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Advances in solid-state technology have enabled the development
of silicon photomultiplier sensor arrays capable of sensing individual
photons. Combined with high-frequency time-to-digital converters
(TDCs), this technology opens up the prospect of sensors capable of
recording with high accuracy both the time and location of each
detected photon. Such a capability could lead to significant improve-
ments in imaging accuracy, especially for applications operating
with low photon fluxes such as light detection and ranging and
positron-emission tomography. The demands placed on on-chip
readout circuitry impose stringent trade-offs between fill factor
and spatiotemporal resolution, causing many contemporary designs
to severely underuse the technology’s full potential. Concentrating
on the low photon flux setting, this paper leverages results from
group testing and proposes an architecture for a highly efficient
readout of pixels using only a small number of TDCs. We provide
optimized design instances for various sensor parameters and
compute explicit upper and lower bounds on the number of TDCs
required to uniquely decode a given maximum number of simul-
taneous photon arrivals. To illustrate the strength of the proposed
architecture, we note a typical digitization of a 60 x 60 photodiode
sensor using only 142 TDCs. The design guarantees registration
and unique recovery of up to four simultaneous photon arrivals
using a fast decoding algorithm. By contrast, a cross-strip design
requires 120 TDCs and cannot uniquely decode any simultaneous
photon arrivals. Among other realistic simulations of scintillation
events in clinical positron-emission tomography, the above design
is shown to recover the spatiotemporal location of 99.98% of all
detected photons.
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hoton detection has become an essential measurement tech-
nique in science and engineering. Indeed, applications such as
PET, single-photon-emission computed tomography, flow cytom-
etry, light detection and ranging (LiDAR), fluorescence detection,
confocal microscopy, and radiation detection all rely on accurate
measurement of photon fluxes. Traditionally, the preferred mea-
surement device has been the photomultiplier tube (PMT), which
is a high-gain, low-noise photon detector with a high-frequency
response and a large area of collection. In particular, it behaves
as an ideal current generator for steady photon fluxes, making it
suitable for use in applications in astronomy and medical imaging,
among others. However, they are bulky, require manual assembly
steps, and have limited spatial resolution for PET. For these
reasons, extensive research has focused on finding feasible solid-
state alternatives that can operate at much lower voltages, are
immune to magnetic effects, have increased efficiency, and are
smaller in physical size (1). Recent designs have raised significant
interest in the community, and their use as a replacement for
PMTs in applications such as PET imaging (2), high-energy
physics (3), astrophysics (4), LIDAR (5), and flow cytometry has
been recently explored.
Silicon photomultiplier (SiPM) devices consist of 2D arrays of
Geiger avalanche photodiode (APD) microcells. Devices built
up from these microcells are characterized by the fraction of
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sensing area on the device (the fill factor) and the fraction of
incident photons that cause charged APDs to fire (the detection
quantum efficiency). The product of these two quantities gives
the combined photon detection efficiency.

The compatibility of Geiger APDs with standard complemen-
tary metal-oxide semiconductor technology has enabled a number
of different designs. For example, the digital silicon photomulti-
plier (6) adds processing circuitry to count the total number of
photons hitting the sensor and records a time stamp at the onset
of each significant burst. The resolution of the resulting sensor
coincides with the size of the entire sensor (usually 3 X 3 mm in
area), whereas the temporal sampling is limited to a single time
stamp per pulse. Nevertheless, the sensor does achieve a very
high fill factor (80%) and is, therefore, very sensitive. Note that
in SiPM terminology the above tiling of microcells into larger
atomic units is often referred to as a pixel. Throughout this pa-
per, however, we use the term “pixel” to refer to individual
Geiger APD microcells, because they represent the smallest re-
solvable element in our proposed design.

An alternative sensor design, the single photon avalanche di-
ode array, aims at a high temporal resolution and registers the
time of each pixel (APD) firing (7, 8). This is achieved by con-
necting each pixel to a high-performance time-to-digital con-
verter (TDC), which records a time stamp in a memory buffer
whenever a signal is detected on its input. Because of their rel-
atively low complexity, especially compared with analog-to-digi-
tal converters, TDCs allow the sensor to achieve an extremely
high temporal resolution. However, the spatial resolution of the
sensor is severely compromised by the large amount of support
circuitry between neighboring pixels, resulting in an extremely
low fill factor of ~1-5%.

