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Abstract

MicroRNAs are key regulators of eukaryotic gene expression whose fundamental role has already been identified in many
cell pathways. The correct identification of miRNAs targets is still a major challenge in bioinformatics and has motivated the
development of several computational methods to overcome inherent limitations of experimental analysis. Indeed, the best
results reported so far in terms of specificity and sensitivity are associated to machine learning-based methods for
microRNA-target prediction. Following this trend, in the current paper we discuss and explore a microRNA-target prediction
method based on a random forest classifier, namely RFMirTarget. Despite its well-known robustness regarding general
classifying tasks, to the best of our knowledge, random forest have not been deeply explored for the specific context of
predicting microRNAs targets. Our framework first analyzes alignments between candidate microRNA-target pairs and
extracts a set of structural, thermodynamics, alignment, seed and position-based features, upon which classification is
performed. Experiments have shown that RFMirTarget outperforms several well-known classifiers with statistical
significance, and that its performance is not impaired by the class imbalance problem or features correlation. Moreover,
comparing it against other algorithms for microRNA target prediction using independent test data sets from TarBase and
starBase, we observe a very promising performance, with higher sensitivity in relation to other methods. Finally, tests
performed with RFMirTarget show the benefits of feature selection even for a classifier with embedded feature importance
analysis, and the consistency between relevant features identified and important biological properties for effective
microRNA-target gene alignment.
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Introduction

MicroRNAs (miRNAs) are non-coding RNAs of approximately

22 nucleotides (nt) in length that act as an important post-

transcriptional mechanism of gene expression regulation via

translational repression or degradation of target mRNAs [1,2].

In both animals and plants, miRNAs are formed after a longer

primary transcript (pri-miRNA) by two sequential cleavages,

mediated, respectively, by a nuclear and a cytoplasmic RNase III.

These processing steps yield a 60{70 nt stem-loop miRNA

precursor (pre-miRNA) and next, after the latter is exported to the

cytoplasm, a structure of two single RNA strands that corresponds

to the mature miRNA, namely the miRNA:miRNA* duplex.

Due to miRNAs participation in important metabolic processes,

such as developmental timing, growth, apoptosis, cell proliferation,

defense against viruses [3–5], and more recently in tumorigenesis,

either as tumor suppressors or oncogenes [6], great efforts have

been devoted for the identification of novel miRNAs and targets.

Despite the advances in deep sequencing approaches, the use of

computational tools is still important for analysis and interpreta-

tion of data, among which machine learning (ML) algorithms have

been prominent. This approach consists in using known positive

and negative examples of miRNA-mRNA associations to train a

classifier to distinguish, for instance, real pre-miRNAs from

pseudo pre-miRNAs, based on a set of descriptive features

extracted from the examples. Among the most commonly applied

ML algorithms, one may highlight the use of support vector

machine (SVM) [7,8], random forest [9] and naı̈ve Bayes [10]

classifiers.

Following this direction, ML-based methods can help in the

prediction of miRNA target genes, generating hypotheses regard-

ing miRNA function and potential miRNA:target interactions.

However, this is considered to be a more difficult problem, mostly

because i) it is hard to distinguish true miRNA-mRNAs hybrids

given the millions of possible miRNA-gene combinations and ii)

there is still very limited knowledge about the basic mechanisms of

microRNA target recognition [11]. Primarily, the interaction of a

miRNA and its target occurs by complementarity of their

nucleotide sequences, as shown in Fig. 1. Nonetheless, while in

plants miRNAs bind their targets with (near) perfect complemen-

tarity and mostly in their open read frames [12], in animals,

miRNAs sequences have a partial complementarity to their targets

and the hybridization may occur in either 39 untranslated region
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(39 UTRs, predominantly) or 59UTR [13]. Furthermore animals

miRNAs contain a region named seed, comprising six to eight

nucleotides in the 59 end, that plays an important role in the

correct interaction between the miRNA and its target, showing

(almost) strict pairing with the mRNA (Fig. 1). In some cases,

however, the 39 out-seed segment of the miRNA-mRNA

alignment can compensate imperfect base pairing in the seed

region [14].

The wide variation in animals miRNAs-target standard

hybridization has turned this problem into a challenge in the

field and motivated the development of several computational

methods. The first efforts towards this problem were concentrated

in performing predictions based on sequence complementarity

and/or favourable miRNA-target duplex thermodynamics

[15,16]. Among the most disseminated tools, miRanda [17],

TargetScan [18] and PicTar [19] are complementarity-based

methods that first identify potential binding sites by scoring the

aligned sequences and analyzing their seed region (in the case of

animals), and then evaluate their thermodynamics using, for

instance, the Vienna RNA folding package [20]. However, such

tools are prone to produce many false positive interactions and are

usually better suitable for plants miRNAs, which differently from

animals miRNAs, show near to perfect complementarity when

binding to their targets. In addition, these tools lack a statistical

background model to evaluate the significance of each detected hit

[15].

Despite the relative success of the aforementioned tools, ML-

based methods, like TargetSpy [11], NBmiRTar [21], miTarget

[22], TargetMiner [23], and MultiMiTar [24], have had the best

results so far in terms of specificity and sensitivity in the prediction

of miRNAs target genes [24]. NBMirTar implements a naı̈ve

Bayes classifier and TargetSpy relies in a learning scheme based

on boosting, while the remainder are based on the popular

framework SVM. Regardless the classifier adopted, ML methods

usually analyze descriptive features derived from the interaction

between a miRNA and its potential targets and attempt to extract

rules of target site recognition, building a classifier upon this

information. Common features categories are seed complemen-

tarity, thermodynamics stability, presence of multiple target sites

and evolutionary conservation among species [1,25]. Nonetheless,

ML-based tools face an ubiquitous problem: in general, the

number of known negative examples is much smaller than known

positive examples, which impairs the accuracy of classifiers

sensitive to class imbalance, such as SVM.

In this paper we discuss and explore the predictive power of

RFMirTarget, a ML approach for predicting human miRNAs

target genes based on the random forests algorithm. In what

concerns the identification of novel miRNAs, for instance, random

forest have been successfully applied, outperforming competing

algorithms [9]. This efficiency comes from the manner the

algorithm profits from ensemble predictions: during training,

several trees are grown such that when unlabelled examples are

presented to the classifier, each tree votes for the class of new

instances and a majority voting is performed to define the

predicted class. In spite of its outstanding performance in other

classification tasks, to the best of our knowledge random forests

have been barely explored as for miRNA target prediction.

Xiao and colleagues [26], for instance, have focused in a

systematic analysis of features importance carried with a random

forest model, whereas here our goal is to deeply explore the

predictive power of the random forests algorithm and perform a

comprehensive comparison with other popular classifiers in the

field. In our previous work [27], we presented RFMirTarget and

discussed its features and training data, as well as preliminary

results of our model performance for the prediction of Human

miRNAs targets. In this paper, we extend this study in several

directions: i) we perform a feature relevance analysis and

investigate the effects of feature selection over the predictive

accuracy of our model, observing improvement in the overall

performance of our classifier, ii) we investigate the impact of

feature categories in classification, as well as apply techniques to

interpret the ensemble model and the effects of features values

over class probabilities, iii) we discuss biological insights provided

by the resulting model, highlighting its suitability in identifying

biologically relevant features in this classification problem, iv) we

test several algorithmic variants such as definition of class weights

and distinct permutation methods for the selection of tree’s nodes,

showing that the ensemble approach underlying the random forest

algorithm seems to reduce its sensitivity to the class imbalance

issue, v) we carry a thorough comparison of RFMirTarget against

other popular classifiers, proving that the proposed RF model is

indeed robust and that its performance is superior than its

counterparts methods with statistical significance, vi) we assess the

performance of our method in a completely independent test data

set of experimentally verified positive and negative examples of

miRNA-target and observe a good overall performance and

outstanding sensitivity when compared to other miRNA target

prediction algorithms.

In what follows we describe our materials and methods, starting

by a brief explanation about the random forests algorithm,

followed by a description about our features definition and

training data set. In the sequence, we discuss our tool’s

performance by exploring its predictive power and robustness, as

well as comparing it with other classification methods and

miRNA-target prediction algorithms.

