
THE JOURNAL OF CHEMICAL PHYSICS 139, 025101 (2013)

Adaptively biased sequential importance sampling for rare events
in reaction networks with comparison to exact solutions from finite
buffer dCME method

Youfang Caoa) and Jie Liangb)

Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA

(Received 26 March 2013; accepted 31 May 2013; published online 9 July 2013)

Critical events that occur rarely in biological processes are of great importance, but are challeng-
ing to study using Monte Carlo simulation. By introducing biases to reaction selection and reaction
rates, weighted stochastic simulation algorithms based on importance sampling allow rare events
to be sampled more effectively. However, existing methods do not address the important issue of
barrier crossing, which often arises from multistable networks and systems with complex probabil-
ity landscape. In addition, the proliferation of parameters and the associated computing cost pose
significant problems. Here we introduce a general theoretical framework for obtaining optimized bi-
ases in sampling individual reactions for estimating probabilities of rare events. We further describe
a practical algorithm called adaptively biased sequential importance sampling (ABSIS) method for
efficient probability estimation. By adopting a look-ahead strategy and by enumerating short paths
from the current state, we estimate the reaction-specific and state-specific forward and backward
moving probabilities of the system, which are then used to bias reaction selections. The ABSIS al-
gorithm can automatically detect barrier-crossing regions, and can adjust bias adaptively at different
steps of the sampling process, with bias determined by the outcome of exhaustively generated short
paths. In addition, there are only two bias parameters to be determined, regardless of the number of
the reactions and the complexity of the network. We have applied the ABSIS method to four bio-
chemical networks: the birth-death process, the reversible isomerization, the bistable Schlögl model,
and the enzymatic futile cycle model. For comparison, we have also applied the finite buffer discrete
chemical master equation (dCME) method recently developed to obtain exact numerical solutions
of the underlying discrete chemical master equations of these problems. This allows us to assess
sampling results objectively by comparing simulation results with true answers. Overall, ABSIS can
accurately and efficiently estimate rare event probabilities for all examples, often with smaller vari-
ance than other importance sampling algorithms. The ABSIS method is general and can be applied
to study rare events of other stochastic networks with complex probability landscape. © 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4811286]

I. INTRODUCTION

Many critical events in biological processes occur rarely
within the relevant physical time scale. Bacteriophage λ in E.
coli1–3 can maintain a stable dormant lysogenic lifestyle when
integrated into the E. coli genome, but can spontaneously
transit to the lytic lifestyle of phage outburst2, 4–8 with a small
probability (∼4 × 10−7 per cell cycle9). Crossing barrier in
the free energy landscape in some slow-folding protein may
be rare, but critical.10 In tumorigenesis, cells experiencing
normal growth rarely transit spontaneously to uncontrolled tu-
mor growth.11, 12 However, environmental changes, e.g., those
resulting in the accumulation of DNA hypermethylation in
promoter CpG islands,13, 14 can accelerate such transitions.
Multi-stable cellular states of endogenous molecular-cellular
networks and rare stochastic transitions between them may
offer a general framework to study human diseases.15, 16 Ac-
curate assessment of rare event probabilities is, therefore, im-
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portant for understanding the machineries behind many criti-
cal biological processes.

It is challenging to study rare events from the view-
point of mechanistic theory.17, 18 Here we study networks of
biochemical reactions. In principle, the transition probabil-
ity rates between two states can be calculated exactly, if the
state space of biochemical reaction networks are completely
accounted for, e.g., when the underlying discrete chemical
master equation can be solved exactly.8, 19 However, when the
state spaces and the transition matrices are too large to be effi-
ciently computed, a widely used approach to study stochastic
behavior of biochemical reactions is that of Monte Carlo sam-
pling, first formulated as the stochastic simulation algorithm
(SSA).21 However, the original SSA21 is ineffective for study-
ing rare events, as most computing time is spent on following
high-probability paths.22, 23

The techniques of importance sampling and reweight-
ing can improve sampling efficiency significantly. They have
been widely used in equilibrium sampling where the condi-
tion of detailed balance holds.24, 25 However, stochastic pro-
cesses in reaction networks are generally not time reversible
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and the condition of detailed balance is not valid. Kuwahara
and Mura developed the weighted SSA (wSSA) algorithm by
applying the importance sampling technique to study stochas-
tic reaction networks, in which each reaction rate is biased by
a pre-determined constant, with the overall summation of re-
action rates unchanged.22 As the probability for reaction se-
lection can be biased such that rare events are sampled more
frequently while the time scale of the underlying reactions
is maintained, significantly improved sampling efficiency for
rare events was reported.22, 23, 26 However, the choice of bias
constants strongly affects the effectiveness of wSSA. When
there are many reactions and the network is complex, the
heuristic approach of determining bias constants by examin-
ing the reactions does not work.22 As there is no general guid-
ance in how bias constants should be chosen, poor choices
may lead to estimations that are less accurate than the origi-
nal SSA.23

Daigle et al. developed the doubly-weighted SSA
(dwSSA) algorithm, in which a multilevel cross-entropy
(CE) method is used iteratively to provide estimates of bias
constants.23 This is achieved by running long trial simula-
tions until a fraction of the sampled trajectories reaches the
target states.23 With this automated estimation, both reaction
selection and the underlying time scale of reactions can be
biased.23

A drawback of methods using constant biases such as
wSSA and dwSSA is that the bias coefficients are global and
state-independent, and are not influenced by the concentra-
tions of molecules, which evolve with time. As the appar-
ent rate of a reaction can vary dramatically depending on the
copy number of molecules, the degree of bias for a reaction
therefore needs to be adjusted according to the available copy
numbers of reactants. With globally fixed bias constants, a
network with reactions of a wide range of rates will have over-
and under-biased reactions, depending on the states of the sys-
tem. As a result, estimated properties of a network will have
large variance, making these methods unsuitable for complex
networks.27

Roh et al. developed a state-dependent biasing wSSA
method (swSSA).27 By empirically classifying reactions into
groups of favored, disfavored, and neutral reactions, biases in
selection probability for reactions in the first two groups are
calculated in a state-dependent fashion. The swSSA method
can have better estimation accuracy and efficiency than the
wSSA method,27 at the expense of about twice as many bi-
asing parameters as that of the wSSA.27 Roh et al. further
developed the state-dependent doubly weighted SSA method
(sdwSSA), where reactions are further grouped into bins ac-
cording to their selection probabilities, and are assigned dif-
ferent bias constants, which are automatically estimated using
the cross-entropy method.26 However, the number of param-
eters to be estimated using sdwSSA is much larger than that
of wSSA, dwSSA, and swSSA. For example, about 20 bias
constants need to be estimated for a simple reversible isomer-
ization system with only two reactions.26 Estimating a large
number of bias constants needed for complex networks be-
comes difficult.

In this study, we describe an algorithm named adaptively
biased sequential importance sampling (ABSIS) for efficient

sampling of rare events. Based on the principle of sequen-
tial importance sampling, our approach adopts the look-ahead
strategy, a technique well-established in polymer and protein
studies,28–31 to gather future information for design of bias
parameters to enable effective barrier crossings.28–33 By enu-
merating short paths from the current state, bias coefficients
are generated based on analysis of these short paths. Unlike
the dwSSA and sdwSSA methods, in which biases are fixed
constants after parameter estimation, the biases in ABSIS for
each reaction is dynamically determined based on exact cal-
culation of the total probability of short κ-step forward- and
backward-moving reaction paths, without the need of binning
reaction rates. Reactions with higher probability of forward-
moving are then encouraged, and reactions with higher proba-
bility of backward-moving are discouraged. Regardless of the
number of reactions in the networks, we only need to assign
two bias parameters for the whole network: the degree to en-
courage forward-moving reactions and the degree to discour-
age backward-moving reactions, which both can be estimated
through an efficient parameter estimation algorithm.

We also take advantage of the recent development of
a method that directly solves the discrete chemical master
equation.8, 19 With a finite buffer, the rare event probability
of a stochastic network of modest size can be computed ex-
actly using this method, allowing us to have a gold standard to
objectively assess the accuracy of estimated rare event prob-
abilities through sampling. With errors computed based on
exact numerical solutions, we show with four biological ex-
amples that the ABSIS method have improved or comparable
accuracies compared to other methods (the dwSSA method,
and the swSSA and sdwSSA methods when data available),
at overall significantly reduced computational cost and much
higher success rate.

This article is organized as follows: We briefly discuss
the theoretical framework of reaction networks, the principle
of sequential importance sampling, and details of the ABSIS
method. We then apply our method to study four biological
problems, namely, the birth-death process, the reversible iso-
merization model, the bistable Schlögl model, and the enzy-
matic futile cycle, and compare the accuracies of estimations
and the success rates in generating reaction paths reaching the
target states with the SSA and dwSSA methods. We conclude
with remarks and discussions.

II. MODEL FRAMEWORK

A. Reaction networks

We assume a well-mixed biochemical system with con-
stant volume and temperature. There are n different molec-
ular species: X = {X1, X2, · · · , Xn}. We use xi(t) to de-
note the copy number of molecular species Xi at time t.
There are m possible different reactions in the system: R
= {R1, R2, · · · , Rm}. Each reaction Rk has an intrinsic reac-
tion rate constant rk. The microstate of the system at time
t is represented by a non-negative integer column vector:
x(t) = (x1(t), x2(t), · · · , xn(t))T , where T denotes the trans-
pose. An arbitrary reaction Rk (k = 1, 2, · · · , m) with intrinsic
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rate rk takes the general form:

c1kX1+c2kX2+ · · · +cnkXn

rk→ c′
1kX1+c′

2kX2+ · · · + c′
nkXn,

which brings the system from a microstate xi to xj . The
difference between xi and xj is the stoichiometry vector
sk of the reaction Rk: sk = xj − xi = (s1k, s2k, · · · , snk)T

= (c′
1k − c1k, c′

2k − c2k, · · · , c′
nk − cnk)T ∈ Zn. The sto-

ichiometry matrix S for the reaction network is defined
as: S = (s1, s2, · · · , sm) ∈ Zn×m, where each column rep-
resents a single reaction. The rate Ak(xi , xj ) of reaction
Rk that transforms microstate from xi to xj is determined
by the intrinsic rate constant rk and the combination
number of relevant reactants in the current microstate
xi : Ak(xi , xj ) = Ak(xi) = rk

∏n
l=1( xl

clk
), assuming the

convention ( 0
0 ) = 1.