Significance

We propose a highly compressed readout architecture for
arrays of imaging sensors capable of detecting individual
photons. By exploiting sparseness properties of the input sig-
nal, our architecture can provide the same information content
as conventional readout designs while using orders of magni-
tude fewer output channels. This is achieved using a unique
interconnection topology based on group-testing theoretical
considerations. Unlike existing designs, this promises a low-
cost sensor with high fill factor and high photon sensitivity,
potentially enabling increased spatial and temporal resolution
in a number of imaging applications, including positron-emis-
sion tomography and light detection and ranging.
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Fig. 1. Three SiPM designs with (A) one TDC per pixel, (B) one TDC per row and column of pixels, and (C) one TDC per bit of the binary representation of each
pixel number. The first design is capable of detecting any number of simultaneous hits, at the cost of a large number of TDCs. The other two can only uniquely

decode up to a single pixel firing but require substantially fewer TDCs.

Although promising, both designs show that current imple-
mentations highly underuse the full potential of these silicon
devices: Owing to the restricted chip area a trade-off must be
made between the spatiotemporal resolution and the fill factor.
To improve this trade-off, we take advantage of the special
properties present in settings with a low photon flux. In partic-
ular, we claim that, by taking advantage of the temporal sparsity
of the photon arrivals, we can greatly increase the spatiotem-
poral resolution of the SiPM while maintaining simple circuitry
and a high fill factor.

This claim is made possible by the combination of two ideas:
(i) to use TDCs as the main readout devices and (i) to exploit
ideas from group testing to reduce the number of these devices.
As a motivational example, consider three possible designs for an
mxm pixel grid. The first design, illustrated in Fig. 14, corre-
sponds to a design with a single TDC per pixel. This design can
be seen as a trivial group test capable of detecting an arbitrary
number of simultaneous firings, but at the cost of m?> TDCs.
When the photon flux is low, only a small number of pixels will
typically fire at the same tlmeT thus causing most TDCs to be
idle most of the time, and resulting in a very poor use of resources.
The second design, shown in Fig. 1B, corresponds to the widely
used cross-strip architecture in which rows and columns of pixels
are each aggregated into a single signal. This design requires only
2m TDCs, but information from the TDCs can only be uniquely
decoded if at most one pixel fired during the same time interval.
Hinting at the power of more efficient group-testing designs, Fig.
1C shows a design in which pixels are numbered from 1 to m?
and in which a pixel i is connected to TDCj only if the j-th bit in
the binary representation number i is one. This design is also
capable of decoding up to a single pixel firing but requires only
| 1+2 logym | TDCs. The objective of this paper is to show
that whenever the number of simultaneous firings is small,
a significant reduction in the number of TDCs (and accompa-
nying memory buffers) can be similarly attained by carefully se-
lected designs. This reduces both the amount of overhead
circuitry and the generated volume of data.

Contributions and Paper Organization

The main contributions of this paper are (i) the introduction of
group testing to the design of interconnection networks in im-
aging sensors, combined with TDC readout; (ii) an architecture
to time and locate photon arrivals; (iii) the explicit construction
of highly optimized group testing matrices for a variety of con-
ventional m xm grid sizes; (iv) a comparison with alternative

"Throughout the paper, firing at the same time is to be understood as firing within the
same TDC sampling interval.
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constructions; and (v) an extensive comparison with explicitly
evaluated and optimized theoretical upper and lower bounds on
the minimum number of TDCs required to decode an imaging
Sensor array.

The paper is organized as follows. We start by reviewing the
concept of group testing and construct the currently best-known
group testing designs for a range of grid sizes. We then provide
an extensive survey of constructions used to obtain upper and
lower bounds on the minimum number of TDCs needed to
guarantee recovery ford = 2, ..., 6 simultaneous hits. There, the
results show that the designs generated earlier are within a factor
two of the theoretical lower bounds. We then test the perfor-
mance of the design on data generated using a realistic model of
scintillation events arising in PET scanners. We conclude with
a discussion on practical considerations in the implementation of
the proposed design.

Throughout the paper we use the following notation: log is
base e unless otherwise indicated; [r] denotes the set {1,...,n};

and ( [Z] ) denotes the family of all subsets of [r] with k elements.

Group Testing

Group testing was proposed by Dorfman (9) to effectively screen
large numbers of blood samples for rare diseases (see ref. 10 for
more historical background). Instead of testing each sample in-
dividually, carefully chosen subsets of samples are pooled together
and tested as a whole. If the test is negative, we immediately
know that none of the samples in the pool is positive, saving a
potentially large number of tests. Otherwise, one or more sam-
ples is positive and additional tests are needed to determine
exactly which ones.