Materials and Methods

This section describes the methodology used to build a random

forest classifier based on a collected set of biologically validated

training data. RFMirTarget is trained with a set of positive and

negative examples of miRNA-target pairs that is pre-processed by

the software miRanda in order to identify the actual interacting

sites between each miRNA-mRNA pair and prepare the data set

for feature extraction. The alignments provided by miRanda are

the source for features extraction, which in turn are used to train

the random forest classifier. Thus, a direct application of our tool is

to refine the predictions provided by miRanda. In what follows we

explain each of the steps involved in the training process,

summarized in Fig. 2.

Figure 1. Example of miRNA-target alignment. This schematic
representation shows some structural features used for target
prediction by the RFMirTarget tool. The seed region, comprising six
to eight nucleotides in the 59 end, is shown in grey. Nucleotides
matches are shown by colons, whereas G:U wobble pairs are
represented by dots. An example of an alignment gap is also given.
doi:10.1371/journal.pone.0070153.g001

Predicting Human MiRNA Targets with Random Forests
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Random Forest
Random forest (RF) is a well-known ensemble approach for

classification tasks proposed by Breiman [28,29]. Its basis comes

from the combination of tree-structured classifiers with the

randomness and robustness provided by bagging and random

feature selection. Several decision trees are trained with random

bootstrap samples from the original data set (,2/3 of data) and

afterwards, results are combined into a single prediction: for

classification tasks, by means of voting; for regression tasks, by

averaging all trees results. The fact that the predicted class

represents the mode of the classes output by individual trees gives

robustness to this ensemble classifier in relation to a single tree

classifier.

Another important property of RF classifiers refers to random

feature selection. Instead of using all features for growing a tree,

Breiman proposed to choose from a random subset of features in

order to split at each node. Therefore, at each split step, a constant

number of features is randomly chosen from the total set of

features, and the best split on this random selection of features,

e.g., the one with smallest impurity, is used to split the node.

Tests run by Breiman [29] have revealed that random forests

always perform better than the bagging approach previously

proposed [28] and also better than Adaboost [30]. However, the

benefits of random forests go beyond the good performance. The

mechanism applied for growing trees allows the estimation of the

most important variables for classification and generates an

internal unbiased estimate of the generalisation error during the

growth process. These estimative are drawn from the data left out

of the bootstrap sample used as training set, named out-of-bag

(OOB) data, which corresponds to approximately 1=3 of the

instances. Additionally, as random forests are tree-structure

classifiers, they inherit some of the interpretability associated to

this type of classification model, such as variable relevance

estimation, thus making it an appealing choice [9]. The RF

model was implemented with the randomForest R package [31].

Data Set
We train RFMirTarget with experimentally verified examples of

human miRNA-target collected by Bandyopadhyay and Mitra

[23] for the training process of MultiMiTar [24], a SVM-based

miRNA-target prediction system. The data set is composed of 289

biologically validated positive examples extracted from miRecords

database [26] and 289 systematically identified tissue-specific

negative examples.

To improve the accuracy of the classifier, potential negative

examples were detected applying several target prediction

algorithms to a set of miRNA-mRNA pairs and selecting those

instances predicted as target [23]. As this prediction is based on

features drawn from sequence or structural interactions between

miRNA and mRNA, it contains many false positives, especially for

tissue-specific miRNA. Thus, expression profiling data of a

miRNA and its predicted target was used to measure tissue

specificity for both of them, and those miRNA-mRNA pairs that

are significantly overexpressed in one or a few specific tissue types

are chosen as potential negative examples. Next, these potential

non-targets are filtered using another independent expression

profiling data set and the final set of negative examples is analysed

in terms of thermodynamic stability and seed site conservation. We

refer the reader to [23] for more details about the data.

Data Preparation
The data set of positive and negative examples of miRNA-target

pairs gathered by Bandyopadhyay and Mitra [23] does not

comprises information about the actual site of alignment between

miRNAs and their targets. The only information provided is the

accession ids for each true and pseudo example of miRNA-target

pair. Based on this information, we manually download miRNAs

and target sequences from miRBase version 17 (http://www.

mirbase.org) and NCBI (http://www.ncbi.nlm.nih.gov) databases,

respectively. For miRNAs that can be excised from opposite arms

of the same pre-miRNA (–3p or –5p suffix), we download both

sequences unless the arm is clearly specified in the data set (for

instance, because only the designation hsa-miR-124 is specified by

Bandyopadhyay and Mitra, we download both hsa-miR-124-3p

and hsa-miR-124-5p miRNAs available at miRBase). We follow

the same approach when closely related mature sequences or

distinct precursor sequences and genomic loci that express

identical mature sequences are available and are not specified in

the data set provided by Bandyopadhyay and Mitra (as an

example, we download hsa-miR-16-2-3p, hsa-miR-16-5p and hsa-

miR-16-1-3p for the instance hsa-miR-16, since no further

specification is given by the authors).

Once the miRNAs and target sequences are collected, the

binding sites need to be obtained since they are a compulsory

information for the features extraction step inherent to ML

approaches. As miRNAs are short sequences, they can easily align

to multiple sites of their targets. Thus, the use of techniques such as

BLAST can result in an extremely large data set, with many

Figure 2. RFMirTarget framework. RFMirTarget is trained upon a
set of biologically validated positive and negative miRNA-target
examples. This data set is analyzed by miRanda, whose output is
processed for features extraction. A random forest model is then built
upon these features and can be further used to predict the class of
unknown miRNA-target instances.
doi:10.1371/journal.pone.0070153.g002

Predicting Human MiRNA Targets with Random Forests
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biologically unlikely miRNA-mRNA pairs. Indeed, it was already

discussed that the performance of BLAST for miRNA target

search is controversial [32]. Therefore, to reduce the dimension of

our problem and prepare the data set for features extraction, we

opt for using the miRanda software [17] to pre-process the data

and to obtain the exact miRNA-target binding sites. We apply

miRanda in a pairwise fashion, i.e., for every pair of positive and

negative examples of miRNA-target genes collected from litera-

ture, and post-process its output, extracting a set of descriptive

features used to train the model. MiRanda is an algorithm for the

detection of potential microRNA target sites in genomic sequenc-

es. It runs a score-based algorithm to analyze the complementarity

of nucleotides (A:U or G:C) between aligned sequences. First, a

dynamic programming local alignment is carried out between the

query miRNA sequence and the reference sequence. The scoring

matrix allows the occurrence of the non-canonical base-pairing

G~U wobble, which is a non Watson-Crick base pairing with

important role in the accurate detection of RNA:RNA duplexes,

and is based on the following parameters: +5 for G:C, +5 for

A~U, +2 for G~U and -3 for all other nucleotides pairing. The

second phase of the algorithm takes alignments that scored above

a given threshold and estimates the thermodynamic stability of

their RNA duplexes. Finally, detected targets with energy less than

an energy threshold are selected as potential targets. Target site

alignments satisfying both thresholds (score and energy) are given

as miRanda’s output. Therefore, a benefit in employing miRanda

to detect binding sites between miRNAs and potential targets is

that despite the high probability of finding interaction sites due to

some extent to the short length of miRNAs, miRanda filters this

information by means of its thresholds. However, we adopt low

threshold values such that all reference sequences with the

minimal requirements to be considered targets are kept by

miRanda, leaving the task of refining results for our tool.

Besides the scoring matrix, four empirical rules are applied for

the identification of the miRNA binding sites, counting from the

first position of the 59 end of the miRNA: i) no mismatches at

positions 2 to 4; ii) fewer than five mismatches between positions

3–12; iii) at least one mismatch between positions 9 and L-5

(where L is the length of the complete alignment); and iv) fewer

than two mismatches in the last five positions of the alignment

[17]. An example of output provided by miRanda for the miRNA

hsa-let-7a and its target HGMA2 is depicted in Fig. 3. To help in

the discussion of features definition (next section), we highlight the

seed region of the alignment, composed by nucleotides 2 to 8 to

count from the 59 end of the miRNA sequence, as well as we

numerate nucleotides 1 and 20, also using as reference the 59-most

position of the miRNA. In this example, we can observe perfect

complementarity in the seed region (binding is denoted by the pipe

symbol).