B. State space and probability landscape

The state space S of a reaction network is defined as the
set of all possible microstates that the system can visit from
a given initial condition: S = {x(t)|x(0), t ∈ (0, θ )}. We de-
note the probability of each microstate at time t as p(x(t)),
and the probability distribution at t over the whole state space
as p(t) = {(p(x(t))|x(t) ∈ S)}. p(t) is also called the prob-
ability landscape of the network.8 It can be visualized as a
time-evolving scalar surface over the state space, with the
value at each state x taken to be p(x(t)). The volume inte-
gral under the surface at any arbitrary time t is always 1:∫

x∈S
p(x, t)dx = 1.

In general, there is no assumption of detailed balance. For a
reaction network with arbitrary stoichiometries and a specific
initial state p(0), its probability landscape is governed by the
discrete chemical master equation (dCME)

d p(t)

dt
= AT p(t), (1)

from which the time-evolving probability landscape p(t) and
its steady state can be directly obtained.8, 19 Here A is the tran-
sition rate matrix A = {Ak(xi , xj )} ∈ R|S|×|S|.

C. Transition paths and transition probabilities

A transition path π(S,T) consists of a sequence of states:
S = (x0, · · · , xN ), starting from x0 and ending at xN , along
with a sequence of time points T = (t0, · · · , tN ) when each
of these states are visited. Here N is the length of the transi-
tion path. When the beginning state x0 and the ending state
xN , as well as the sequence of states S and time points T are
unambiguous from the context, we use π (0, N) to denote the
transition path π(S,T) for convenience. This transition path is
understood to move from state x0 to state xN through a to-
tal of N steps following the specific sequence of states S and
sequence of time points T. The sequence of time points can
be alternatively specified by the corresponding sequence of
time intervals: {τ 0, τ 1, · · · , τN − 1} = {t1 − t0, t2 − t1, · · · , tN
− tN − 1}. In implementation, these time intervals are not pre-
defined but are small random values generated by sampling

Poisson processes, whose rates are governed by the underly-
ing chemical reaction rates (see below). We assume that there
is a unique reaction connecting each neighboring pair of mi-
crostates xi−1 and xi along the reaction path. The probability
p(π(S,T)) of a given transition path π(S,T) can be calculated as
the product of the probability of the initial state x0, and the
probabilities of all subsequent transitions between neighbor-
ing states p(xi |xi−1, τi−1)dτi−1,

p(π(0,N)) = p(π(S,T)) = p(x0)
N∏

i=1

p(xi |xi−1, τi−1)dτi−1.

(2)

Assuming a Poisson process, the probability
p(xi |xi−1, τi−1)dτi−1 of each transition occurring dur-
ing an infinitesimally small dτ i − 1 after τ i − 1 can be
calculated as22, 34

p(xi |xi−1, τi−1)dτi−1 =A0(xi−1)e−A0(xi−1)τi−1dτi−1 · Ak(xi−1)

A0(xi−1)

= Ak(xi−1)e−A0(xi−1)τi−1dτi−1, (3)

where A0(xi−1) = ∑m
k=1 Ak(xi−1) is the sum of rates of

all reactions that could happen at the state xi−1, and
A0(xi−1)e−A0(xi−1)τi−1dτi−1 is the probability that there is ex-
actly one reaction occurring in next time interval τ i − 1.35 The
subscript k denotes the reaction Rk that connects state xi−1 to
state xi . The fraction Ak(xi−1)

A0(xi−1) is the probability that the kth re-
action Rk occurs during τ i − 1.22, 34 Taking together, the overall
probability of the transition path π is

p(π(0,N)) = p(x0)
N∏

i=1

Ak(xi−1)e−A0(xi−1)τi−1dτi−1. (4)

D. Macrostates and probability of rare transitions
between macrostates

We define a macrostate B as a set of microstates: B
= {x| ∈ S} ⊂ S. Here we are interested in biologically moti-
vated macrostates. For example, in a bistable genetic switch
system, most microstates belong to either the “on/off” or the
“off/on” metastable states, each of which can be regarded as a
macrostate. The probability of a macrostate B can be written
as: p(B) = ∑

x∈B p(x).
For a stochastic network, if a destination macrostate D

can be reached from a beginning macrostate B, the probabil-
ity of the system transiting from B to D is 1 if given infinite
amount of time. However, we are interested in the probability
of transition from B to D within a finite period of time θ . That
is, we wish to estimate p(D|B, t ≤ θ ), which may be small
(Fig. 1),

p(D|B, t ≤θ )=
∑
π(S,T)

p(π(S,T)|x0 ∈ B, S ∩ D 	= ∅, tN−t0 ≤θ ).

1. Calculating exact transition probability

The finite buffer dCME method can be used to enu-
merate the state space S of stochastic networks of modest
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FIG. 1. Distribution of rare event transition paths. Rare event transition paths
traveling from state B to D within time θ are of interest.

size, and is optimal both in time complexity and in space
requirement.8, 19 For these networks, we can directly solve the
dCME. The transition probabilities of specific paths connect-
ing two macroscopic states can therefore be calculated ex-
actly. In this study, the probabilities of rare events in all exam-
ples are computed both by the finite buffer dCME method and
by sampling methods. The results of the former are regarded
as exact solutions, against which results from sampling meth-
ods are compared.

E. Weighted SSA and doubly-weighted SSA

There are potentially an enormous number of transition
paths connecting two macrostates. In general, if enumeration
is infeasible, exact calculation of the transition probabilities
is not possible. One can estimate the probabilities through
Monte Carlo sampling.

A number of sampling methods for rare events have
been developed based on the principle of importance sam-
pling. Kuwahara and Mura developed the wSSA algorithm,22

in which the rate of each reaction Ak(x) is biased by a
pre-selected predilection constant αk, which will increase
or decrease the rate of a specific reaction. This may af-
fect the fraction of sampled paths reaching the target states.
These paths are generated from the biased reaction rate Bk(x)
= αkAk(x). The biased probability p′(xi |xi−1, τi−1)dτi−1 of
the reaction in the time step starting at state xi−1 is calculated
as

p′(xi |xi−1, τi−1)dτi−1

= A0(xi−1)e−A0(xi−1)τi−1dτi−1 · Bk(xi−1)

B0(xi−1)
, (5)

where reaction Rk leads xi−1 to xi , and B0(x) ≡ ∑m
k=1 Bk(x).

A weight for correcting the bias is also kept for this reaction:

w(k, xi−1) = Ak(xi−1)B0(xi−1)

Bk(xi−1)A0(xi−1)
= 1

αk

B0(xi−1)

A0(xi−1)
. (6)

The true probability p(xi |xi−1, τi−1) is then recovered as
p(xi |xi−1, τi−1) = w(k, xi−1) · p′(xi |xi−1, τi−1). The biased
probability p′(π (0, N)) for the full path is:

p′(π(0,N)) = p(x0)
N∏

i=1

p′(xi |xi−1, τi−1)dτi−1,

with the weight:

w(π(0,N)) =
N∏

i=1

w(k, xi−1) =
N∏

i=1

1

αk

B0(xi−1)

A0(xi−1)
,

The true probability of the path is then: p(π(0,N))
= w(π(0,N)) · p′(π(0,N)).

In wSSA, bias is introduced through the second factor
Bk (xi−1)
B0(xi−1) in Eq. (5), which represents the biased probability in
selecting the next reaction in the wSSA scheme. The time
scale of the Poisson process underlying the reaction, namely,
the first factor in Eq. (5), remains unchanged.

In the doubly-weighted SSA method (dwSSA),23 both
the selection probability and the Poisson time scale are biased,
and the biased probability for each step in a dwSSA sampling
path is:

p′(xi |xi−1, τi−1)dτi−1

= B0(xi−1)e−B0(xi−1)τi−1dτi−1 · Bk(xi−1)

B0(xi−1)

= Bk(xi−1)e−B0(xi−1)τi−1dτi−1, (7)

where Bk(xi−1) = γkAk(xi−1) is the biased reaction rate. The
weight for the kth reaction occurring at step i − 1 is obtained
from dividing Eq. (3) by Eq. (7):

w(k, xi−1) = Ak(xi−1)e−A0(xi−1)τi−1

Bk(xi−1)e−B0(xi−1)τi−1

= 1

γk

exp [(B0(xi−1) − A0(xi−1))τi−1].

The biased probability for a full dwSSA path π (0, N) is:

p′(π(0,N)) = p(x0)
N∏

i=1

p′(xi |xi−1, τi−1)dτi−1,

and its weight is:

w(π(0,N)) =
N∏

i=1

w(k, xi−1)

=
N∏

i=1

1

γk

exp[(B0(xi−1) − A0(xi−1))τi−1].

The true probability of the path p(π (0, N)) can be recovered as:
p(π(0,N)) = w(π(0,N)) · p′(π(0,N)).

A key component of the dwSSA method is an automatic
method to estimate the bias constant γ k for each reaction Rk.
A large number (typically 105) of full-length trial simulations
are run, with some of them reaching the target macrostate. The
number of each reaction that occurred in those simulations
that reached the macrostate are counted and compared to the
expected number of occurrence if one were to follow a Pois-
son process in the same given time under the same initial con-
dition. Those reactions occur more frequently than expected
are biased towards. Reactions that occur less frequently than
expected are biased against. This procedure is repeated with
the biases updated iteratively, until a predefined fraction (e.g.,
2%) of full-length trial paths reaches the target macrostate. In
the further developed swSSA and sdwSSA methods, the bias
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coefficient is not a constant, but depends on the copy numbers
of molecules of the current state.26, 27 In order to assign more
effective bias coefficients, a refined scheme of bias assign-
ment is used in sdwSSA, in which each reaction is divided
into multiple bins according to its probability to be chosen,
with each bin assigned its own bias coefficient.26

There are a number of issues with these methods. First,
estimation of the bias parameters relies on counting the
number of occurrence of a reaction, which may not be
possible or the estimate may not be reliable if reactions hap-
pens rarely. For example, gene binding and unbinding reac-
tions in a toggle switch system bring the system from one
metastable state to another. But this happens only once or
twice during an extended time. It is challenging to sample
these binding/unbinding reactions adequately using trial sim-
ulations, where limited runs are carried out. Second, as the
estimated bias parameters are either constant or based on cur-
rent state, no considerations for possible future barriers in
the probability landscape is incorporated. This becomes prob-
lematic for complex systems, for example, those with multi-
stabilities, where steep barriers need to be crossed. In these
systems, the desirable bias may be quite different depend-
ing on the neighborhood where the system is currently lo-
cated in the landscape. Third, there is a proliferation of ad-
justable bias parameters, for example, on the order of O(βm)
for the sdwSSA method, with the number of bins β = 5–20
for each of the m reactions, making the assignment of bias
coefficients a challenging task.26 As a result, often the over-
all amount of computation involved is substantial, the vari-
ance of samples generated is high, and the accuracy is still
unsatisfactory.