Since its introduction, group testing has been used in a variety
of different applications including quality control and product
testing (11), pattern matching (12, 13), DNA library screening
(14-17), multiaccess communication (18), tracking of hot items
in databases (19), and many others (10, 20). Depending on the
application, group testing can be applied in an adaptive fashion
in which tests are designed based on the outcome of previous
tests, and in a nonadaptive fashion in which the tests are fixed
a priori. Additional variations include schemes that provide ro-
bustness against test errors (21, 22) or the presence of inhibitors
(23, 24), which cause false positives and negatives, respectlvely

In our SiPM application, each pixel fires mdependently
according to some Poisson process and exactly fits in the prob-
abilistic group-testing model (14). Nevertheless, because we are

*This assumes that pixels have been shielded to avoid cross-talk.
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interested in guaranteeing performance up to a certain level
of simultaneous firings, we will study the application from a
combinatorial group-testing perspective. Furthermore, measure-
ments are necessarily nonadaptive because they are hardwired in
the actual implementation. No error correction is needed; the only
errors we can expect are spurious pixel firings (dark counts) or
afterpulses, but these appear indistinguishable from real firings
and cannot be corrected for. The rate of these spurious pixel
firings is usually much less than the signal rate, especially in our
scintillation example (25).

Matrix Representation and Guarantees. A group test can be rep-
resented as a binary ¢ X n incidence matrix or code 4 with ¢ the
length or number of tests and n the size or number of items, or
pixels in our case. An entry A; ; is set to one if item j is pooled in
test i, that is, if pixel j is connected to TDC i, and zero otherwise.
Given a vector x of length n with x; = 1 if item j is positive and
zero otherwise, we can define the test vector y as y = Ax, where
multiplication and addition are defined as logic AND and OR,
respectively®. The columns a; in A are called codewords, and for
sake of convenience we allow set operations to be applied to
these binary codewords, acting on or defining their support. As
an illustration of the above, consider the following example:

0
1 601 i\t
Lf[=10o 1 0 1 0ff0
0 1 0100/)(1

0
y = A X

In this example pixels 1, 4, and 5 are connected to the first TDC,
as represented by the first row of 4. When pixels 2 and 4 fire, we
sum (logical or) the corresponding columns and find that the
first and second TDCs are activated, as seen in y.

For group testing to be effective we want to have far fewer
tests than items (f < n). This inherently means that not all
vectors x can be reconstructed from y, so we will be interested in
conditions that guarantee recovery when x has up to d pos-
itive entries.

The weakest notion for recovery is d separability, which means
that no combination of exactly d codewords can be expressed
using any other combination of d codewords. A matrix is said to
be d-separable if the combination of any up to d codewords is
unique. This immediately gives an information-theoretic lower
bound on the length #:

d
t210g2<2(7>>. [1]
i=0

When d is small compared to n, this gives t~dlog,(n/d). A
stronger criteria is given by d disjunctness. Given any two code-
words u and v, we say that u covers v if u Uv = u. Based on this,
define A to be d-disjunct if no codeword in A4 is covered by the
union of any d others. The concept of disjunctness of sets and
codes has been proposed in a number of settings and such codes
are also known as superimposed codes (26), or d-cover-free fam-
ilies (27). The advantage of d-disjunct codes is that the positive
entries in any d-sparse vector x correspond exactly to those code-
words in A that remain after discarding all codewords that have
a one in a position where y is zero. This is unlike general sepa-
rable matrices, where a combinatorial search may be needed for
the decoding.

SAddition using the logic OR gives 0 + 0 =0and 0+ 1 =1+ 1= 1, whereas 00 = 0-1 =0
and 1-1 = 1, as usual.
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The central goal in group testing is to determine the smallest
length ¢ for which a matrix of size n can satisfy certain separa-
bility or disjunctness properties. Denote by S(n,d) and D(n,d)
the set of all matrices A of size n that are d-separable, re-
spectively d-disjunct. Then we can define Ts(n,d) the smallest
length of any 4 € S(n,d), and likewise for Tp(n,d). As a further
refinement in classification we define D, (n,d) as all constant-
weight d-disjunct matrices of size n, that is, those matrices whose
columns all have the same weight or number of nonzero entries
(note that the weights of any two matrices within this class can
differ). The overlap between any two columns a; and a; of a code
is defined as |a; N a;|. Consider a constant-weight w code A with
maximum pairwise overlap

U :/,{(A) = n,l;gx |a,—ﬂaj\.