After running miRanda on the data set described in the

previous section, we obtain 482 positive and 382 negative miRNA-

target pairs, which correspond to the training instances used in the

building process of our RF classifier. The increase in the number

of training instances is due to both the approach followed in data

collection and to the possibility of occurrence of multiple binding

sites between the same pair of miRNA and candidate target

sequence. For instance, the pair hsa-miR-1 and NM_017542.3

indicated in the data set by Bandyopadhyay and Mitra as a

positive miRNA-target pair has two possible binding positions

according to miRanda analysis (possible binding positions in the

reference sequence are 996 to 1017 and 2992 to 3013). At this

point we emphasize that albeit our training data set size is different

than the one used in [24], they derive from the original data set

used for training MultiMitar.

Features
The negative and positive examples predicted by miRanda

consist of the alignment between miRNA-mRNA pairs, as

depicted in Fig. 3, based on which the classifier features are

extracted. In addition, miRanda provides some alignment

properties such as score and length. The set of descriptive features

used to train RFMirTarget is divided into five categories:

alignment features, thermodynamics features, structural features,

seed features and position-based features. In what follows we

explain each of the defined features categories.

1. Alignment features. Score and length of the miRNA-

target alignment as evaluated by miRanda.

2. Thermodynamics features. Evaluation of the minimum

free energy (MFE) of the complete miRNA-target alignment

computed by RNAduplex [20].

3. Structural features. Quantification of the absolute

frequency of Watson-Crick matches (G:C and A:U pairing) and

mismatches (G:U wobble pair, gap and other mismatches) in the

complete alignment.

4. Seed features. Evaluation of nucleotides in positions 2–8,

to count from the 59-most position of the miRNA, in terms of

thermodynamics (by RNAduplex) and structural alignment

properties, i.e., absolute frequency of Watson-Crick matches

(G:C and A:U pairing) and mismatches (G:U wobble pair, gap

and other mismatches).

5. Position-based features. Evaluation of each base pair

from the 59-most position of the miRNA up to the 20th position of

the alignment, assigning nominal values to designate the kind of

base pairing in each position: a G:C match, an A:U match, a G:U

wobble pair, a gap and a mismatch.

Graphical representations of G:C and A:U matches, G:U

wobble pairs and mismatches are given in the example of miRNA-

mRNA alignment of Fig. 1. The seed region is also specified. In

total, 34 features were drawn from the miRanda output: two

alignment features, one thermodynamics feature, five structural

features, twenty position-based features and six seed-related

features. The complete set of features used by RFMirTarget is

summarized in Table 1.

Performance Assessment
The performance of RFMirTarget is assessed by computing the

total prediction accuracy (ACC), specificity (SPE), sensitivity (SEN)

and Matthew’s correlation coefficient (MCC) based on the

confusion matrix. This matrix quantifies the number of instances

in the test set classified as false positive (FP), true positive (TP), false

negative (FN) and true negative (TN). In addition, we also plot and

evaluate the area under the ROC (Receiver operating character-

istic) curve, in which the true positive rate (sensitivity) is plotted in

function of the false positive rate (100-specificity) for different

decision thresholds. The area under the ROC curve gives us the

AUC score, interpreted as the probability that a classifier will rank

a randomly chosen positive instance higher than a randomly

chosen negative one. Thus, a higher AUC score means a better

Figure 3. Alignment between hsa-let-7a and its target HGMA2
as predicted by miRanda. The highlighted nucleotides refer to the
seed region. In addition, this figure illustrates the nucleotides
numbering (1–20) used for position-based features extraction.
doi:10.1371/journal.pone.0070153.g003

Predicting Human MiRNA Targets with Random Forests
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classification result and a more accurate classifier.

ACC~
TPzTN

TPzTNzFPzFN
ð1Þ

SPE~
TN

TNzFP
|100% ð2Þ

SEN~
TP

TPzFN
|100% ð3Þ

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFP)|(TNzFN)|(TPzFN)|(TNzFP)

p ð4Þ

Results and Discussion

Performance of the RF Model
We start the discussion on the results by presenting the

performance of a RF classifier trained with the total set of features

(Table 1). To train this RF model, as well as further tree-based

models presented in this paper, we adopt the standard number of

trees suggested by the randomForest R package, namely 500 trees.

Previous studies have shown that performance gain is very subtle

when doubling or highly increasing the number of trees in the

forest, and that the mean and median AUC scores tend to

converge asymptotically, thus not justifying the use of very large

forests [33]. We experimentally verify this, also observing an

stabilisation of error rates around 350 trees (Figure 4). Yet,

experiments have shown that there is still a performance gain

when adopting 500 trees, thus strengthening our choice regarding

the number of trees to be used.

On the other hand, random forests are known to be sensitive to

the number of variables (mtry) randomly sampled as candidates

for splitting at each node during the tree growing process. Thus,

we adopt the caret R package [34] to optimize this parameter and

perform comparison across models. Resampling is performed to

give a better estimative of the error, and based on this estimative

we opted for selecting the mtry values associated to the simplest

model within one standard error of the empirically optimal model,

Table 1. Summary of features used for classification by RFMirTarget.

Feature Name Top 12 Feature Name Top 12

1 Alignment score * 18 Position 10

2 Alignment length 19 Position 11

3 Minimum free energy of the alignment * 20 Position 12

4 G:C’s absolute frequency in the alignment * 21 Position 13

5 A:U’s absolute frequency in the alignment * 22 Position 14

6 G:U’s absolute frequency in the alignment 23 Position 15

7 Number of gaps in the alignment 24 Position 16

8 Number of mismatches in the alignment 25 Position 17

9 Position 1 26 Position 18

10 Position 2 * 27 Position 19

11 Position 3 28 Position 20

12 Position 4 * 29 Minimum free energy of the seed *

13 Position 5 30 G:C’s absolute frequency in the seed *

14 Position 6 * 31 A:U’s absolute frequency in the seed *

15 Position 7 * 32 G:U’s absolute frequency in the seed *

16 Position 8 33 Number of gaps in the seed

17 Position 9 34 Number of mismatches in the seed

*The top 12 features refer to those features with greatest impact in the predictive accuracy of the RF model, estimated by means of a restricted forward feature
selection.
doi:10.1371/journal.pone.0070153.t001

Figure 4. Error rates for RFMirTarget trained with the total set
of features. The generalization error decreases as the number of trees
in the ensemble prediction increases.
doi:10.1371/journal.pone.0070153.g004

Predicting Human MiRNA Targets with Random Forests
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with the purpose of avoiding any overfitting that might be caused

by the best performing tuning parameter.

The confusion matrix for the optimized model, averaged over

five repetitions of 10-fold cross-validation, is shown in Table 2.

Our classifier has an average error rate of 11.8% for the positive

class (Target) and 14.1% for the negative class (Non-Target), with

standard deviations of 0.60% and 0.79% respectively. The lower

efficiency concerning the negative class results in part from the

class imbalance problem. In such cases, standard classifiers tend to

produce a high predictive accuracy for the majority class and a

weaker performance for the minority class. As we will further

discuss in this paper, the ensemble approach adopted by RF seems

to minimize the difference in classification error between the

minority class and the majority class. We evaluate the confusion

matrix, obtaining the following performance metrics (with

standard deviations in parenthesis): ACC: 87.20 (0.434), SEN:

88.17 (0.604), SPE: 85.84 (0.790 and MCC: 0.737 (0.008).

We compare the results for the 34-features RF model against

the performance obtained by RF models trained separately with

each of the features categories defined (Table 3). One can observe

that, in general, classification based on individual features

categories yield very poor classification results as most of them

do not have enough generalization power. However, seed and

position-based features (categories four and five, respectively)

achieve remarkably high and consistent performance in the

repeated 10-fold cross-validation process. As previously discussed,

the importance of base complementarity in the seed region is a

well known factor for miRNA target recognition in Humans. On

the other hand, it is also known that additional 39 pairing increases

miRNA functionality and that a single point mutation in the

miRNA-mRNA interaction can compromise miRNA’s function-

ing depending on its position [14,35]. Thus, position-based

features capture the overall quality of the miRNA-target

alignment, which in terms of classification perform as well as seed

specific positions. In contrast, classification based solely on the

minimum free energy of the duplex formation (category two)

might include many non-functional target sites [14], justifying the

high false positive rate.