F. Adaptively biased sequential importance sampling

Here we describe a new method called ABSIS for
estimating rare transition probability between macrostates.
Our approach is based on the look-ahead strategy and the
principle of sequential importance sampling,31 which have
found wide applications in studies of polymers and pro-
tein biophysics,29, 30 where challenging problems such as
RNA loop entropy calculation, generation of protein fold-
ing transition state ensemble, and protein packing have been
investigated.30, 33, 36 In ABSIS, bias for each reaction is cal-
culated based on present and future information, and is adap-
tively adjusted automatically, resulting in more efficient sam-
pling of rare events. It can be applied to stochastic networks
with complex probability landscapes.

1. Perfect path sampling

Assume we wish to reach the macrostate D from the mi-
crostate x0. We can classify paths π (0, N) starting at x0 and
ending at xN into two sets PD and PD̄: those that reach
the macrostate D before time θ form the set of paths PD
= {π(0,N)|S ∩ D 	= ∅, tN − t0 ≤ θ}, and those that do not
form another set of paths PD̄ = {π(0,N)|S ∩ D = ∅, tN
− t0 > θ}.

Our goal is to assess the transition probability p(D|x0)
from the microstate x0 to the macrostate D. It can be calcu-
lated as

p(D|x0) =
∫

π(0,N)

I(π(0,N)) · p(π(0,N)) dπ(0,N),

where I(π(0,N)) is an indicator function such that I(π(0,N))
= 1 if π(0,N) ∈ PD, and 0 otherwise. Namely, it is 1 if a path
π (0, N) starting from state x0 reaches the macrostate D in time,
and 0 otherwise. Perfect path samples for calculating p(D|x0)
then can be drawn as

π(0,N) ∼ I(π(0,N)) · p(π(0,N)).

In general, if our goal is to estimate certain property of
the reaction paths, which is expressed as a scalar function
f (x) : Z+n �→ R of the microstate x, perfect sampling of the
reaction paths for this estimation problem is then:

π(0,N) ∼ I(π(0,N)) · f̂ (π(0,N)),

where f̂ (π(0,N)) = p(x0)f (x0)
∏N

i=1 p(xi |xi−1, τi−1)f (xi),
and (x0, · · · , xN ) forms the path π (0, N).

2. Optimal bias strategy and future-perfect
adaptive weighting

Similarly, the probability p(D|xi) that future paths after
a reaction connecting the microstate xi−1 to xi will reach the
destination macrostate D in time is:

p(D|xi) =
∫

π(i,N)

I(π(i,N)) · p(π(i,N))dπ(i,N).

To estimate the transition probability p(D|xi−1), the next state
xi can be sampled future-perfectly if we draw xi as

xi ∼ p(D|xi).

If our goal is to estimate the property f( · ) of the reaction path
that reaches the macrostate D, xi can be sampled optimally as

xi ∼
∫

π(i,N )
I(π(i,N)) · f̂ (π(i,N))dπ(xi ,N),

where f̂ (π(i,N)) = p(xi)f (xi)
∏N

l=i+1 p(xl|xl−1, τl−1)f (xl).

3. κ-Step look-ahead bias strategy and
adaptive weighting

As it is usually impossible to enumerate and examine all
paths up to time θ to calculate p(D|xi) exactly, we approx-
imate it by adopting a κ-step look-ahead strategy. Briefly,
we analyze statistics of exhaustively generated short paths,
and design biases based on estimations made on these short
paths. We first classify κ-step paths π (i, i + κ), which all have
the first step following a specific reaction connecting xi−1

to xi , into three types: forward-moving paths PF , backward-
moving paths PB , and non-moving paths PN (Fig. 2):

Forward-moving: πi,i+κ ∈ PF if d(xi+κ , D) < d(xi−1, D),

Backward-moving: πi,i+κ ∈ PB if d(xi+κ , D) > d(xi−1, D),

Non-moving: πi,i+κ ∈ PN if d(xi+κ , D) = d(xi−1, D).
(8)
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FIG. 2. Look-ahead strategy. Two reactions leading current state xi−1
to next state xi are shown in dashed lines (blue and pink). All possi-
ble look-ahead paths of length κ = 2 for both reactions from two dif-
ferent next states xi are illustrated in solid blue and pink lines. State B
is the initial state, and D is the target state. The thickness of lines indi-
cates reaction rates. The color of circles at the end state of each path in-
dicates moving forward (green, PF ), backward (red, PB ), and non-moving
(yellow, PN ).

Here d(xi+κ , D) and d(xi−1, D) are the distances between
the states xi+κ , xi−1, and the target macrostate D, respec-
tively. We define the distance d(x, D) = minxl∈D d(x, xl).
For convenience, we use 1-norm distance. The forward-
moving, backward-moving, and non-moving probabilities af-
ter κ-steps, given that the first reaction connects state xi−1 and
xi , can be calculated as

pF(xi) =
∑

π(i, i+κ)∈PF

p(π(i, i+κ))

pB(xi) =
∑

π(i, i+κ)∈PB

p(π(i, i+κ))

and

pN(xi) = 1 − [pF(xi) + pB(xi)].

We can then have the approximations p(D|xi) ≈ pF(xi), and
p(D̄|xi) ≈ pB(xi) + pN(xi), which will be used to construct
the bias functions for accelerating/decelerating the reaction
rate and for selecting reaction. We can now have the approxi-
mation:

p(D|xi) =
∫

π(i,N)∈PD

I(π(i,N)) · p(π(i,N))dπ(i,N)

≈
∫

π(i,i+κ)∈PF

p(π(i,i+κ))dπ(i,i+κ).

4. Bias function with κ-step look-ahead

Recall that the probability of a path p(π (i, N)) is computed
as

p(π(i,N)) = p(xi)
N∏
l=i

A0(xl)e
−A0(xl )τl dτl

Ak(xl)

A0(xl)
.

To design bias functions that are fast to compute, we consider
only the overall probability pr(π (i, N)) of reaction choices ac-
cumulated along the path, and ignore the rates of reactions for
now:

pr (π(i, N)) =
N∏
l=i

Ak(xl)

A0(xl)
.

We have

pF(xi)=
∑

π(i, i+κ)∈PF

p(π(i, i+κ))≈
∑

π(i, i+κ)∈PF

[ i+κ−1∏
l=i

Ak(xl , xl+1)

A0(xl)

]

(9)
and

pB(xi)=
∑

π(i, i+κ)∈PB

p(π(i, i+κ))≈
∑

π(i, i+κ)∈PB

[ i+κ−1∏
l=i

Ak(xl , xl+1)

A0(xl)

]
.

(10)
We can then design a bias function gk(xi−1)

= f (pF(xi), pB(xi), Ak(xi−1, xi), A0(xi−1)) for select-
ing reaction k, and set Bk(xi−1) = gk(xi−1)Ak(xi−1) as the
biased reaction rate. The general biased probability for each
step in the ABSIS sampling path is then:

pABSIS(xi |xi−1, τi−1)dτi−1

= B0(xi−1)e−B0(xi−1)τi−1dτi−1 · Bk(xi−1)

B0(xi−1)
. (11)

Note that calculating the probability pF(xi) and pB(xi)
is equivalent to follow a κ-step Markov process p(i + κ)
= T κ p(i), where the probability transition matrix is:

T = AT diag(1/A0(xi,1), 1/A0(xi,2), · · · , 1/A0(xi,|S|)) + I,

in which A is the transition rate matrix of dCME in
Eq. (1), A0(xi) = ∑m

k=1 Ak(xi , xi ′), I is the identity matrix,
and {xi,1, · · · , xi,|S|} form the state space S for this κ-step
Markov process starting from xi . The initial probability dis-
tribution p(i) for this Markov process is such that the proba-
bility for the current state xi is 1 and 0 for all other states.

a. Biasing strategy. The bias in selecting reaction k that
brings state xi−1 to xi is based on the forward-moving and
backward-moving probabilities. We first have

gk(xi−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − λ1pF(xi) log
[

Ak(xi−1,xi )
A0(xi−1) · pF(xi)

]
, if pF(xi) > pB(xi)

min
{

1.0, − 1
λ2 (1 − pB(xi)) log

[
Ak(xi−1,xi )
A0(xi−1) · pB(xi)

]}
, if pF(xi) < pB(xi)

1, if pF(xi) = pB(xi),

(12)
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FIG. 3. Surface map of bias function gk(xi−1) in Eq. (12) with λ1 = λ2
= 0.5. Bias strengths for encouraging reaction k at different values of
forward-moving probability pF and Ak (xi−1,xi )

A0(xi−1) are shown in (a). Bias
strengths for discouraging reaction k at different values of backward-moving
probability pB and Ak (xi−1,xi )

A0(xi−1) are shown in (b).

where A0(xi−1) = ∑m
k=1 Ak(xi−1, xi ′), i′ is any reachable

state from xi−1. Here λ1 ≥ 0 and λ2 ≥ 0 are the parameters
for biasing towards forward-moving and against backward-
moving reactions, respectively. Overall, there are only these
two bias parameters, regardless which reaction k is consid-
ered. The surface maps of bias function gk(xi−1) with λ1

= λ2 = 0.5 for encouraging and discouraging reaction k
at different values of pF, pB, and Ak(xi−1,xi )

A0(xi−1) are shown in
Figs. 3(a) and 3(b).

The construction of gk(xi−1) is based on the following
consideration. The rate ratio Ak(xi−1,xi )

A0(xi−1) , which is the original
probability of choosing the reaction k that reaches xi , is now
modified by the forward probability pF(xi) at xi , obtained by
looking κ-steps ahead. The term Ak(xi−1,xi )

A0(xi−1) · pF(xi) therefore
represents the probability of selecting reaction k and mov-
ing forward. To encourage forward-moving reactions with
lower reaction rates, we use the term − log[Ak(xi−1,xi )

A0(xi−1) · pF(xi)]
instead. This is then further modified by pF(xi) so that reac-
tions with higher forward-moving probability is favored pro-
portionally (Fig. 3(a)). The bias coefficient λ1 is used to ad-
just the bias strength for forward-moving reactions. Larger λ1

gives stronger encouragement. As −λ1pF(xi) log[Ak(xi−1,xi )
A0(xi−1)· pF(xi)] falls in the interval [0, +∞), we add the constant 1

so the function gk(xi−1) is now in the interval [1, +∞) when
reaction k should be encouraged. Setting bias according to
gk(xi−1) will increase the probability for a forward moving
reaction to be selected. Overall, if a larger λ1 value is chosen,
a slower reaction with higher probability of moving forward
will be encouraged more (Fig. 3(a)).

