1: // Input (X, R, , D, θ) |
2: Look-ahead step: κ ← 2 |
3: Maximum range of parameter search space for determining λ1 and λ2: l ← 1.0 |
4: Sample size: M ← 1000 |
5: Success rate: s ← 0 |
6: while 1 do ▷ Determine the optimal κ |
7: s ← s + success rate of ABSIS(X, R, , D, θ, κ, M, λ1 = 0.0, λ2 = 1.0) |
8: s ← s + success rate of ABSIS(X, R, , D, θ, κ, M, λ1 = 1.0, λ2 = 0.0) |
9: s ← s + success rate of ABSIS(X, R, , D, θ, κ, M, λ1 = 1.0, λ2 = 1.0) |
10: s ← s/3 |
11: ifs > 0.5 then
|
12: break |
13: end if
|
14: κ ← κ + 1 |
15: end while
|
16: s ← success rate of ABSIS(X, R, , D, θ, κ, M, λ1 = 0.5, λ2 = 0.5) |
17: ifs > 0.8 then ▷ Determine the maximum range for parameter search: l
|
18: l ← 0.5 |
19: end if
|
20: return κ |
21: returnl
|