The analysis of pairwise correlation of the features categories

performance based on the resampling approach is shown in

Figure 5. Points concentrated in the top right corner around the

diagonal represent a pair of feature categories with strong

relationship and good joint performance, while points widely

spread in the bottom left corner of plots depict the existence of a

weak relationship between two categories that also have a poor

performance in the evaluation based on resampling. We observe

that categories one (alignment features) and two (thermodynamic

features) have weak relationship and both have poor resampling

performance, whereas categories four (seed features) and five

(position-based features) show strong relationship, both of them

with high resampling performance. The correlation in perfor-

mance of categories four and five is in some sense expected since

part of the information drawn by seed-related features, namely the

base pairing in this region, is also captured by position-based

features.

Next, we perform a feature relevance estimation assessing the

average decrease in the nodes’ impurity measured by the Gini

index during the construction of the decision trees ensemble. This

step aims at identifying irrelevant features that may mislead the

algorithm and increase the generalization error [36]. Even though

RF naturally provide an estimative of feature relevance computed

during the course of training, the algorithm lacks a feature

selection process: each of its nodes is split based on the optimal

choice among a random subset of features. As each decision tree in

the ensemble may be regarded as an independent learner trained

upon a distinct set of features, the information gain computed

during the learning process is not just a good estimation of the

individual feature performance, but also of features’ ability in a

variety of possible feature subsets [37]. Thus, by estimating the

features relevance one can perform a feature selection process to

improve the model’s overall performance.

The features ranking in a decreasing order of relevance,

measured by the average decrease in the Gini index, is given in

Table 4. Our analysis corroborates previous studies in the area

[15,25,38]: nucleotides surrounding the seed sequence are indeed

important for target recognition. Obad and colleagues [38], for

instance, discuss a method for antagonizing miRNA function via

seed-targeting. They observed the importance of targeting the

miRNA seed and suggest that this region is more accessible for

miRNA inhibition.

The analysis of the top ranked features in Table 4 is consistent

with the biological knowledge about the relevance of the pairing of

the miRNA 59 region to the mRNA, as it comprises basically

properties related to the seed region. Most of the features in the

top ten group consist of structural and position-based features

regarding nucleotides 2–8, which form the seed region. Further-

more, the seed MFE and number of G:C pairings in the seed

region, which correspond to the first and third top features

respectively, are known to be important determinants of miRNA-

target interaction activity [35].

A consistency is also found for the relevance order concerning

Watson-Crick matches, i.e., G:C and A:U, and G:U wobble pairs

Table 2. Classification performance of RFMirTarget.

Real

Non-Target Target

Predicted Non-Target 293.6 (2.70) 57 (2.91)

Target 48.4 (2.70) 425 (2.91)

Confusion matrix for a RF model trained with the total set of 34 features
estimated by averaging the results over five repetitions of 10-fold cross-
validation. Standard deviations are given in parenthesis.
doi:10.1371/journal.pone.0070153.t002

Table 3. RFMirTarget classification results on different feature
subsets.

Feature set ACC (std) SPE (std) SEN (std) MCC (std)

Cat 1: Alignment
(2)

59.34 (0.549) 39.64 (1.066) 73.31 (0.946) 0.136 (0.011)

Cat 2:
Thermodynamic
(1)

59.39 (1.156) 45.38 (2.211) 69.33 (1.051) 0.150 (0.025)

Cat 3:
Structural (5)

67.57 (0.632) 45.38 (0.562) 83.31 (1.074) 0.313 (0.013)

Cat 4: Seed (6) 84.78 (0.407) 82.98 (0.811) 86.05 (0.537) 0.687 (0.008)

Cat 5: Position-
based (20)

87.62 (0.462) 84.67 (1.124) 89.70 (0.314) 0.744 (0.009)

Total (34) 87.20 (0.434) 85.84 (0.790) 88.17 (0.604) 0.737 (0.008)

Top ranked (12) 89.53 (0.480) 89.64 (0.673) 89.46 (0.753) 0.786 (0.009)

The number of features in each category or set is given in parenthesis. Accuracy
(ACC), specificity (SPE) and sensitivity (SEN) are expressed as percentages.
doi:10.1371/journal.pone.0070153.t003
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in the seed region. The highest impact of G:C pairings for target

recognition among these is biologically plausible because they are

bound by three hydrogen bonds, which makes RNA with high

GC-content much more stable than RNA with low GC-content.

Thus, G:C pairings in both seed region and total alignment are

rated high in the features relevance rank. In contrast, A:U pairings

are bond by two hydrogen bonds, justifying the lower stability and

position in the features ranking. What was interesting, tough, is

that our feature analysis was able to detect the relevance of wobble

pairs to miRNA target recognition, which are the most common

and highly conserved non-Watson-Crick base pairs in RNA [39].

It was recently found that the thermodynamic stability of a wobble

base pair is comparable to that of a Watson-Crick base pair and

that they are highly detrimental to miRNA function despite its

favourable contribution to RNA:RNA duplexes [35].

Building a RF Model Based on the Top Ranked Features
Based on the features ranking of Table 4, we perform a

restricted forward feature selection: we assess features impact to

the model’s predictive accuracy in an incremental fashion and

further apply the results for a feature selection process. The first

step consists in training several RF models, starting from a single-

feature model, and adding each feature at a time from the most

relevant to the least relevant. For each of the classifiers generated,

we assess their performance computing its accuracy, MCC,

specificity and sensitivity for the OOB data. We remind reader

that the OOB data is the portion of data not used to grow the

Figure 5. Pairwise correlation between feature categories resampled performance. Points concentrated around the diagonal in the top
right corner of plots represent a pair of feature categories with strong relationship and good joint performance, while points widely spread in the
bottom left corner of plots depicts the existence of a weak relationship between two categories that also perform weakly in the resampled
evaluation. Categories one (alignment features) and two (thermodynamic features) have weak relationship and both have poor resampled
performance, whereas categories four (seed features) and five (position-based features) show strong relationship, both of them with high resampled
performance.
doi:10.1371/journal.pone.0070153.g005
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decision trees, thus providing an unbiased estimative of perfor-

mance and overfitting.

Results for the restricted forward feature selection are shown in

Fig. 6. A peak in the performance can be clearly identified for the

model trained upon the set of top 12 features when considering

accuracy and MCC scores. Also, one can observe that the use of

all 34 features in our training set helps to maintain a model with

good sensitivity. On the other hand, it also causes an increase in

the generalization error for the negative class, thus impairing the

model’s specificity. According to Fig. 6, the best balance between

specificity and sensitivity is achieved by the model trained with the

12 most relevant features. Grounded on this observation, we apply

a feature selection step by removing the most irrelevant features

from the data. Feature selection is known for improving the

performance of learning models by enhancing both the general-

ization capability and the model interpretability. Thus, we repeat

the RF training process for a subset of features defined by features

1–12 in Table 4 (the top 12), optimizing the number of variables to

choose from in each node split by means of the caret R package.

The results for the top 12 features model are summarized in the

confusion matrix of Table 5. Again, these results represent the

mean (and standard deviation) computed over five repetitions of

10-fold cross-validation. We observe the robustness of the top 12

features model with respect to the previous model: classification

error rates decrease to 10.53% (standard deviation 0.75%) for

positive examples and to 10.35% (standard deviation 0.67%) for

negative examples, yielding a better and more balanced perfor-

mance. Moreover, the model’s average specificity and sensitivity

are 89.64% and 89.46%, respectively. The better balance between

prediction errors for the positive and negative classes is also

reflected in the higher MCC, which increased from 0.737 to 0.786.

This increase corresponds to about 6% of performance gain over

the 34-features RF model, thus evidencing the benefits of

performing a feature selection step when training ML classifiers.