Similarly, backward reactions are biased against, with
stronger discouragement when using a larger λ2 value. The
discouragement is also stronger for reactions with larger
backward probability pB(xi) and larger rate ratio Ak(xi−1,xi )

A0(xi−1)
(Fig. 3(b)). To ensure gk(xi−1) fall within the interval (0, 1],
a “min ” function is used here to add an upper bound for the
bias. If xi neither advances nor backtracks the system, no bias
is introduced.

b. Corrections of biases and biased reaction rates. In
principle, both reaction selection probability and the Poisson

time scale can be biased. In this study, we focus on effects of
directly biasing reaction selection probability alone. The ef-
fects of directly biasing specific reaction rates are the subject
for future studies. Specifically, we now insist that the overall
reaction rate of the system is unchanged, namely,

B0(xi−1) = A0(xi−1). (13)

As B0(xi−1) = ∑
k Bk(xi−1) = ∑

k gk(xi−1)Ak(xi−1) and
A0(xi−1) = ∑

k Ak(xi−1), we use a normalizing constant α:

α = A0(xi−1)

/ ∑
k

gk(xi−1)Ak(xi−1),

and the biased reaction rate is tentatively set to:

B ′
k(xi−1) = αgk(xi−1)Ak(xi−1). (14)

This ensures Eq. (13) holds.
As there are occasions where the bias changes direction

after normalization, namely, from <1.0 to >1.0, or vice versa,
we further insist that:

B ′
k(xi−1) ≤ Ak(xi−1), if pB(xi) ≥ 2 · pF(xi),

B ′
k(xi−1) ≥ Ak(xi−1), if pF(xi) ≥ 2 · pB(xi).

(15)

To satisfy this requirement, we partition all reactions
into two disjoint sets based on whether their corresponding
B ′

k(xi−1) satisfy the above inequalities:

RS = {k| if B ′
k(xi−1) satisfies Eq. (15)},

RU = {k| otherwise}.
(16)

Inequalities in Eq. (15) are maintained by simply assigning no
bias for all reactions in RU , and redistribute their surpluses
and deficits evenly to all reactions in RS . As a result, the total
reaction rate B0(xi−1) is unchanged. We have the final biased
reaction rates:

Bk(xi−1) = Ak(xi−1), if k ∈ RU ,

(17)

Bk(xi−1) = B ′
k(xi−1)(1 +

∑
l∈RU

[B ′
l (xi−1) − Al(xi−1)]

/

∑
j∈RS

[B ′
j (xi−1)]), if k ∈ RS,

where B ′
k(xi−1) is given by Eq. (14). The final biased proba-

bility for each step in an ABSIS sampling path is then calcu-
lated as

pABSIS(xi |xi−1, τi−1)dτi−1

= B0(xi−1)e−B0(xi−1)τi−1dτi−1 · Bk(xi−1)

B0(xi−1)
. (18)

5. Weights of ABSIS path

The weight for correcting the bias for taking the kth reac-
tion at step i − 1 is obtained by dividing Eq. (3) by Eq. (18):

wABSIS(k, xi−1) = Ak(xi−1)e[B0(xi−1)−A0(xi−1)]τi−1

Bk(xi−1)
. (19)
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For the special case when the overall reaction rate is
unchanged, namely, when B0(xi−1) = A0(xi−1), we have
wABSIS(k, xi−1) = Ak(xi−1)

Bk (xi−1) . The weight for a full ABSIS path
is then:

wABSIS(π(0,N)) =
N∏

i=1

wABSIS(k, xi−1)

=
N∏

i=1

Ak(xi−1)e[B0(xi−1)−A0(xi−1)]τi−1

Bk(xi−1)

=
N∏

i=1

Ak(xi−1)

Bk(xi−1)
. (20)

The biased probability for a full ABSIS path π (0, N) is

pABSIS(π(0,N)) = p(x0)
N∏

i=1

pABSIS(xi |xi−1, τi−1)dτi−1.

The true probability of the path π (0, N) can be recovered as

p(π(0,N)) = wABSIS(π0,N ) · pABSIS(π0,N ).

6. The ABSIS algorithm

We summarize the ABSIS method in Algorithm I.
In order to improve computing efficiency, we enumerate

the κ-step look-ahead paths for each microstate when encoun-
tered. As implementation and data structure greatly affect
computing speed, Ak(xi−1), A0(xi−1), Bk(xi−1), B0(xi−1),
and gk(xi−1) are all calculated only once when the microstate
xi−1 is first visited, with their values stored in hash tables us-
ing the microstate xi−1 as the key. All subsequent visits to the
microstate xi−1 need only to retrieve relevant values stored
in the hash tables. This leads to dramatically improved time
efficiency.

7. Determining look-ahead step κ and bias parameter
λ1 and λ2

In ABSIS, we only have one look-ahead steps parameter
κ , and two bias parameters λ1 and λ2 to be determined, re-
gardless of the number of reactions and the overall network
complexity.

ALGORITHM I. The ABSIS

// Input (X , R, x0, D, θ , κ , M, λ1, λ2)
Define network N ← (X ,R)
Initialize hash table H = {(xi ) : [A0(xi ), B0(xi ), Ak(xi ), Bk(xi ), gk(xi )]} ← ∅
j ← 0, total weight wM ← 0, weight square vM ← 0,
Number of successful paths Ns ← 0
while j < M do

Path length i ← 1
Initialize path with the initial state xi−1 ← x0

Time on current path t ← 0, weight of current path w ← 1
while t < θ and d(xi−1,D) > 0 do

if xi−1 /∈ H then
Calculate reaction rates Ak(xi−1) of state xi−1 for all reactions Rk ∈ R
A0(xi−1) ← ∑m

k=1 Ak(xi−1)
Enumerate all possible κ step paths π (i − 1, i + κ) starting from state xi−1 using Algorithm of Ref 19.
Calculate pF(xi ) and pB(xi ) for each Rk using Eq. (9) and (10)
Calculate bias strength gk(xi−1) for each Rk according to Eq. (12)
Calculate tentative reaction rate B ′

k(xi−1) for all Rk according to Eq. (14)
Calculate final biased reaction rate Bk(xi−1) for all Rk according to Eq. (17)
Calculate B0(xi−1) ← ∑m

k=1 Bk(xi−1)
H ← H ∪ {(xi−1) : [A0(xi−1), B0(xi−1), Ak(xi−1), Bk(xi−1), gk(xi−1)]}

end if
Retrieve Bk(xi−1), Ak(xi−1), B0(xi−1), A0(xi−1) and gk(xi−1) from H using key xi−1

Generate two uniform random numbers μ1 ∼ U(0, 1) and μ2 ∼ U(0, 1)
τi−1 ← − ln(μ1)/B0(xi−1)
r ← smallest integer satisfying

∑k−1
r=1 Br (xi−1) < μ2B0(xi−1) ≤ ∑k

r=1 Br (xi−1)
t ← t + τ i − 1, xi−1 ← xi−1 + sr

w ← w · Ak (xi−1)e(B0(xi−1)−A0(xi−1))τi−1

Bk (xi−1)

i ← i + 1
end while
if t < θ and d(xi−1,D) = 0 thenwM ← wM + w, vM ← vM + w2, Ns ← Ns + 1
end if

end while
return pABSIS (x0,D, θ ) = wM/M

return σ 2
ABSIS (x0,D, θ ) = (vM/M) − (wM/M)2

return σABSIS (x0,D, θ ) =
√

σ 2
ABSIS/M

return Success Rate: s = Ns/M
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ALGORITHM II. Estimation of look-ahead steps κ and parameter search space l for ABSIS

1: // Input (X , R, x0, D, θ )
2: Look-ahead step: κ ← 2
3: Maximum range of parameter search space for determining λ1 and λ2: l ← 1.0
4: Sample size: M ← 1000
5: Success rate: s ← 0
6: while 1 do � Determine the optimal κ

7: s ← s + success rate of ABSIS(X , R, x0, D, θ , κ , M, λ1 = 0.0, λ2 = 1.0)
8: s ← s + success rate of ABSIS(X , R, x0, D, θ , κ , M, λ1 = 1.0, λ2 = 0.0)
9: s ← s + success rate of ABSIS(X , R, x0, D, θ , κ , M, λ1 = 1.0, λ2 = 1.0)
10: s ← s/3
11: if s > 0.5 then
12: break
13: end if
14: κ ← κ + 1
15: end while
16: s ← success rate of ABSIS(X , R, x0, D, θ , κ , M, λ1 = 0.5, λ2 = 0.5)
17: if s > 0.8 then � Determine the maximum range for parameter search: l

18: l ← 0.5
19: end if
20: return κ

21: return l

To determine κ , we make the reasonable assumption that
longer look-ahead paths lead to better bias parameters. Start-
ing from κ = 2, we test different κ values with an increment
of 1 using 103 ABSIS paths. We take the first value of κ that
gives an average success rate s of >0.50 at three different
parameters locations of (λ1, λ2) = (0.0, 1.0), (1.0, 0.0), and
(1.0, 1.0). This is very efficient as it typically only takes 3
× 103 ABSIS paths to evaluate one κ . This is summarized in
Algorithm II.

To determine the optimal biasing parameters (λ1, λ2)
∈ [0.0, 1.0] × [0.0, 1.0], we use a grid search, where 103 paths
are generated at each grid point. The sample variance, suc-
cess rate, total path weight and total weight square are stored
at each grid point. We assume that the success rate s of AB-
SIS increases monotonically with parameters λ1 and λ2, at
the cost of reduced diversity among sampled paths. We first
evaluate s at (λ1, λ2) = (0.5, 0.5) using 103 ABSIS paths. If
s > 0.8, we focus on exploring more diverse paths and restrict
our search space to (λ1, λ2) ∈ [0.0, 0.5] × [0.0, 0.5]. Other-
wise, the search space remains as [0.0, 1.0] × [0.0, 1.0].

We start at (λ1, λ2) = (0.0, 0.0), and move first along the
direction of λ2, and then continue at an increased λ1 value, all
with an interval of � = 0.1. We stop our search along the λ2

direction if s > 0.8. If s at a specific point of (λ1, λ2) is 0.5
better than its visited neighbors in either the λ1 or the λ2 direc-
tions, we retrospectively increase the number of grid points in
that direction with a finer interval of �′ = 0.02, and carry out
searches on these grid points. After the search concludes, grid
points with the smallest variance and s ∈ [0.1, 0.8] are taken
as candidates.

