Skip to main content
. 2013 Jul 26;8(7):e70153. doi: 10.1371/journal.pone.0070153

Table 3. RFMirTarget classification results on different feature subsets.

Feature set ACC (std) SPE (std) SEN (std) MCC (std)
Cat 1: Alignment (2) 59.34 (0.549) 39.64 (1.066) 73.31 (0.946) 0.136 (0.011)
Cat 2: Thermodynamic (1) 59.39 (1.156) 45.38 (2.211) 69.33 (1.051) 0.150 (0.025)
Cat 3:Structural (5) 67.57 (0.632) 45.38 (0.562) 83.31 (1.074) 0.313 (0.013)
Cat 4: Seed (6) 84.78 (0.407) 82.98 (0.811) 86.05 (0.537) 0.687 (0.008)
Cat 5: Position-based (20) 87.62 (0.462) 84.67 (1.124) 89.70 (0.314) 0.744 (0.009)
Total (34) 87.20 (0.434) 85.84 (0.790) 88.17 (0.604) 0.737 (0.008)
Top ranked (12) 89.53 (0.480) 89.64 (0.673) 89.46 (0.753) 0.786 (0.009)

The number of features in each category or set is given in parenthesis. Accuracy (ACC), specificity (SPE) and sensitivity (SEN) are expressed as percentages.