Further Analysis of the RF Model
In the previous section we have made the point that the top 12

features played an interesting role in the performance of the

model, but the overall model’s specificity was marginal due to the

misclassification of the negative instances. Classifier methods

usually do not effectively handle data correlation and data with

Table 4. Features importance.

Rank Feature name
Mean decrease
Gini index

1 MFE of seed region 73.382

2 Position 2 25.282

3 G:C’s in seed region 23.232

4 MFE of complete alignment 20.210

5 Position 4 18.036

6 A:U’s in complete alignment 14.937

7 Alignment score 14.894

8 G:U’s in seed region 14.12

9 A:U’s in seed region 13.23

10 Position 7 12.702

11 Position 6 12.104

12 G:C’s in complete alignment 11.028

13 Position 15 10.043

14 Alignment length 9.954

15 Position 13 9.702

16 Mismatches in complete alignment 9.672

17 Position 3 8.644

18 Position 16 8.576

19 Position 5 8.249

20 Position 8 7.709

21 Position 9 7.667

22 G:U’s in complete alignment 7.297

23 Position 1 6.625

24 Position 10 6.114

25 Position 14 6.024

26 Position 11 5.978

27 Position 20 5.770

28 Position 18 5.348

29 Position 17 5.045

30 Position 12 5.027

31 Gaps in complete alignment 4.895

32 Position 19 4.087

33 Mismatches in seed region 2.939

34 Gaps in seed region 0.000

Ranking given according to features importance computed in the course of
training. The decrease in nodes impurity, measured by the Gini index, is
computed as the average among all trees.
doi:10.1371/journal.pone.0070153.t004

Figure 6. Performance of the RF model evaluated by means of
a restricted forward feature selection. Several random forest
classifiers were trained adding each of the features at a time, following
the rank based on mean decrease of Gini index. The best and most
balanced performance in terms of sensitivity and specificity is achieved
by the model trained based on the subset of top 12 features.
doi:10.1371/journal.pone.0070153.g006
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imbalanced class. Therefore, in this section we pursue a closer

view of strengths and weaknesses of the top 12 features model,

while trying to improve its overall accuracy.

Before exploring the data correlation, we evaluate the data

scaling issue. It is well-known that traditional classifiers always

require a data scaling step before any classification analysis. As an

example, SVM classifiers do not perform well without data scaling.

Once scaling the data, the overall performance of the model was

ACC: 85.29 (0.377), SEN: 87.38 (0.227), SPE: 82.33 (0.842) and

MCC: 0.69 (0.008). Although these results are not very

competitive regarding the performance of the non-scaled model,

we observe that the use of data scaling generates a model able to fit

better new, unlabelled instances.

After, we explore data correlation over the total set of features.

We note that a few features are strongly correlated (Fig. 7). The

seed G:C content, for instance, negatively correlates with the MFE

of the seed region and the seed A:U content. In fact, strongly

correlated features such as seedAU and totalGC are also in the

subset of top 12 features. We evaluate the impact of the

elimination of these features and devise a top 10 model. The

classification results drawn from repeated cross-validation was

ACC: 88.98 (0.621), SEN: 90.04 (0.568), SPE: 87.48 (1.297) and

MCC: 0.77 (0.013). Again, the model trained with the data

analyzed for features correlation did not pose great challenge to

the top 12 model. We also investigate the impact of the

imbalanced classes. Differently from the previous model, we set

misclassification penalties of 70% and 30% for negative and

positive classes, respectively. By taking into account such model

weighting we are able to achieve a top 10 weighted model that

handles more effectively the identification of class imbalance issue.

We compare these models in terms of the ROC curves (Fig. 8A),

observing that the elimination of correlated features and the

misclassification penalties show a slight performance improvement

in relation to the 34 features model, but still not enough to

outperform the top 12 features model.

It is also known that the permutation importance of RF models

is based on a random permutation of the predictor variables. The

Gini coefficient has been shown to carry forward the bias of the

underlying Gini-gain splitting criterion when predictor variables

vary in their number of categories or scale of measurement.

Though it is a practical solution of several classification tree

methods, a conditional permutation scheme would be more

suitable, preserving the correlation structure between target and

predictor variables. We investigate the impacts of conditional

permutation by exploring two additional models and observe that

classical permutation with a weighting scheme does provide a good

overall performance (see Fig. 8B), but without outperforming the

classical random permutation. However, we understand that

whether a marginal or conditional importance model is to be

preferred depends on the research question under investigation.

Comparison with Other Classifiers
In order to perform a more thorough evaluation of our top 12

RF classifier, we compare it against several popular classifiers in

the ML field trained with the same set of features, some of which

were already applied to the problem of predicting miRNA target

genes: i) J48, an open source Java implementation of the C4.5

algorithm for building decision trees; ii) Naı̈ve Bayes (NB), a

statistical classifier used in the development of NBMirTar [21]); iii)

k-nearest neighbors (KNN), an instance-based learner; iv) SVM, a

classifier used as basis in most of the current available ML-based

methods for the prediction of miRNAs targets, e.g., miTarget [22],

TargetMiner [23] and MultiMiTar [24]); and v) GLM, a

generalized linear model. For such comparison, we use the caret

R package and perform a repeated 10-fold cross-validation,

averaging results over five repetitions. In addition, as different

classifiers require different levels of parameter tuning, we also

adopt the caret package interface for training functions in order to

optimize particular parameters of each of the counterpart

classifiers.

Results for this comparative analysis are shown in Fig. 9. The

average AUC scores, computed as the mean of the area under the

ROC curves over all repetitions of cross-validation, is around 0.96

for RF model, in contrast to 0.89 for the second best performing

classifier, J48 (Fig. 9-A). This represents a performance gain of

almost 8%, which is shown to be a significant increase based on

the analysis of 95% confidence intervals of average AUC scores

(Fig. 9-B). In fact, 95% confidence intervals reveal the statistically

significant performance superiority of RF model in relation to all

other classifiers.

Moreover, densities plot of AUC scores based on the resamples

depict the robustness of RF model. The proposed model has its

density distribution shifted to the right of x-axis (highest scores)

(Fig. 9-C), with a much more narrow shape when compared to

counterpart methods, meaning a better and more consistent

performance. Finally, we perform a pairwise t-test comparing the

RF model against each of its counterpart methods in terms of

difference in average AUC scores (Fig. 9-D). The statistical test

produced very small p-values (pv2:2|10{16) for all of the

carried comparisons, indicating that the performance of the RF is

significantly superior in relation to the remainder algorithms.

Therefore, the outcome of the classifiers comparison supports the

better performance of the RF algorithm in contrast to commonly

applied ML methods, as well as the good potential of our tool in

predicting new miRNAs target genes. One reason for such

improvement might be associated to the robustness of the RF

algorithm to the class imbalance problem, which usually impairs

the performance of competing classifiers such as SVM.

Evaluation on Completely Independent Test Data
To further assess the predictive power of the proposed RF

classifier and strengthen our comparative analysis, we download a

collection of 172 experimentally supported human miRNA targets

and 33 experimentally confirmed false target predictions from the

TarBase 5.0 [40] to serve as an independent test data set. The

performance of RFMirTarget is compared to the counterpart

methods outlined in the previous section for both the complete set

of features and the subset of top 12 features (see Table 1).

Results in terms of ROC curves and AUC scores are shown in

Fig. 10. Panels A and C depict the performance for models trained

with all features, while panels B and D show the results for the top

12 features models. Furthermore, ROC curves for all classifiers

Table 5. Feature selection improves RFMirTarget
performance.

Real

Non-Target Target

Predicted Non-Target 306.6 (2.30) 50.8 (3.63)

Target 35.4 (2.30) 431.2 (3.63)

Confusion matrix for the top 12 features RF model estimated by averaging the
results over five repetitions of 10-fold cross-validation. Standard deviations are
given in parenthesis.
doi:10.1371/journal.pone.0070153.t005
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considered are shown in top panels, whereas the computed AUC

scores are compared in the bottom panels. These plots show that

the RF and J48 models present the best performance when

considering the complete set of features, as their ROC curves have

the greatest distance from the dashed diagonal line, which

represents the performance of a random classifier (Fig. 10A and

Fig. 10B). In contrast, KNN and GLM perform as poor as a

random classifier.