We repeat this search process starting at (0.5, 0.5) again.
The first candidate grid point that is again identified from
a second independent search is taken as our final choice.
When no candidate grid points are found in two independent
searches, we repeat the overall search process, and update the

stored sampling variances and success rates with results from
new samples, until an optimal parameter pair is found. To fur-
ther reduce computing costs, we skip grid points with previ-
ous s outside the range of [0.1, 0.8] when updating variance
and success rates. The procedure for parameter estimation is
summarized in Algorithm III.

III. BIOLOGICAL EXAMPLES

Below we describe examples of applying ABSIS to four
biochemical reaction networks. We show that ABSIS can pro-
vide accurate estimation of transition probabilities with effi-
cient computation. Results are then compared with the true
answer obtained from the finite buffer dCME method, and
those obtained using other methods (the dwSSA,23 as well as
the swSSA method27 and sdwSSA26 method when possible),
with differences discussed.

A. Birth-death process

The birth-death process is a simple chemical reaction sys-
tem that involves one molecular species and two reactions.
Synthesis and degradation are the only reactions, and there is
only one molecular species. The network and parameters are
specified as follows:

R1 : ∅ k1→ X, k1 = 1,

R2 : X
k2→ ∅, k2 = 0.025.

(21)

We study the problem of estimating the rare event probability,
p(x(t) = 80|x(0) = 40, t ≤ θ ), that the system transits from the
initial state x(0) = 40 to the target state x(t) = 80 within the
time threshold θ = 100. This same problem was studied in
Daigle et al.23 and Roh et al.27
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ALGORITHM III. Estimation of Bias Parameters λ1, λ2 for ABSIS.

1: // Input (X , R, x0, D, θ , κ , l)
2: Sample size: M ← 1000
3: Bias parameters: λ1 ← 0, λ2 ← 0
4: Grid size: � = 0.1 and refined grid size: �′ = 0.02
5: Initialize hash tables H1{(λ1, λ2) : [σ 2

1(λ1,λ2), s1(λ1,λ2), M1(λ1,λ2)]} ← ∅
6: Initialize hash tables H2{(λ1, λ2) : [σ 2

2(λ1,λ2), s2(λ1,λ2), M2(λ1,λ2)]} ← ∅
7: Total sample size for parameter estimation: Mtot ← 0
8: while 1 do
9: while λ1 ≤ l do
10: while λ2 ≤ l do
11: for i = 1 → 2 do
12: if (λ1, λ2) ∈ Hi AND si(λ1,λ2) /∈ [0.1, 0.8] then
13: λ2 ← λ2 + �

14: i ← i + 1, and go to next iteration.
15: end if
16: [σ 2

i(λ1,λ2), si(λ1,λ2)] = ABSIS(X , R, x0, D, θ , κ , M, λ1, λ2)

17: Mtot ← Mtot + M
18: if (λ1, λ2) /∈ Hi then
19: Hi ← H1 ∪ {(λ1, λ2) : [σ 2

i(λ1,λ2), si(λ1,λ2), M]}
20: else
21: Update [σ 2

i(λ1,λ2), si(λ1,λ2), Mi(λ1,λ2)] ∈ Hi using Mi(λ1,λ2) + M samples

22: end if
23: if (si(λ1,λ2) − si(λ1,λ2−�)) > 0.5 then
24: Repeat line 16–22 for refined grids in [λ2 − �, λ2] with interval �′

25: end if
26: if (si(λ1,λ2) − si(λ1−�,λ2)) > 0.5 then
27: Repeat line 16–22 for refined grids in [λ1 − �, λ1] with interval �′

28: end if
29: end for
30: λ2 ← λ2 + �

31: end while
32: λ1 ← λ1 + �

33: end while
34: if arg min(λ1,λ2)∈H1,s1(λ1 ,λ2)∈[0.1,0.8]{σ 2

1(λ1,λ2)} = arg min(λ1,λ2)∈H2,s2(λ1 ,λ2)∈[0.1,0.8]{σ 2
2(λ1,λ2)} then Exit

35: end if
36: end while
37: return λ1 and λ2

38: return total sample size: Mtot.

1. Exact probability landscape and transition
probability

We first enumerate the full state space S of the birth-
death model of Eq. (21), starting from the initial state of x(0)
= 40 using the finite state buffer dCME method with a buffer
size of 200.8, 19 There are a total of 241 microstates. To cal-
culate the exact rare event transition probability of p(80|40,
t ≤ θ ), the 241 × 241 transition rate matrix A is modified by
making the target states x = 80 as an absorbing state, follow-
ing the approach of Ref. 20. The exact transition probability
p(80|40, t ≤ θ ) can then be computed from the modified Aabs :

p(θ ) = p(0) exp(−Aabsθ ),

where the initial state probability landscape p(0) has
p(0)x=40 = 1 and 0 for all other 240 states. p(80|40, t ≤ θ ) is
obtained from p(θ )x=80. We use the matrix exponential soft-
ware EXPOKIT37 to calculate p(80|40, t ≤ θ ) for θ = 100
numerically. The exact transition probability is found to be
2.986 × 10−7. This indicates that there would be only about

3 successful transition paths observed in 10 million sampled
paths if the unmodified original SSA were used.

The calculated exact time-evolving probability landscape
of the system is plotted in Fig. 4(a). The blue and black
curves show the landscapes at time t = 100 and at the
steady state, respectively. There is one high probability re-
gion centered at x = 40 in both landscapes (green dots in
Fig. 4(a)). The target state x = 80 (red dots in Fig. 4(a)) is lo-
cated at a region with very low probability. Transitions from
x = 40 to x = 80 is therefore of very low probability, as cross-
ing a large barrier between these two states is necessary.

2. Determination of look-ahead steps and bias
parameters

The look-ahead steps for ABSIS is determined to be
κ = 2, and the parameter search space is determined to be 0.5
by running Algorithm II. The Algorithm III is then used to
determine λ1 and λ2 from the search space [0, 0.5] × [0, 0.5].
The optimal parameters are determined to be λ1 = 0.50 and
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FIG. 4. The birth-death model of Eq. (21). (a) Its time-evolving probability landscape. The blue and black curves highlight the landscape at t = 100 and at the
steady state, respectively. There is one high probability region located at x = 40 in both landscapes (green dots), which is also the initial state. The target state
(red dots) is outside the high probability region. (b) and (c) The variance (b) and success rate (c) of pilot ABSIS sampling during parameter search using a total
sampling size of M = 9.2 × 104 and look-ahead path length of κ = 2. The yellow dot in (b) shows the location of the optimal parameters. (d) The estimated
transition probability and sample convergence using ABSIS. The solid red line indicates the exact probability calculated from dCME. Black bars and heights of
the box-plots are the mean and its standard deviations of estimated transition probability calculated from 4 independent ABSIS simulations, each for a different
sample size of M = 104, 105, 106, 107, and 108, respectively. (e) Standard deviations of ABSIS (blue line) and dwSSA (red line) at different sample sizes.
(f) Sample variances of the ABSIS (blue line) and the dwSSA (red line) method at different sample sizes.

λ2 = 0.18, which have a success rate of 0.63. Figures 4(b) and
4(c) show the variances of sampling weights and success rates
of reaching the target state at different values of λ1 and λ2.
The optimal parameters λ1 = 0.50 and λ2 = 0.18 are located
in the lowest variance region of the parameter space (yellow
dot in Fig. 4(b)). The total sample size for parameter search
is 9.5 × 104, which is much smaller than the reported sample
size of 7 × 105 in dwSSA.23

3. Estimated transition probability

The estimated transition probability and variance from
four independent simulations are plotted in Fig. 4(d) for sam-
ple size M of 104, 105, 106, 107, and 108 used for each simu-
lation. The estimated rare transition probability with M = 107

is:

pABSIS(80|40, t ≤ 100) = 2.981 × 10−7 ± 0.001 × 10−7,

which is very close to the exact value of 2.986 × 10−7 (red
line in Fig. 4(d)). In addition, ABSIS converge rapidly as the
sample size increases.

We compare our results with those from the dwSSA
method, which was implemented following Ref. 23. We use
the exact bias constants of γ 1 = 1.454 and γ 2 = 0.686 as
in Daigle et al.23 The probability estimated from dwSSA

is 2.937 × 10−7 ± 0.017 × 10−7 using a sample size of
M = 107, which is accurate but less so than that of ABSIS.
Additionally, the ABSIS method has a higher success rate
(0.63) than the dwSSA method (0.59). The comparisons of
mean standard deviations between ABSIS and dwSSA calcu-
lated from four independent simulations using different sam-
ple size are plotted in Fig. 4(e). ABSIS has a standard devia-
tion about one order of magnitude smaller than dwSSA. In ad-
dition, ABSIS requires much less samples to achieve the same
accuracy of dwSSA. For example, 104 samples of ABSIS has
a smaller standard deviation than 106 samples of dwSSA. We
also compare ABSIS estimation with the results from swSSA
as reported in Roh et al.27 The estimation of 95% confidence
interval from 105 samples of ABSIS is 2.986 × 10−7 ± 0.020
× 10−7, which is comparable to the estimation of swSSA
2.986 × 10−7 ± 0.019 × 10−7 using the same sample size.27

The sample variances of the ABSIS method when us-
ing different sample sizes are shown in Fig. 4(f) (blue
line), along with variances using dwSSA sampling (red line,
Fig. 4(f)). Overall, ABSIS gives consistently small variance.
At M = 107, the variance (1.0 × 10−13) is two orders of mag-
nitude smaller than the variance of 3.1 × 10−11 when using
the dwSSA method. We further note that the variance of esti-
mated transition probabilities using dwSSA seems to increase
with the sample size.
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FIG. 5. Forward and backward moving probabilities. (a) and (b) Probability of moving-forward and moving-backward for two reactions R1 and R2 in birth-
death model. The x-axis is the system state, i.e., the copy number of molecular species X, and y-axis is the forward-moving (green lines) and backward-moving
(red lines) probabilities of reaction R1 and R2 in each state. (c) and (d) The final ABSIS bias strengths for both reactions in birth-death model. Blue lines show
the steady state probability landscape of birth-death model. The black lines in (c) and (d) show the curves of bias strengths for reactions R1 and R2, respectively.
Green and red vertical lines indicate the start and end state.

Overall, our results show that the ABSIS method con-
verges rapidly to the true transition probability when sample
size is increased, whereas the dwSSA method converges less
rapidly and has larger variance.

