results and the results presented here are difficult. In their

three-interval forced-choice test, the same frozen noise was

used in all intervals, providing the potential for detailed

comparisons across intervals. Their model structure, which

utilizes a comparison between noise-alone and tone-plus-

noise representations, is appropriate for such a task.

However, in the datasets analyzed here, a single frozen

noise-alone or tone-plus-noise stimulus was presented in a

one-interval forced-choice task, and the noise for each trial

was selected from an ensemble of waveforms. The models

applied here were appropriate for this single-interval task;

these models involved comparisons of cues for a single trial

to distributions of cue values, but not the cues for a particu-

lar waveform. Furthermore, the waveforms studied here

consisted of tone and noise waveforms that were gated

simultaneously, whereas Dau et al. (1996b) stimuli were

short-duration tones presented at a delay during a longer

masking noise, making direct comparisons across the stud-

ies difficult.

For single-cue models, the “multiple-look” strategy

(Viemeister and Wakefield, 1991) suggests that listeners

might extract cues from short durations of the whole wave-

form in detection and discrimination tests. A similar strategy

was tested in the current study by segmenting waveforms

into equal-duration epochs. However, predictions based on

the multiple-epoch scheme were not significantly different

from those based on the single-epoch scheme for either

single-cue or multiple-cue models. Thus, results presented

above were all based on the single-epoch scheme.

B. Linear vs nonlinear cue combination

Davidson et al. (2006; 2009a) used different single-cue

models to predict listeners’ detection performance for the

three datasets used in the current study, however, none of the

single-cue models could explain the predictable variance. In

another study focused on the 50-Hz bandwidth equal-energy

waveforms, Davidson et al. (2009b) pointed out that that a

linear combination of the two cues could not explain listen-

ers’ detection patterns and suggested the future consideration

of models based on nonlinear combinations of cues. Results

from these three studies motivated the nonlinear LRT-based
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multiple-cue model that was tested in this study. Because

DVs were computed from a logarithmic likelihood ratio of

cue values given noise-alone and tone-plus-noise waveforms,

the degree of similarity between the covariance matrices

under these conditions determined whether the combination

of cues was linear or nonlinear. In the current study, the

covariance matrices for noise-alone and tone-plus-noise con-

ditions were different. For the three datasets tested, model

predictions of hit rates based on the nonlinear LRT model

were significantly better than those based on any of the

single-cue models, whereas predictions of FA rates were sig-

nificantly better for the 100-Hz bandwidth waveform but not

for the other two datasets.

In order to understand the difference between the LRT

model and the linear cue-combination model, the weights of

the different cues in the models [Eq. (2)] were inspected (see

the Appendix). Recall, that for the linear model the weights

are based on the reliability of each single cue (the inverse of

the variance), thus higher weights are assigned to more

reliable cues. Inspection of weights for the linear cue-

combination model showed that CB was the dominant cue

and PO had the least significant weight.

Note that for the LRT model the predictions for hit and

FA rates were computed with the same model, in which the

weights were computed from the distributions of cue values,

i.e., the same covariance matrices were used to provide

weights for both hits and FAs. For the LRT model, the rela-

tionships between different single cues were determined by

computing their covariance. Thus, in addition to single cues,

pairs of single cues also contributed to the DV in the LRT

model. For the 100-Hz bandwidth waveforms, CB, ES, and

PO single cues were assigned approximately equal positive

weights, whereas the pairs of CB and ES, and ES and PO

cues were assigned approximately equal negative weights

that were less than the positive weights. For the 2900-Hz

bandwidth waveforms, the weight for the CB cue was twice

as large as for the ES cue and for the pair of CB and ES

cues, and these three weights dominated the weighting ma-

trix. The higher weight for the CB cue was not surprising,

because this cue explained more variance than the ES or PO

cues for both the 100- and 2900-Hz waveforms (Fig. 6).

However, for the 50-Hz equal-energy waveforms, even

though the CB cue was outperformed by the ES cue in

single-cue model predictions, the significantly smaller

variance of the CB cue resulting from the equal-energy

waveforms yielded a higher weight to the CB cue in the

LRT model. Similarly, consistent with the robustness of the

ES cue for the single-cue predictions, it was assigned a

higher weight than the PO cue. In addition, the weighting

matrix of individual listeners was similar to that of the aver-

age listener, suggesting that the assumption that listeners

used a similar strategy for tone detection in these experi-

ments was reasonable.