However, when focusing the training process solely in the most

relevant features, i.e., the top 12 set, SVM and KNN show an

important boost in their predictive accuracy. In fact, SVM

outperforms the RF classifier for the top 12 features models,

obtaining higher true positive rates for false positive rates in the

approximate range of 0.2 to 0.6. A comparison in terms of the

AUC scores (Fig. 10C and Fig. 10D) summarise these results in a

more straightforward fashion. We observe that both RF models

outperform all other classifiers but the SVM model trained on the

set of most relevant features. In addition, one can clearly notice the

changes in the classifiers performance ranking when switching

from the total set of features to the subset of top 12 features: KNN

and SVM, in particular, rank higher in the latter.

To assess the statistical significance of the AUC scores shown in

Fig. 10, we perform a permutation test. Given the original labels

(classes) of the test data set, we permute its values to obtain a

randomized version of the labels and then reevaluate the

prediction accuracy for each of the models compared. We repeat

this process 2000 times and compute a p-value, which represents

the fraction of randomized samples in which the classifier performs

better than in the original data, and indicates how likely the

observed accuracy, e.g. the computed AUC scores, would be

obtained by chance. Very low p-values (pv1|10{4) are obtained

for both RF models, giving additional evidence for the good

performance and robustness of our proposed classifier, even when

considering an independent test set. In addition, J48 has p-values

p~4|10{3 and p~3|10{3 for the 34 features and top 12

features models, respectively, while SVM only shows statistical

significant performance for the top 12 features version

(pv1|10{4). All the remainder models do not pass the statistical

significance test (pv1|10{2).

Figure 7. Correlation plot of the 34 features in the training set. Flat circles means strong correlation and regular circles weak correlation.
Positive correlation are depicted by blue ellipses bending to the right, while negative correlation is given by red ellipses bending to the left.
doi:10.1371/journal.pone.0070153.g007
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When comparing the class probabilities assigned by each of the

algorithms trained with the complete set of features (Fig. S1 and

Fig. S2) we verify a large overlap between the misclassified

instances. The proposed RF model presents very few classification

mistakes, especially for the positive class (Target), and for most of

the instances misclassified by our model, the counterpart methods

also show difficulty in predicting the correct class. Since the

training data set is a common factor among all classifiers, this

observation might suggest a methodological bias in the data set

rather than issues such as overfitting, yielding a poor generaliza-

tion ability over new instances defined under different validation

protocols. At this point, we remind reader about the methodology

adopted by Bandyopadhyay and Mitra [23] in the formulation of

the training data set, which involves the use of expression data to

determine real and pseudo miRNAs targets. As we shall discuss

later, this procedure might bias the training data towards a subset

of miRNAs that act by specific targeting mechanisms.

To better understand the misclassifications of our model for the

TarBase independent test set and further explore the features

relevance on classification results, we generate partial dependence

plots for the top 12 relevant features as shown in Fig. 11. Partial

dependence plots give a visual picture about the marginal effect of

a feature on the class prediction. In other words, for each value a

feature may assume, the plot estimates the approximate chance of

an instance being classed as a true miRNA-target pair. One can

observe that the occurrence of a wobble (G:U alignment) in

positions 4, 7 and 6 of the miRNA-target alignment has a negative

effect over the class probability, whereas in position 2 it yields

higher chance of correct classification. Moreover, a G:C alignment

in position 2 seems to disrupt the classifier’s predictive accuracy. In

fact, from the 43 misclassified positive instances of the independent

test set (the false negatives), 51% show a G:C alignment in position

2, what might partially justify the incorrect classification. In what

concerns the structural features related to the seed region, namely

the absolute frequency of G:C, A:U and G:U alignments, the

partial dependence plots show an unimodal curve, with very well

defined values for high class probabilities. We found that about

half of the positive instances that were misclassified by RFMir-

Target have three or less G:C alignments in the seed region, which

are known to be important for RNA stability and miRNA binding

and might thus mislead classification. Furthermore, we verify that

only about 30% of the false negative instances have favourable

absolute frequency of A:U pairing in the seed region and that the

relative frequency of wobbles in the seed region of false negatives is

significantly greater that what we observe for the true positive

examples (pv0:05, Fisher’s exact test).

Next, we compare our RF classifier against other target

prediction algorithms, miRanda and TargetSpy. While miRanda

predicts targets mostly upon sequence complementarity miRNA-

target duplex thermodynamics, TargetSpy is a ML approach that

applies feature selection and a learning scheme based on boosting

with decision stumps as base learner. For TargetSpy, we run two

versions of the algorithm, one with seed match requirement

(TargetSpy seed sens) and the other without seed match requirement

(TargetSpy no-seed sens), both using the sensibility as the threshold

score [11]. Based on the confusion matrix built from each of these

methods predictions for the independent test data set, we compute

their specificity and sensitivity. Results are shown in Fig. 12, which

plots the false positive rate (1-specificity) versus the true positive

rate (sensitivity) for several methods, including our RF model and

a SVM model trained with our set of descriptive features.

Two things to be noted about Fig. 12 is how far points are from

the dashed diagonal line, which denotes a totally random method

without any predictive power, and in which quadrant points are

situated. Ideally, one would expect methods whose points are

located in the top left quadrant of the plot, meaning high

sensitivity and high specificity, and far away from the diagonal

line. However, in the comparison carried in this paper, none of the

Figure 8. ROC curves comparing several variations of the random forest model. A) The random forest model trained after feature selection
(RF Top12) shows a good improvement in relation to the model trained with the total set of features (RF 34 feat). However, some model
improvements such as elimination of correlated features (RF Top10) and assignment of class weights (RF Top10w) do not pose difficulty to the
performance of the top 12 features model. B) Moreover, we investigate the impacts of conditional permutation in the top 12 features model and the
top 10 features model (eliminating strong correlation) and observe that classical permutation still provides a better overall performance. We compare
the tree-based models to a SVM classifier trained with the top 12 features, showing that the former achieve a better average performance over all
resamples than the latter.
doi:10.1371/journal.pone.0070153.g008
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algorithms achieved such desirable performance. Our RF classi-

fier, in particular the top 12 features RF model, is shown to have a

sensitivity higher than miRanda and TargetSpy, and is also plotted

further away from the diagonal line in relation to other methods.

Although SVM reaches a sensitivity very close to our model’s, it

has a lower specificity, degrading its overall performance. In fact,

in what concerns the specificity, the proposed RF models perform

weaker than the two variations of TargetSpy, which achieves very

low false positive rates. On the other hand, TargetSpy also has the

lowest true positive rate among all algorithms: only about 37% to

45% of true targets are correctly identified. Therefore, the

proposed RF models are reliable in the sense of identifying a

Figure 9. Comparison of our random forest model against several popular classifiers based on repeated cross-validation. We
compare the top 12 features RF model with five others popular classifiers trained with the same features set: J48, K-nearest neighbours (KNN), SVM,
Naı̈ve Bayes (NB) and a generalised linear model (GLM). A) The average AUC score, computed as the mean over five repetitions of 10-fold cross-
validation, is greater for the RF model, which also presents the smallest standard deviation among all classifiers. B) A comparison of average AUC
scores in terms of 95% confidence intervals evidences the statistically significant superiority of the RF model. J48 also shows a significant difference in
performance regarding the remaining methods, but still lower than RF’s. C) Moreover, the performance of the classifiers over several resamples are
summarised by a kernel density estimator, which indicates a tall and narrow distribution for our RF classifier. This gives a picture on the robustness of
the RF model: our classifier is not only better (distribution is shifted towards upper limit of x axis, i.e., highest scores), but also shows a more
consistent performance (narrower distribution in relation to others). D) Finally, a t-test over pairwise differences in average AUC scores across all
classifiers produces very small p-values (v2:2|10{16) for comparisons against the RF model, providing additional support to the superior
performance of the proposed method.
doi:10.1371/journal.pone.0070153.g009
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higher number of true positive targets, due to its outstanding

sensitivity, but at the cost of increased false positive rates. Under

the best of circumstances, one wishes a classifier with a perfect

balance between sensitivity and specificity. However, in most cases

accuracy is still constrained by the trade-off between true positives

and false positives, and the decision of which classifier to apply

depends on the specific application and to which extent the

occurrence of false positives are tolerated [41].