4. Bias mechanism of ABSIS

Examining the forward-moving probability (Figs. 5(a)
and 5(b), green lines) and the backward-moving probability
(red lines) of both reactions R1 and R2 at different states helps
to gain insight into how ABSIS works. The synthesis reaction
R1 has a much higher forward-moving than backward-moving
probability in majority of the states, and the degradation re-
action R2 has a much higher backward-moving probability
in majority of the states. These observations suggest that in
most cases, one should bias to encourage reaction R1 and to
discourage reaction R2.

As the system approaches the target state, the forward-
moving probability of R1 (green line in Fig. 5(a)) decreases
dramatically, while the backward-moving probability of R2

(red line in Fig. 5(b)) increases. This is due to the fact that
the propensity for backward-moving becomes stronger as the
rate of the degradation reaction R2 increases monotonically
with the copy number of X, while the rate of the synthesis
reaction R1 remains constant.

It is clear that constant biases will not work well for this
problem, as the rare event transition requires overcoming the
steep probability barrier between the two states of x = 40 and
x = 80 (Fig. 5(c), blue line). The optimal bias strengths will
need to depend on the current propensity of forward moving,
and should be adaptive.

For this problem, the ABSIS strategy of designing biases
based on estimations from look-ahead paths works well. The
bias strengths generated by the ABSIS algorithm for both re-
actions R1 and R2 are plotted in Figs. 5(c) and 5(d) (black
lines), along with the steady state probability landscape (blue
lines) as reference. In general, the biases for R1 are all fa-
vorable (Fig. 5(c)), and the biases for R2 are all unfavorable
(Fig. 5(d)). However, the strength of the bias is adaptively ad-
justed following changes in the reaction propensity, as well
as the need for overcoming the probability barriers. When ap-
proaching the target state, bias is set such that R1 is much
more strongly encouraged to produce more X, whereas R2 is
severely repressed to reduce the degradation of X.

Overall, by utilizing future information from κ = 2 look-
ahead paths, ABSIS can identify automatically the reaction to
encourage, as well as the reaction to discourage at any given
state. The forward and backward-moving probabilities esti-
mated from look-ahead paths can aid in crossing the proba-
bility barrier of rare event transitions. By adaptively changing
biases according to changes in reaction propensity and future
information about the probability barrier, the ABSIS method
can provide estimates for the birth-death model with much
smaller sampling variance compared to methods using con-
stant biases such as the dwSSA method.23

B. Reversible isomerization

We also apply the ABSIS method to the reversible
isomerization network taken from the Ref. 26, where the
sdwSSA method was applied.26 The reversible isomerization
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FIG. 6. Rare event estimation of the reversible isomerization network model. (a) Its time-evolving probability landscape projected to B. The blue and black
curves show the landscape at t = 10, and at the steady state, respectively. There is only one high probability region in both landscapes, which is located at xB

= 10 (red circles). The probability landscape at time t = 10 (blue curve) largely overlaps with that of the steady state (black curve). The initial state xB = 0
(green dots) is on the tail of the left-side of the probability peak, and the target state xB = 30 (red dots) is on the far right-side of the low probability region.
(b) and (c) The variances (b) and success rates (c) of pilot ABSIS sampling during parameter search using a total sample size of M = 8.8 × 104 and look-ahead
steps κ = 2. The yellow dot in (b) shows the location of the optimal parameters. (d) The estimated rare event probability and sampling convergence using
ABSIS. The solid red line represents the exact probability calculated from directly solving dCME. The black bars and the box heights are the means and
standard deviations calculated from 4 independent ABSIS simulations, for different sample sizes of M104, 105, 106, 107, and 108. (e) Standard deviations of
ABSIS (blue line) and dwSSA (red line) at different sample sizes. (f) Sampling variances of ABSIS (blue line) and dwSSA (red line) for different sample sizes.

network involves two molecular species and two reactions:

R1 : A
k1→ B, k1 = 0.12,

R2 : B
k2→ A, k2 = 1.

(22)

Our goal is to estimate the rare event probability p(xB

= 30|x(0), t ≤ 10) that the system transitions from an initial
state x(0) = {(100, 0)} to any state with 30 copies of B within
the time interval of t ≤ 10.

1. Exact probability landscape and transition
probability

We first enumerate the full state space S of the reversible
isomerization model in Eq. (22), starting from the initial state
x(0) = (100, 0) using the dCME method. This reversible iso-
merization model is a closed system, therefore no buffer is
needed. There are a total of 101 microstates in the state
space S. The exact transition probability of the rare event
p(xB = 30|x(0), t ≤ 10) is calculated by solving the matrix
exponential problem p(10) = p(0) exp(−Aabs · 10) using the
EXPOKIT software,37 where Aabs is the modified transition
rate matrix by making the target states {x|xB = 30} absorbing
states, following the approach of Ref. 20. The exact transition
probability is found to be 1.1911 × 10−5.

The time-evolving probability landscape of the system is
calculated, and its projection to B is plotted in Fig. 6(a). The
blue and black curves show the landscape at t = 10, and at the
steady state, respectively. There is one high probability region
centered at xB = 10 (red circles in Fig. 6(a)). The target state
xB = 30 (red solid dots in Fig. 6(a)) is located in a region
with very low probability. Transitions from xB = 0 (green
dots in Fig. 6(a)) to xB = 30 therefore has very low proba-
bility, as a large barrier between these two states need to be
crossed.

2. Determination of look-ahead steps and bias
parameters

The look-ahead steps for ABSIS is determined to be
κ = 2 and parameter search space to be l = 0.5 after running
Algorithm II. Algorithm III is used to determine λ1 and λ2

from the search space [0, 0.5] × [0, 0.5]. The optimal param-
eters are found to be λ1 = 0.20 and λ2 = 0.16, which have a
success rate of 0.76. Figures 6(b) and 6(c) show the variances
of sampling weights and success rates of reaching the target
state at different values of λ1 and λ2. The optimal parameter
pair λ1 = 0.20 and λ2 = 0.16 are located in the lowest vari-
ance region of the parameter space (yellow dot in Fig. 6(b)).
The total sample size for parameter search is 9.1 × 104, which
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is much smaller than the reported 7 × 105 samples for param-
eter estimations for dwSSA and sdwSSA in Ref. 26.

3. Estimated transition probability

The estimated transition probability and standard devia-
tion by averaging four independent simulations using differ-
ent sample size of M = 104, 105, 106, 107, and 108 are plotted
in Fig. 6(d). ABSIS simulation provides accurate estimate of
1.1909 × 10−5 ± 0.0004 × 10−5 using the sample size of
M = 107. In addition, ABSIS converges rapidly to the exact
rare event probability computed from the dCME method (red
line in Fig. 6(d)) as the sample size increases. When the same
sample size M = 106 as that of Roh et al.26 is used, the AB-
SIS method gives the estimation of 1.192 × 10−5 ± 0.001
× 10−5, with its standard deviation about only one half of the
estimation 1.193 × 10−5 ± 0.002 × 10−5 from the sdwSSA
method.26 When using the same sample size M = 105 as in
Roh et al.,27 the ABSIS method gives the 95% confidence in-
terval estimation as 1.191 × 10−5 ± 0.007 × 10−5, which has
a much smaller 95% confidence interval than the estimation of
swSSA 1.190 × 10−5 ± 0.011 × 10−5 with the same sample
size.27

We also compare our results with those from the dwSSA
method. For dwSSA sampling, we use bias constants (γ 1

= 1.301, γ 2 = 0.719) for the two reactions in the network
as reported in Roh et al.26 The rare event probability esti-
mated from dwSSA using the sample size of M = 107 is
1.278 × 10−5 ± 0.060 × 10−5, and the success rate is only
0.07. The comparisons of mean standard deviations between
ABSIS and dwSSA calculated from four independent simula-
tions using different sample size are plotted in Fig. 6(e). AB-
SIS results show 1–2 orders of magnitude smaller standard
deviation (Fig. 6(e)) than dwSSA in estimating the rare event
probability. In addition, ABSIS requires much less samples
to achieve the same accuracy of dwSSA. In this example, 104

samples of ABSIS has a much smaller standard deviation than
dwSSA with 108 samples.

The ABSIS method gives more accurate estimations than
dwSSA (1.191 × 10−5 vs 1.278 × 10−5 at M = 107, 1.192
× 10−5 vs 1.201 × 10−5 at M = 106, and 1.191 × 10−5 vs
1.075 × 10−5 at M = 105 compared to the exact value of 1.191
× 10−5), and has higher success rate (0.76) compared to the
dwSSA method (0.07). The ABSIS method also gives estima-
tions with much smaller standard deviations than swSSA (at
M = 105, where data are reported in Ref. 27) and sdwSSA (at
M = 106, where data are reported in Ref. 26). In addition, it
gives consistently smaller sample variances (1.3 × 10−10 at
M = 107), which is four orders of magnitude smaller than the
variance 4.2 × 10−6 obtained when using the dwSSA method.
The sample variance of ABSIS using different sample size is
shown in log-scale in Fig. 6(f) (blue line), along with vari-
ances using dwSSA sampling (red line, Fig. 6(f)).

C. Bistable Schlögl model

Schlögl model is a one-dimensional bistable sys-
tem first proposed in Ref. 38, and extensively studied

subsequently.39–41 It is an auto-catalytic network consisting
of one molecular species (X) whose concentration can change
through four reactions:38, 39

R1 : A + 2X
k1→ 3X, k1 = 3,

R2 : 3X
k2→ A + 2X, k2 = 0.6,

R3 : B
k3→ X, k3 = 0.25,

R4 : X
k4→ B, k4 = 2.95,

(23)

where A and B are species with constant concentrations (set
to a = 1 and b = 2, respectively). Values of reaction rate con-
stants k1, k2, k3, and k4 are taken from Vellela and Qian.39 The
volume of the system is fixed as V = 25. Following Vellela
and Qian,39 the reaction rates are calculated using formulas
A1(x) = ak1x(x−1)

V
, A2(x) = k2x(x−1)(x−2)

V 2 , A3(x) = bk3V , and
A4(x) = k4x, respectively. Our task is to estimate the probabil-
ity p(92|0, t ≤ θ ) that the Schlögl system transitions from an
initial state x = 0 to the target state x = 92 within a given time
threshold of θ = 2.

1. Exact probability landscape and transition
probability

We first enumerate the full state space S of the Schlögl
model of Eq. (23), starting from the initial state of x = 0 using
the dCME method with a buffer size of 1,000. There are 1,001
microstates in the state space S. The exact transition proba-
bility of the rare event p(92|0, t ≤ 2) is calculated by solving
the matrix exponential problem p(θ ) = p(0) exp(−Aabs · 2)
using the EXPOKIT software,37 where Aabs is the modified
transition rate matrix by making the target states x = 92 an
absorbing state, following the practice of Ref. 20. The calcu-
lated exact transition probability is 5.419 × 10−5. That is, if
105 paths are sampled using the original SSA method, there
will only be about 5 successful transition paths.