It is easily seen that it takes [w/u] columns to cover another one,
and therefore that

u

(2]

ey

We can then define D, ,(n,d) as the class of constant-weight
codes of size n where the right-hand side of Eq. 2 equals d. As
for all other classes, the actual disjunctness of the codes in D, ,
may still be higher. Summarizing, we have

D, ,(n,d)CD,(n,d)CD(n,d)CS(n,d),

along with the associated minimum lengths 7'(n,d).

The above criteria are worst case in that they consider all
possible combinations of d codewords. It is possible to relax this
and require that combinations are recovered with a certain
probability. Although we do not study such average-case be-
havior, it is evident from the numerical experiments that d-
disjunct matrices can successfully recover combinations of many
more than d codewords with high probability.

Matrix Construction. In this section we discuss three methods for
creating d-disjunct binary matrices. Given that the number of
rows in the matrices correspond directly to the number of TDCs
required to implement the design, it is crucial that this number is
kept as small as possible. We apply the techniques to construct
optimized matrices for the case where n = 3,600, corresponding
to a 60x 60 pixel array. Rows (I-n) in Table 1 show clear dif-
ferences in the performance of the given construction methods.
Fig. 2 compares the best constructions with the standard cross-
strip design.

Greedy approach. The greedy approach generates d-disjunct ma-
trices one column at a time. For the construction of a constant-
weight w matrix of length ¢ the algorithms starts with 7 ={J and
proceeds by repeatedly drawing, uniformly at random, an ele-

ment F from K}] as a candidate column. Whenever the dis-

tance to all sets already in F exceeds w/d we add F to F and
continue the algorithm with the updated family. This process
continues until either |F| =n or a given time limit is reached.
We applied the greedy algorithm to find d-disjunct matrices of
size at least 3,600. For each value of d and length ¢, the algorithm
was allowed to run for 12 h. Row (1) of Table 1 gives the mini-
mum ¢ for which the algorithm found a solution. Instances with
fewer rows are very well possible; this strongly depends both on the
choice of the initial few columns and the amount of time available.
A further reduction in the code length could be achieved by
checking disjunctness in a groupwise, rather than a pairwise,
setting. However, the number of possible d subsets of columns to
consider at each iteration grows exponentially in d, thereby
rendering this approach intractable for even moderate values of d.
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Table 1. Upper and lower bounds on the minimum number of rows needed for a d-disjunct or d-separable matrix with n = 3,600 rows
Bound\d 2 3 4 5 6 Ref. and comments
Upper bounds (theoretical)
(a) Tp,, (n,d)< 436 982 1,746 2,729 3,929 Adaptation of 40 given in 3
(b) Tp,,, (n,d)< 94 237 443 711 1043 Ref. 27, proposition 2.1 with optimal w
(9 Tp,, (n,d)< 20 222 412 660 966 Eqg. 4 with optimal w
(d) Tp(n,d)< 149 278 442 640 870 Bernoulli (36, theorem 5)
(e) Tp, (n,d)< 96 190 312 459 631 Constant weight, groupwise cover
(f) Tp,, (n,d)< 76 163 279 422 590 Constant weight, Lovasz local lemma
(9) To(n,w)< 110 225 376 561 779 Bernoulli, groupwise cover
(h) Tp,,, (n,d)< 99 249 465 746 1,094 Constant weight, pairwise overlap
(i) Tp,, (n,d)< 71 154 265 402 565 Constant weight, groupwise cover (see 46)
() Tp,, (n,d)< 130 300 522 828 1,178 Adaptation of 52, algorithm 1
(k) Tp(n,d)< 98 205 348 524 734 Ref. 42, theorem 2.6
Upper bounds (instances)
() Tp,, (n,d)< 58 132 224 345 484 Greedy search
(m) Tp, (n,d)< 82 155 237 333 445 Ref. 52, section 2; Supporting Information gives details
(n) Tp,,, (n,d)< 51 85 142 174 206 Error-correction code-based
Lower bounds
(0) Tp,,, (n,d)> 35 56 75 96 115 Ref. 46, theorem 2
(p) TDWM(n d)> 35 55 74 93 113 Ref. 26, equation 5 and 36, equation 18
(@) Tp,, (n,d)> 35 — — — — Ref. 53, theorem 1
() Tp,, (n,d)> 32 48 62 75 88 Ref. 27, proposition 2.1
(s) Tp,, (n,d)> 29 40 48 55 61 Ref. 34, lemma 3.2
(t) Ts(n,d)> 23 33 43 53 62 Information theoretical lower bound

Entries shown in boldface denote the best theoretical upper and lower bounds we could find for each of the given classes.