Estimating the Prediction Accuracy on CLIP-Seq Data
To conclude our comparison using independent data, we gather

two new data sets from the starBase platform (http://starbase.sysu.

edu.cn) [42] regarding CLIP-Seq (cross-linking immunoprecipita-

tion-high-throughput sequencing) data containing true miRNA-

target interactions and test the accuracy of our method in the

identification of positive instances, i.e., its sensitivity. In general,

real and pseudo miRNA-target interactions available in databases

such as TarBase are based on bioinformatics predictions, and most

of the softwares used to predict miRNA-target interaction sites

have high false positive rates. Due to both the short length of

miRNAs and to the imperfect base-pairing, many possible

miRNA-target interaction sites can be identified throughout the

transcriptome for a single miRNA, but just a few of these are

indeed functional. In order to determine biologically relevant

miRNA-target interaction sites, the high-throughput sequencing of

RNA isolated by cross-linking immunoprecipitation of Argonaute

Figure 10. Comparative performance of RFMirTarget for a completely independent test data set. We test the proposed RF model with a
collection of experimentally verified positive and negative examples downloaded from TarBase 5.0, comparing it against some counterpart methods.
Panels A and C refer to models trained with the complete set of features, whereas panels B and D present results for the training process based on
the subset of top 12 features. This analysis raises more evidence to the good overall performance of our method in relation to other popular
classifiers. In general, ROC curves for the RF model (panels A and C) are more far away from the diagonal line, which denotes a random classifier with
no predictive power. Moreover, a permutation test based on label randomisation to evaluate the statistical significance of the computed AUC scores
returns the lowest p-values for the RF-based approach in both situations (training with all features and training with the top 12 features), indicating
that these results would be unlikely to occur by chance.
doi:10.1371/journal.pone.0070153.g010
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(Ago) protein has been used [43–45]. This approach restricts the

number of possible miRNA binding sites to those that are found

physically bound to an Ago protein, thus they are more likely to be

functional. Several studies show that the application of this method

has significantly reduced the rate of false positive predictions of

miRNA-target interaction sites [42–45], thus representing a high-

quality and reliable data to test the performance of computational

approaches.

Using the tool target site intersection of the starBase platform, we

search for miRNA-target interactions involving any of the human

miRNAs available at starBase that are simultaneously predicted by

at least four softwares (TargetScan, PicTar, RNA22 and PITA).

Moreover, we adopt the most restrict value for the minimum

number of reads (1000 reads) and require a biological complexity

(BC) equal or higher than 2. In this analysis, 385 miRNA-target

pairs are found. To avoid overfitting, if more than one miRNA

with the same predicted target site is found for a given gene, we

Figure 11. Partial dependence plots for the top 12 relevant features. These plots depict the effect of different values of a given variable on
the class prediction, allowing us to further interpret the ensemble model and its weaknesses. Structural features related to the seed region, namely
the absolute frequency of G:C, A:U and G:U alignments, show an unimodal curve, with very well defined values for high class probabilities. One can
observe, for instance, that three or more G:C alignments in the seed region may disrupt correct classification of true miRNA-target pairs, while three
A:U alignments is very decisive for the recognition of true positive instances. Moreover, as expected, G:U occurrence drastically decrease the class
probability. In what concerns the position-based features, the analysis of the plots suggest that a G:C alignment in position 2 in detrimental for
miRNA-target recognition, conversely to what is observed for positions 4, 6 and 7.
doi:10.1371/journal.pone.0070153.g011
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randomly select one of the possible miRNAs and exclude the

others from the data set. Further, we divide the data in two

different data sets: (i) one containing the miRNA-target pairs that

were not predicted by miRanda (38 pairs) and (ii) one containing

miRNA-target pairs predicted by the four aforementioned

softwares and also by miRanda (170 pairs).

Results for the CLIP-seq data are shown in Table 6 and

compare the sensitivity for the six in-house trained classifiers, as

well as the predictions by the TargetSpy software. For the latter,

we adopt the sensitivity as the threshold and run both variants of

the algorithm, with and without the seed requirement. All

instances for which the predicted probability is higher than 0.5

are classified as Targets (the true positive instances). Similarly to

what we observe in tests with the TarBase data, TargetSpy

achieves very low sensitivity levels for both data sets. In its best

performance (run with no seed requirement for data set #2),

TargetSpy recovers only about 53% of the positive examples. This

finding confirms that despite the low false positive rates returned

by TargetSpy in the tests with the TarBase data, this tool is not

very efficient in the identification of real miRNAs target genes.

In contrast, classifiers trained with our defined set of features

achieve much higher accuracy. Except for the GLM classifier,

which fails in this test, most of classifiers predictive accuracies

outperform TargetSpy, especially when feature selection is applied

(top 12 features). Moreover, as opposed to what one would expect,

there is no bias in the performance regarding the data set built

upon evidence from miRanda (data set #2), as in some cases

classifiers perform better for interactions that were not predicted

Figure 12. Comparison of false positive and true positive rates for several distinct methods based on an independent test set. Our
RF model has a very good overall performance compared to miRanda and TargetSpy, two other algorithms for miRNA target prediction, as well as to
a SVM classifier trained with the same features and data set. Its sensitivity it’s among the highest, and it is also the farthest from a random
performance, denoted by the diagonal line. However, the high sensitivity comes at the cost of increased false positive rates. In this sense, TargetSpy is
the most reliable tool among the methods compared in terms of correct identification of false targets. As usual, there is a clear trade-off between true
positives and false positives, and the decision of which classifier to apply ends up depending on the specific application and to which extent the
occurrence of false positives are accepted.
doi:10.1371/journal.pone.0070153.g012

Table 6. Comparison of methods’ sensitivity for tests
performed with the CLIP-Seq data.

Method Features/Setup Data set #1 Data set #2

RF complete set 0.704 0.725

top 12 0.774 0.756

SVM complete set 0.464 0.549

top 12 0.901 0.891

NB complete set 0.591 0.657

top 12 0.633 0.689

KNN complete set 0.661 0.756

top 12 0.675 0.633

J48 complete set 0.521 0.586

top 12 0.732 0.743

GLM complete set 0.000 0.027

top 12 0.000 0.018

TargetSpy seed 0.421 0.339

no-seed 0.459 0.529

Data set #1 refers to interactions predicted by all softwares except miRanda (38
pairs).
Data set #2 comprises interactions predicted by all softwares, including
miRanda (170 pairs).
Both TargetSpy tests were performed using the sensitivity as the threshold.
doi:10.1371/journal.pone.0070153.t006
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by miRanda than those that are supported by miRanda. Our RF

classifier trained with the complete set of features presents a

sensitivity that ranges from 70.4% to 72.5%. In this scenario, the

only classifier that outperforms our tool is the KNN, which

correctly classifies 75.6% of the instances from data set #2.

One interesting observation regarding values in Table 6 refers

to the impact of feature selection over results. We observe that RF,

SVM and J48 especially benefit from a feature selection process.

The proposed RF model succeeds in identifying up to 77% of

instances with a low complex model, trained over 12 features,

presenting a performance gain of 9.94% for data set #1 and

4.27% for data set #2. The J48 classifier, which builds a single

decision tree, has a much higher improvement in performance,

increasing its sensitivity in 40.49% and 26.79% for data set #1

and data set #2, respectively. Moreover, the sensitivity achieved

by SVM after feature selection is surprisingly high. The classifier

correctly identifies about 90% of the true miRNA-target

interactions for both data sets, highlighting the importance of

feature selection in the SVM’s learning convergence and

generalization performance. In contrast, RF is very robust to

these factors and able to perform satisfactorily well with much less

setup efforts.

Despite the higher predictive accuracy provided by SVM over

RF, the analysis of the raw class probabilities assigned by both

methods reveals that SVM tends to produce lower probabilities for

both data sets tested, conversely to what is observed for RF, which

in general has a distribution skewed towards high probabilities

(Fig. S3). We compare the mean and median between both

methods and conclude that regardless the scenario in terms of

CLIP-seq data set tested and number of features used for training,

RF always produce probabilities with higher mean and median.