The calculated exact time-evolving probability landscape
of the system is plotted in Fig. 7(a). The blue and black curves
show the landscape at time t = 2 and at the steady state, re-
spectively (Fig. 7(a)). There are two high probability regions
centered at x = 4 (red circle on black curve) and x = 92 (red
solid dot on black curve), respectively, on the steady state
probability landscape (black curve). They are separated by
a low probability barrier. The probability landscape at time
t = 2 (blue curve) shows a much sharper peak centered at x
= 3 (red circle on blue curve). It is clear that transition paths
from x = 0 to x = 92 within t = 2 have a steep barrier to cross.

2. Determination of look-ahead steps and bias
parameters

The look-ahead steps for ABSIS in Schlögl model is de-
termined to be κ = 2, and the parameter search space is de-
termined to be 0.5 after running Algorithm II. Algorithm III
is then used to determine λ1 and λ2 from the search space
[0, 0.5] × [0, 0.5]. The optimal parameters are found to be
λ1 = 0.10 and λ2 = 0.40, which have a success rate of 0.15.
Figures 7(b) and 7(c) show the variances of sampling weights
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FIG. 7. The Schlögl model. (a) Its time-evolving probability landscape. The blue and black curves show the landscape at t = 2 and at the steady state,
respectively. There are two high probability regions at steady state (black curve) located at x = 4 (red circle on black curve) and x = 92 (red dot on black curve),
respectively. The initial state x = 0 (green dot) is near the first peak, and the target state (red dot) is at the center of the second peak. (b) and (c) Variance and
success rate of pilot ABSIS sampling during parameter search using a total sampling size of M = 3.28 × 105 and look-ahead steps κ = 2. The yellow dot in
(b) shows the location of the optimal parameters. (d) The estimated transition probability and convergence behavior using ABSIS. The solid red line indicates
the exact probability calculated from dCME. The black bars and the heights of boxes in the box-plots are the average means and standard deviations calculated
from 4 independent ABSIS simulations, for a different sample size of M = 104, 105, 106, 107 and 108. (e) Standard deviations of ABSIS (blue line) and dwSSA
(red line) at different sample sizes. (f) Sampling variances of ABSIS (blue line) and dwSSA (red line) for different sample sizes.

and success rates of reaching the target state at different val-
ues of λ1 and λ2. The optimal parameter pair λ1 = 0.10 and
λ2 = 0.40 is located in the lowest variance region of the
parameter space (yellow dot in Fig. 7(b)). The total sam-
ple size for parameter search is 3.28 × 105, which is much
smaller than the typical sample size of 7 × 105 reported in
dwSSA.23

3. Estimated transition probability

The estimated transition probability and variance by av-
eraging four independent simulations using different sam-
ple size of M = 104, 105, 106, 107, and 108 are plotted in
Fig. 7(d). With the sample size M of 107, ABSIS simulation
provides an accurate estimate of pABSIS(92|0, t ≤ 2) = 5.394
× 10−5 ± 0.009 × 10−5, which is very close to the exact
value of 5.419 × 10−5. In addition, ABSIS converges rapidly
(Fig. 7(e)) as the sample size increases.

We also compare our results with those obtained us-
ing the dwSSA method. For dwSSA sampling, we followed
the original authors’ recommendation of choosing parame-
ters such that the minimum fraction ρ of trajectories reaching
the target states is 0.02.23 This gives the bias constants of γ 1

= 1.115, γ 2 = 0.967, γ 3 = 1.171, and γ 4 = 0.872 for reac-
tion 1–4 in the network, respectively. The rare event probabil-

ity estimated from dwSSA is 5.976 × 10−5 ± 0.342 × 10−5

using a sample size M = 107, which is less accurate than that
of ABSIS (5.394 × 10−5 ± 0.009 × 10−5 vs. the exact value
of 5.419 × 10−5). It also has a lower success rate of 0.02
compared to ABSIS (0.15). The comparisons of mean stan-
dard deviations between ABSIS and dwSSA calculated from
four independent simulations using different sample sizes are
plotted in Fig. 7(e). ABSIS results show about one order of
magnitude smaller standard deviation (Fig. 7(e)) than dwSSA.
In terms of computing efficiency, ABSIS sampling is able to
achieve better accuracy than dwSSA with 1/10 of samples.

The sample variance of ABSIS using different sample
size is shown in Fig. 7(f) (blue line), along with variances
using dwSSA sampling (red line). Overall, ABSIS sampling
gives consistently small sample variances (8.712 × 10−8 at M
= 107), which is roughly four orders of magnitude smaller
than the variance 3.233 × 10−4 when using the dwSSA
method.

4. Bias Mechanism of ABSIS

By examining the forward-moving probability (green
lines in Figs. 8(a)–8(d)) and the backward-moving proba-
bility (red lines) of all four reactions at different states, we
found that the synthesis reactions R1 and R3 have much higher
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FIG. 8. Forward and backward-moving probabilities and ABSIS biases for each reactions. (a)–(d) Probability of moving-forward and moving-backward for
four reactions in Schlögl model. The x-axis is the system state, i.e., the copy number of molecular species X, and y-axis is the forward-moving (green lines) and
backward-moving (red lines) probabilities of reaction R1–R4 in each state. (e)–(h) The final ABSIS bias strengths for reactions in Schlögl model. Blue lines
show the steady state probability landscape of birth-death model. The black lines show the curves of bias strengths for four reactions, respectively.

forward-moving than backward-moving probability in major-
ity of the states, and the degradation reactions R2 and R4 have
much higher backward-moving probability in majority of the
states. These observations suggest that reactions R1 and R3

should be encouraged and reactions R2 and R4 should be dis-
couraged.

Obviously, constant biases will not work well for this
problem because of the steep barrier crossing region between
the initial and the target state (blue curve in Fig. 8(e)). The
optimal bias strengths should be adaptive and should be de-
termined by the complex probability landscape of the system.

For the Schlögl model, the ABSIS strategy works well.
The bias strengths calculated by the ABSIS algorithm for all
four reactions are plotted in Figs. 8(e)–8(h) (black curves),
along with the steady state probability landscape as a refer-
ence (blue curves). The biases for R1 and R3 are all favor-
able (Figs. 8(e) and 8(g)), and the biases for R2 and R4 are all
unfavorable (Figs. 5(f) and 5(h)). Interestingly, the strongest
biased region of R1, R3, and R4 overlapped with the steep-
est barrier crossing region in the landscape (Figs. 8(e), 8(g),
and 8(h)), which shows that ABSIS can capture the urgent
need for overcoming the probability barriers at the time. The
insignificant bias of R2 is due to its smaller reaction rates,
although it has a similar backward-moving probability as R4

(Fig. 8(e)).
Estimating rare event probability for Schlögl model is a

difficult task for methods with constant biases, as reported in
Ref. 34. However, by utilizing future information from 3-step
look-ahead paths, ABSIS successfully estimated the probabil-
ity of rare event transition in the bistable Schlögl model with

accuracy and small sampling variance, and compares favor-
ably to the constant biased dwSSA method.23

D. Enzymatic futile cycle

Enzymatic futile cycle is a ubiquitous network motif con-
sisting of six different molecular species and six reactions.
Samoilov et al. studied this network in detail.42 The molecular
species, reactions, and corresponding reaction rate constants
of the enzymatic futile cycle system are as follows:

R1 : X1 + X2
k1→ X3, k1 = 1,

R2 : X3
k2→ X1 + X2, k2 = 1,

R3 : X3
k3→ X1 + X5, k3 = 0.1,

R4 : X4 + X5
k4→ X6, k4 = 1,

R5 : X6
k5→ X4 + X5, k5 = 1,

R6 : X6
k6→ X4 + X2, k6 = 0.1.

(24)

Estimating rare event probability of the enzymatic futile cy-
cle system has been the subject of recent studies using the
wSSA method22 and the dwSSA method.23 Here the goal is to
estimate the probability p(x5 = 25|x(0), t < θ ) that the sys-
tem starts from the initial state x(0) = {(1, 50, 0, 1, 50, 0)}
to any other states with exactly 25 copies of X5 within the
time-threshold of θ = 100. The same task was also studied in
Daigle et al. using dwSSA.23
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FIG. 9. The enzymatic futile cycle model. (a) Its time-evolving probability landscape projected to X5. The inset figure shows the time-evolving landscape from
time t = 1 to t = 100, and the main figure shows the time frame from t = 100 to t = 104. The blue curves show the landscape at t = 100, and the black curve
shows the landscape at steady state. There is only one high probability region, which is located at x5 = 50 (green dots). The probability landscape at time
t = 100 (blue curve) shows a much sharper peak also centered at x5 = 50. The initial state with x5 = 50 (green dots) is at the height of the probability peak,
and the target state at x5 = 25 (red dots) is in the low probability region to the left of the peak. (b) and (c) shows the variance (b) and success rate (c) of
pilot ABSIS sampling during parameter search using a total sampling size of M = 2.11 × 105 and look-ahead steps of κ = 3. The yellow dot in (b) shows
the location of the optimal parameters. (d) The estimated transition probability and convergence behavior using ABSIS. The solid red line represents the exact
probability calculated from dCME. The black bars and the box-plots are the means and standard deviations calculated from 4 independent ABSIS simulations
using a sample size of M of 104, 105, 106, 107, and 108. (e) Standard deviations of ABSIS (blue line) and dwSSA (red line) at different sample sizes. (f) Sample
variances of ABSIS (blue line) and dwSSA (red line) at different sample sizes.

1. Exact probability landscape and transition
probability

We first enumerate the full state space S of the futile
cycle model of Eq. (24), starting from the initial state x(0)
= (1, 50, 0, 1, 50, 0) using the dCME method. As the futile
cycle model is a closed system, no buffer is needed for the
dCME method. There are a total of 400 microstates in the
state space S. The exact transition probability of the rare event
p(x5 = 25|(1, 50, 0, 1, 50, 0), t < 100) is calculated by solving
the matrix exponential problem p(100) = p(0) exp(−Aabs

· 100) using the EXPOKIT software,37 where Aabs is the mod-
ified transition rate matrix by making the target states {x|x5

= 25} absorbing states. The exact transition probability is cal-
culated to be 1.738 × 10−7. That is, if we use the original SSA
method, there will be only about 2 successful transition paths
sampled in 10 million different sampled trajectories.