Designs based on error-correcting codes. Excellent practical super-
imposed codes can be constructed based on error-correcting
codes. Here, we discuss a number of techniques and con-
structions we used to generate the best superimposed codes
known to us for a variety of pixel array sizes (i.e., for square
mxm arrays with m € {10, 20, 30, 40, 60, 120}). For comparison
with other constructions, the results are summarized in Table 2,
and row (n) of Table 1 for n = m? = 3,600.

Binary codes. The most straightforward way of obtaining d-dis-
junct superimposed codes is by simply taking constant-weight
binary error-correction codes obeying Eq. 2, with overlap u as
given below. The on-line repository (28) lists the best known
lower bound on maximum size A(n,d,w) for constant weight w
codes of length n and Hamming distance d (note the different
use of n and d in this context). Given a code ST (n,d,w) from this
Standard Table, the overlap satisfies u <w —d/2. Some codes are
given explicitly, whereas others require some more work to in-
stantiate. We discuss two of the most common constructions that
are used to instantiate all but one of the remaining codes we use.
The first construction consists of a short list of seed codewords v;,
along with a number of cyclic permutations. These permutations
give rise to a permutation group P and the words in the final
code are those in the union of orbits of the seed vectors:
Ui{wlw = P(v;),P€P}. The second construction shortens
existing codes in one of two ways. We illustrate them based on the
generation of the 2-disjunct code st (21,8,7) of size 100 from st
(24,8,8). The first type of shortening consists of identifying a row i
with the most ones and then selecting all columns incident to this
row and deleting row i. This both reduces the weight and the
length of the code by one, but preserves the distance, and in this
case gives sT (23,8,7) (note that shortenings do not in general lead
to new optimal or best known codes). The second type of short-
ening identifies a row i with the most zero entries and creates
a new code by keeping only the columns with a zero in the i-th
row, and then removing the row. This construction does not
affect the weight of the matrix, only the size and length. Re-
peating this twice from st (23,8,7) yields the desired st (21,8,7)
code. Note that for constant-weight codes, the minimum number

van den Berg et al.

of ones in any given row is bounded above by |wn/t|. This ex-
pression can be used to give a theoretical minimum on the number
of rows by which we can shorten a code. In practice it may be
possible to remove a substantially larger number of rows. Below
we will frequently use shortening to obtain codes with smaller
length. In these cases we only use the second type of shortening,
based on zero entries.

g-ary error-correction codes. The Standard Table only lists codes
with relatively small lengths and, consequently, limited sizes. To
construct larger or heavier codes we apply a construction based
on [maximal distance separable (MDS)] g-ary error-correcting
codes, as proposed by Kautz and Singleton (26) Let (n,k,d),
denote a linear g-ary code of length n, size ¢, and Hammlng
distance d. Each codeword in these codes consists of n elements
taken from GF(g) and differs in at least d locations from all
other codewords. A binary superimposed code can be obtained
from these g-ary codes by replacing each element with a corre-
sponding column of a g Xg identity matrix /,. That is, we map
each element in GF(g) to a unique column of /,. For example,
we map value k to the (k 4 1)-st column of /; as follows:

g-ary 2 0 1 2 1 1 0
0 0 1 0 0 0 0

Binary 7 0 0 1 0 1 1 0
2 1 0 0 1 0 0 0

The overlap between any two codewords of the resulting
concatenated code is bounded by the length of the code n
minus the distance d. Meanwhile, the weight is exactly the
length. The disjunctness of the resulting code is therefore at
least [(n—1)/(n—d)]. As an aside, note that this construction
requires an explicit set of codewords. This can be contrasted
with g-ary error-correction codes, for which fast encoding—
decoding algorithms often exist, and which do not require such
an explicit representation.