For data set #1, the mean (median) are 0.600 (0.608) for the RF

model and 0.483 (0.477) for the SVM model, and after feature

selection values increase to 0.631 (0.660) for the RF model and

0.576 (0.570) for the SVM model. For tests with data set #2, the

mean (median) for the 34-features models are 0.590 (0.594) for RF

and 0.530 (0.523) for the SVM, while the values for the 12-features

models are 0.609 (0.636) for RF and 0.576 (0.571) for SVM. We

compare the probabilities vectors between both methods and find

a statistical significant difference (pv1|10{4, Mann-Whitney

test) for every possible scenario described above, confirming the

observation that probabilities assigned by our RF model tend to be

higher, as one wishes in order to increase the chances of a

satisfactory predictive accuracy. In fact, we test the effects of

changing the classification threshold to 0.6 and we observe that the

proposed RF model conserves a good performance, still correctly

classifying around 60% of the instances for both data sets. On the

other hand, the performance of the SVM classifier drastically

drops, recovering only 30% and 22% of the instances for data sets

#1 and #2, respectively, in the best scenario, i.e., under feature

selection. Therefore, the proposed model is shown to be more

reliable and robust for the prediction of miRNAs target genes

when compared to other well-known machine learning algorithm,

as well as to popular tools such as TargetSpy.

Conclusion
The discovery of miRNAs target genes is a crucial step towards

the elucidation of mechanisms involved in gene regulation. The

important role played by miRNAs in animal development and

physiology is well-established. Their participation in metabolic

processes such as growth, apoptosis, cell proliferation and stress

responses has already been characterized [4,5], as well as their

involvement in several ways in cancer progression [6]. Therefore,

increasing efforts have been observed for the development of

computational tools aiming at the identification of novel mIRNAs

targets.

In the current paper, we discussed a ML approach based on

ensemble of decision trees predictions, named RFMirTarget. The

choice of the algorithm is motivated by its outstanding

performance in other classification problems, including the

prediction of novel miRNAs [9]. Nonetheless, few other applica-

tions proposed so far for the identification of miRNAs targets have

explored this ensemble classification approach. Our experiments

have shown that RF indeed performs well in this classification task,

being a promising computational approach for miRNA-target

prediction. After carrying a thorough analysis of our RF model

predictive accuracy, comparing it against several popular classi-

fiers trained with the same data by means of repeated cross-

validation, we concluded that RFMirTarget performance is robust

and superior to competing methods with statistical significance,

with the benefit of requiring much less setup efforts to reach

satisfactory performance levels. We show that factors such as data

scaling, class imbalance and features correlation do not pose

difficulty to the good performance of RFMirTarget as it is usually

the case with other classifiers. In addition, the comparative study

performed in this work adds to the field in the sense of providing

guidance in the choice of the algorithm when it comes to

prediction of miRNAs target genes. To the best of our knowledge,

a fair and comprehensive comparison of machine learning

algorithms applied to this specific task has been poorly addressed

in literature.

Moreover, the analysis of features relevance has shown good

consistency with important biological properties for miRNA-target

alignment stability and also corroborates previous studies in the

field that discuss, for instance, the importance of seed region in

miRNA-target recognition [15,25]. In addition, a restricted

forward feature selection suggests that the model built upon the

subset of top 12 features presents the most balanced classification

results in terms of specificity and sensitivity. Results achieved after

feature selection are robust and very satisfactory for the majority of

the classifiers tested. This shows that the good performance

achieved by RFMirTarget is not only due to the classifier chosen,

but also to the set of features defined. An interesting point to be

observed is that in contrast to what is usually observed in

literature, we refine the set of features and devise a low-complexity

model that performs reliably well in the desired task based on a

small set of 12 features. Counterpart ML-based methods tend to

perform training over a much larger set of features, which can

compromise the generalization performance of classifiers [36].

Finally, we compared our method’s performance with other

tools for miRNA-target prediction, namely TargetSpy and

miRanda, as well as counterpart ML algorithms, using completely

independent test data sets downloaded from TarBase [40] and

starBase [42] platforms. We observed a good overall performance

associated with a very small p-value computed based on a label

permutation test, suggesting that the performance is not random,

but rather statistical significant. In general, RFMirTarget presents

the best sensitivity among the tools tested, with a very reliable

performance when compared to other methods. Therefore, a

direct application of our tool would be to refine results from

miRanda, which is used in our framework. However, we

emphasize that any other software that provides the predicted

sites of alignment between a miRNA and its candidate targets

could be use in the place of miRanda, e.g. TargetSpy [11],

TargetScan [18], PicTar [19], PITA [46], among others. In fact, it

would be interesting to investigate the impact of the aforemen-

tioned tools in the classification results, estimating the lower and

upper bounds on the performance provided by each of the tools.
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Despite the great potential of our tool in identifying true positive

miRNA-targets, evaluation based on the TarBase independent test

data suggests that it still needs improvement regarding its

specificity. The higher false positive rate of RFMirTarget in

contrast to TargetSpy in the tests with TarBase data can be related

to some extent to the definition of negative examples used as

training data set. It is already know that negative examples are

harder to obtain than positive ones, and the procedure used in

their identification can somehow bias the negative set towards

some specific type of miRNAs targeting. For instance, using gene

expression in the identification of negative examples might limit

the negative set to miRNAs that act by cleavage, whereas some

miRNA targeting occurs predominantly at the level of transla-

tional repression [47]. Thus, for future work, we deem interesting

to evaluate performance of RFMirTarget with data sets derived

from protein abundance experiments, as well as expand our

training data set by including new examples defined based on

distinct validation protocols, for instance, CLIP-Seq data.

The challenge of predicting miRNA target genes is far from

being completely solved. Although a plethora of methods have

been proposed, most of them take into account several premises

such as high complementarity between miRNA and mRNA and

the idea of one miRNA to one mRNA interaction. However, as

experimentally observed, miRNAs target multiples genes and

genes are targeted by multiple miRNAs [48]. Moreover, even in

the case of high complementarity, effective target site might not

happen due to mRNA accessibility in terms of secondary structure,

for instance. Although RFMirTarget presents a promising strategy

for Human miRNA target prediction and a reliable source to

reduce the set of hypothesis to be experimentally tested, as its

counterpart methods, is still not able to effectively handle the

previously mentioned issues, a situation that could be of significant

computational and biological importance to pursue in near future.

Supporting Information

Figure S1 Predicted probabilities for 50 random posi-
tive instances of the TarBase independent test set. The

heat map shows the predicted class probabilities by the distinct

machine learning algorithms compared when trained over the

complete set of features. For positive instances, probabilities higher

than 0.5 yield the correct classification (Target). We observe a

great overlap of misclassified instances among the algorithms. In

general, positive instances not identified by our RF model are also

assigned low class probabilities by the counterpart methods,

suggesting that errors in classification of independent test instances

might be due to artefacts of training data rather than issues such as

model overfitting.

(TIF)

Figure S2 Predicted probabilities for 30 random nega-
tive instances of the TarBase independent test set. For

negative instances, probabilities equal or less than 0.5 yield the

correct classification (Non Target). We observe that many of the

predicted probabilities are situated around the boundary condition

that distinguishes the positive class from the negative class,

regardless of the algorithm considered. Thus, the compared

algorithms show a deficiency in the generalization power

concerning the negative class, which could be overcome by

enhancing the training data set with more negative examples.

(TIF)

Figure S3 Density distributions of the class probabili-
ties predicted by RF and SVM models for the CLIP-Seq
data. Panels A and C refer to the tests with data set #1, while

panels B and D refer to results related to data set #2. Moreover,

the top panels (A and B) are for models trained with the complete

set of feature, whereas bottom panels (C and D) are for models

trained with the top 12 features. We observe that regardless of the

data set used, the distribution of probabilities predicted by RF is

skewed to the right, meaning that they tend to be higher than the

probabilities returned by SVM. We compare the raw probabilities

in terms of a Mann-Whitney test and find a significant difference

(pv1|10{4) for all the possible scenarios (panels A–D).

(TIF)
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