The time-evolving probability landscape of the system
is calculated, and its projection to X5 is plotted in Fig. 9(a).
The inset figure in Fig. 9(a) shows the time-evolving land-
scape from time t = 1 to t = 100, and the main figure shows
the time frame from t = 100 to t = 104. The blue and black
curves show the landscape at t = 100, and at steady state, re-
spectively. There is only one high probability region in the

projected steady state probability landscape (black curve),
which is centered at x5 = 50 (green dots). The probabil-
ity landscape at time θ = 100 (blue curve) shows a much
sharper peak centered at the same location x5 = 50. It is
clear that transition paths from x5 = 50 to x5 = 25 within
t ≤ 100 have a steep barrier to cross, although there is no such
barrier if sampling time is not restricted.

2. Determination of look-ahead steps and bias
parameters

The look-ahead steps for ABSIS in the futile cycle model
is determined to be κ = 3, and the parameter search space is
determined to be l = 1.0 after running Algorithm II. Algo-
rithm III is then used to determine λ1 and λ2 from the search
space [0, 1.0] × [0, 1.0]. The optimal parameters are deter-
mined to be λ1 = 0.60 and λ2 = 0.40, which have a success
rate of 0.41. Figures 9(b) and 9(c) show the variances of sam-
pling weights and success rates of reaching the target state
at different values of λ1 and λ2. The optimal parameter pair
λ1 = 0.60 and λ2 = 0.40 is located in the lowest variance
region of the parameter space (yellow dot in Fig. 9(b)). The
total sample size for parameter search is 2.11 × 105, which is
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much smaller than the reported sample size of 7 × 105 using
dwSSA.23

3. Estimated transition probability

The estimated transition probability and standard devia-
tion by averaging four independent simulations using differ-
ent sample size of M = 104, 105, 106, 107, and 108 are plot-
ted in Fig. 9(d). ABSIS simulation provides an accurate es-
timate of 1.730 × 10−7 ± 0.001 × 10−7 with sample size M
= 107, which is very close to the exact value of 1.738 × 10−7.
The success rate is 0.41. In addition, ABSIS converges rapidly
to the exact rare event probability (red line in Fig. 9(d)) as the
sample size increases.

We also compared our results with those obtained using
the dwSSA method. For dwSSA sampling, we use bias con-
stants (γ 1 = 1.000, γ 2 = 1.003, γ 3 = 0.320, γ 4 = 1.003,
γ 5 = 0.993, and γ 6 = 3.008) taken from Daigle et al.23 for
the six reactions in the network. The rare event probability
estimated from dwSSA is 1.741 × 10−7 ± 0.001 × 10−7 us-
ing a sample size M = 107, which is slightly better than the
estimate from ABSIS, with a higher success rate of 0.67. The
comparisons of mean standard deviations between ABSIS and
dwSSA calculated from four independent simulations using
different sample size are plotted in Fig. 9(e). ABSIS results
show about 1.5 times larger standard deviations (Fig. 9(e))
than dwSSA in estimating the rare event probability in futile
cycle model. In terms of computing efficiency, ABSIS sam-
pling needs about 1.5 times more samples to achieve the same
accuracy as dwSSA with.

The sample variance of ABSIS using different sample
size are shown in Fig. 9(f) (blue line), along with variances
using dwSSA sampling (red line, Fig. 9(f)). ABSIS sampling
gives consistently small sample variances (1.708 × 10−13 at
M = 107), although it is about twice as large as the variance
of 7.901 × 10−14 when using the dwSSA method. It has also
a lower success rate of 0.41.

4. Bias mechanism of ABSIS

The enzymatic futile cycle network has different char-
acteristics from the other networks studied here. This net-
work includes two enzymes, and each has its active and in-
active forms, which amount to a total of four enzyme molec-
ular species, namely the first enzyme X1 and its inactive form
X3, the second enzyme X4 and its inactive form X6. How-
ever, as each enzyme has only one copy in the system (X1

+ X3 = 1, and X4 + X6 = 1), the occurrence of reactions
is highly restricted by the availability of the enzymes. To
study the biasing mechanism of the reactions, we project the
forward-moving probability and the backward-moving prob-
ability of each reaction to the space of species X5 and fixed
combinations of X1 and X4 (Figs. 10(a)–10(f) for forward-
moving probabilities and Figs. 10(g)–10(l) for backward-
moving probabilities). We found that the surfaces of forward
and backward-moving probabilities are rather rugged. The
forward and backward-moving probabilities for the same re-
action can be very different for microstates with only one
copy difference in X1 or X4. For example, the pF of R1 at X1

= 1, X4 = 0 (red histograms in Fig. 10(a)) is close to 1,
but with only one copy difference in X4, the pF of R1 at X1

= 1, X4 = 1 is very close 0 (yellow histograms in Fig. 10(a)).
This ruggedness is due to the fact that neighboring microstates
have different available enzymes, therefore very different re-
actions occur according to Eq. (24). In fact, no microstates can
have all six reactions occurring simultaneously. The rugged-
ness of the surfaces of forward and backward-moving prob-
abilities requires biases with large fluctuations (as shown in
Figs. 11(c) and 11(f)). Our bias scheme seems to offer no
improvement for reducing sampling variance compared to
dwSSA.

Although reactions R1, R2, R4, and R6 have overall larger
forward-moving probabilities (Fig. 10) and should be encour-
aged, and reactions R3 and R5 have overall larger backward-
moving probabilities and should be discouraged, the ABSIS
biases for reactions R1, R2, R4, and R5 are all very close
to 1, and only reactions R3 and R6 are significantly biased
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FIG. 10. ABSIS forward and backward-moving probabilities for each reactions in the enzymatic futile cycle model. (a)–(f) Projected forward-moving prob-
abilities of all six reactions on the space of X5 and four different combinations of X1 and X4 shown in different colors. (g)–(l) Projected backward-moving
probabilities of all six reactions on the same space of X5 and four different combinations of X1 and X4.
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FIG. 11. ABSIS biases for each reaction in futile cycle model. (a)–(f) The final ABSIS bias strengths for each reaction in enzymatic futile cycle model.

(Fig. 11), as they have the slowest rates among all six reac-
tions and thus biased. Biases for R3 are clustered into two
nearly flat biases with different mean 0.3364 and 0.4651, re-
spectively (Fig. 11(c)). There are also two different nearly flat
biases for R6 around the mean 2.6330 and 3.5129, respec-
tively (Fig. 11(f)). In general, the current bias scheme used in
ABSIS for the futile cycle network are not very different from
the bias constants of dwSSA used in Daigle et al.23

Overall the ABSIS method is comparable to the dwSSA
method for studying the futile cycle network. It can provide
accurate estimates of the rare event probability. The sampling
variance is constantly small at around 1.7 × 10−13, regardless
of sample sizes. ABSIS also correctly identifies reactions that
need to be encouraged and to be discouraged, although the
sampling variance of ABSIS is about twice as large as that of
dwSSA due to the ruggedness of the surfaces of forward and
backward-moving probabilities.

IV. DISCUSSIONS AND CONCLUSIONS

Sampling rare events is an important task for studying
key events important for biological processes. In this work,
we described a general theoretical framework for obtaining
optimized bias in sampling individual reactions to estimate
probabilities of rare events. We further developed a practical
algorithm named ABSIS for efficient estimation of probabil-
ities of rare events. By adopting a look-ahead strategy and
by examining κ-step look-ahead paths following each reac-
tion from the current microstate, we can estimate the reaction-
specific and state-dependent forward-moving and backward-
moving probabilities of the system. These probabilities are
then used to adaptively adjust biases towards selecting each
reaction. Overall, ABSIS is well suited for studying rare
events in networks with complex probability landscape and
steep probability barrier.

Our method addresses a major challenge in estimating
rare event probability in biological networks, namely, the
need to cross barriers on the probability landscape. As re-
actions in a network proceeds, the local neighborhood of
the probability landscape changes, and different biases are
often necessary for barrier-crossing. Unlike previous impor-
tance sampling methods such as sdwSSA26 and swSSA,27 in
which biases are only based on reaction rates in the current
state with no consideration of future information, the ABSIS

method can detect barrier-crossing region in the probability
landscape by incorporating future information. The bias intro-
duced by the ABSIS method not only depends on the current
state, but also depends on the need to cross the probability bar-
rier, which is detected by the κ-step look-ahead strategy. The
calculation of κ-step forward-moving and backward-moving
probabilities is equivalent to solving a small local version of
a chemical master equation of κ-steps.19

Our method also addresses the issue of proliferation of
parameters and associated computational costs. Regardless of
the number of reactions in the system and the complexity of
the network, bias strengths for all reactions in ABSIS are ad-
justed using only two general parameters: λ1 for promoting
forward-moving reactions, and λ2 for repressing backward-
moving reactions. The biasing scheme is designed such that
forward-moving reactions with lower reaction rates are en-
couraged, and backward-moving reactions with higher reac-
tion rates are repressed. As κ is small, bias strengths can be
determined without lengthy simulations.

We have applied the ABSIS method to four biological
networks: the birth-death process, the reversible isomeriza-
tion, the bistable Schlögl model, and the enzymatic futile
cycle model. ABSIS can accurately and efficiently estimate
rare event probabilities for all examples. For the birth-death
process and Schlögl model, the rare event probabilities can
be estimated by ABSIS with a variance of about 1/100 of
that of the dwSSA method.23 For the reversible isomerization
model, sampling variance of ABSIS is only about 1/10, 000
of that of the dwSSA. ABSIS also shows significant improve-
ments in standard deviations in comparisons to dwSSA. For
the reversible isomerization, ABSIS estimates the rare event
probability with only about 1/100 standard deviation of that
of dwSSA. For the birth-death model and bistable Schlögl
model, the standard deviation of ABSIS sampling is less than
1/10 than that of dwSSA. In terms of computing efficiency,
smaller standard deviation indicates ABSIS can achieve the
same accuracy as dwSSA with only a small fraction of sam-
ple size that dwSSA needs.

Although ABSIS has no significant advantages over con-
stant biasing methods such as dwSSA in studying the futile
cycle model, as the current bias scheme in ABSIS gives nearly
constant biases, the sampling variances of ABSIS are com-
parable to those of dwSSA. Future work includes designing
more sophisticated bias functions that captures the ruggedness
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of the probability landscape, which may provide better solu-
tions to problems such as the model of enzymatic futile cy-
cle. In addition, replacing enumeration of κ-steps of the re-
actions with longer term look-ahead path sampling of com-
parable computational costs may help to explore potential for
barrier-crossing at a longer time scale. Computational costs
can be further reduced for larger networks if such long look-
ahead sampling is strategically biased. It may also be possible
to classify reaction networks based on their topology and rate
constants and design different sub-schemes of bias.
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