C. Consideration of the equal-energy predictions

Further analysis for the CB cue of the 50-Hz bandwidth

equal-energy waveforms showed that small energy differ-

ences between waveforms were introduced when the

waveforms were passed through the gammatone filter used

to calculate DVs of the CB model. Although model predic-

tions from the CB model explained around 30% of the var-

iance in the detection patterns, the absolute size of the

energy differences was negligible (Davidson et al., 2009a).

Inspection of the DVs from the CB model showed that av-

erage sound level difference among fifty tone-plus-noise

and noise-alone waveforms was 0.1 and 0.2 dB, respec-

tively. Thus, the predictions achieved by the CB model for

the narrowband equal-energy condition are likely to be an

artifact of the correlation between cues. In addition, the

envelope cue was able to explain a significant amount of

the variance in the detection pattern, confirming the robust-

ness of the envelope cue, as in previous studies (Kidd et al.,
1989; Richards, 1992; Zhang, 2004; Davidson et al.,
2009a).

Model predictions based on the LRT model for the

2900- and the 100-Hz bandwidth waveforms were close to

the predictable variance; however, predictions for the 50-Hz

bandwidth equal-energy waveforms were lower than the pre-

dictable variance. Based on the analysis from the weighting

strategy above, the CB cue dominated the weighting matrix

for the 50-Hz dataset. However, the CB cue was not as

effective as the ES cue for the equal-energy waveforms

[Fig. 6(c)]. Thus, listeners may use alternative strategies to

the optimal LRT-based method for the equal-energy narrow-

band waveforms.

D. Future directions

Given that predictions based on the LRT model were

most consistent with listeners’ detection patterns, it is inter-

esting to ask whether LRT-type processing is observed along

the auditory pathway. Because the auditory nerve is the only

path from the inner ear to the brain, the nonlinear response

of the auditory nerve contains all information available to

the central nervous system. Inspection of auditory-nerve

(AN) model responses (Zilany et al., 2009) would be a nec-

essary first step. Rate, synchrony and fluctuation of the post-

stimulus time histogram (PSTH) computed from model

responses could represent the energy, fine-structure, and

envelope cues of the stimulus. However, given that both

on- and off-frequency AN fibers would respond to the stim-

uli, it would be interesting to investigate an optimal way to

combine these cues.

In addition, responses from higher levels in the brain,

such as the cochlear nuclei and inferior colliculus (IC),

are also likely to convey information observed from the

LRT model. In particular, the IC is a nearly obligatory

pathway from the lower brainstem nuclei to higher proc-

essing centers. Analysis of IC model responses (Nelson

and Carney, 2004) could be tested with responses from

the LRT model.

Last, internal noise (Spiegel and Green, 1981) was not

included in the current signal-processing type model.

However, internal noise could be introduced in physiological

models as an additive or multiplicative noise to further

understand the difference of detection performance among

individual listeners.
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VI. SUMMARY

In this study, model predictions for diotic detection

based on three different single cues (the CB, ES, and PO

models) and combinations of these cues (the LC and LRT

models) were tested with detection patterns for three differ-

ent sets of reproducible noise waveforms. The LRT model,

which is an optimal combination of energy and temporal

cues, provided significantly better predictions of hit rates

than any of the single-cue models or the LC model for all

three datasets and of FA rates for the 100-Hz bandwidth

waveforms.
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APPENDIX: WEIGHTS FOR THE NONLINEAR
CUE-COMBINATION MODEL

The weights for the LRT nonlinear cue-combination

model are shown in Tables II–IV for 100- and 2900-Hz

bandwidth waveforms and for the 50-Hz bandwidth equal-

energy waveforms. In each table, the diagonal entries indi-

cate weights for single cues (e.g., CB, ES, and PO), and the

off-diagonal entries indicate weights for two cues (e.g.,

CB-ES, CB-PO, and ES-PO). Note that the weights are sym-

metric along the diagonal entries and the weight matrix is

normalized to have a sum of one.
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