Existence of a large class of (n k,d), codes, including the well-
known Reed-Solomon codes is shown by Kautz and Singleton
(26) and Singleton (29). In MacWilliams and Sloane (ref. 30,
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Table 2. Overview of best-known constructions for d-disjunct
matrices of size n

d t Construction
n =100
2 21 s7(21,8,7)
3 36 sT (36,10,7)
4 48 sT (48,8,5)
5 60 sT (60,10,6)
Iq.5(2)
6 75 7,2, 6)1q15
n =400
2 31 sT (31,8,7)
3 51 sT(51,10,7)
4 64 <(65,9,3)°"”
lq.5(14
5 107 (117379)14115( )
Ig.5(25)
6 144 (13’3’11);:35
n =900
2 38 sT(38,8,7)
lq.5(4
3 73 (7,3, 5)1q15( )
lq.5(4
4 95 (9[ 3, 7);:15( )
lq,5(4)
5 117 (1173.9)1@15
lq.5(13
6 156 (13’3711)10135( )
n = 1,600
2 44 sT (44,8,7)
3 78 (10’47 7)315(12)
Iq.5(4),
4 113 (9’3’7)1‘135 )X
Iq,s(3
5 140 (11A379)1q35( )
/lq.5(3
6 166 (133,115
n = 3,600
2 51 s1(51,8,7)
3 85 (10747 7):;;15(5)
Iq.5(2
4 142 (97377){165( )
lq.5(2
5 174 (11"3‘9)1‘765( )
Ig5(2)
6 206 (13’3’11){765
n = 14400
ST(9.4.3
2 63 (77474>“( )
I
3 110 (10,4,7)",
Ig.5(8)
4 161 (13,4,10)%’
Ig.5(23)
> 233 (16,4,13)%
Iq.5(2
6 323 (1373711);5,5( )

Codes from the Standard Table (28) are indicated by ST(:). The covering
¢(65,9,3) appears in the La Jolla Covering Repository (33) and was used in
ref. 14. All other entries are (n, k, d), codes. Superscripts s(k) indicates a short-
ening of k steps with pivoting on zero entries; x indicates a greedy extension,
Iy indicates concatenation with a g xq identity matrix. The ST(-) superscript
indicates concatenation with a binary code from the Standard Table.

chap. 11, theorem 9) cyclic MDS codes with n =g+ 1 and
d =g —k+ 2 are shown to exist whenever 1<k <g+1 and ¢
is a prime power. As a result, it can be concluded that, when
expressed in group-testing notation, this concatenated code
construction requires a length = O(min[n,k*log’n]) (20),
compared with the best-known bound of O(k* logn). Despite the
slightly weaker bound, we shall see below that for small instan-
ces, the resulting codes are far superior to the random con-
structions used to yield the improved bound.

As an example, we used a concatenation of (10,4,7),; with [,
denoted (10, 4,7)?1, to construct the 3-disjunct matrix of size
n = 14,400 shown in Table 2. Most of the other codes obtained
using this construction have an additional superscript s(k) to
indicate the application of k shortening steps. The 4-disjunct

E2756 | www.pnas.org/cgi/doi/10.1073/pnas.1216318110

code of length n = 1,600 also has a superscript x to indicate
extension of the code. In this case, the four shortening steps
resulted in a 113x 1,596 code, falling just short of the desired
size of 1,600. The very structured nature of these concatenated
codes means that many constant-weight vectors are not included,
even if they may be feasible. We can therefore try to apply greedy
search techniques to augment the code. For this particular case it
was found to be relatively easy to add several columns, thus
resulting in a code of desired size.

All of the g-ary codes appearing in Table 2 are Reed-Solomon
codes, except for (10,4,7),, which is a constacyclic linear code
whose construction is given by ref. 31.

General concatenated codes. As mentioned by Kautz and Sin-
gleton (26), it is possible to replace the trivial identity code by
arbitrary d-disjunct binary matrices in forming concatenated
codes, provided that the size of the matrix is at least equal to g.
This construction is extensively used by D’yachkov et al. (32) to
form previously unknown instances of superimposed codes. We
also investigated this approach and found that the concatenation
of the (7,4,4),, code with st (9,4,3) yielded our smallest 2-dis-
junct code of size 14,400. Likewise a 2-disjunct 51 x 4, 489 matrix
can be obtained by concatenating (3,2, 2), with st (17,6,5). The
code given in Table 2 lists instead st (51,8,7), which yields a
slightly smaller code with weight 7 instead of 15.

Theoretical Bounds

Given the codes constructed in the previous section, a natural
question is to ask how much better we can do. In this section we
summarize an extensive literature concerning theoretical bounds
on the minimum number of pools required for a group-testing
design of size n to be d-disjunct. The results include both upper
and lower bounds on this minimum, and the models used also
provide ways of generating matrices. The lower bounds show that
the codes we constructed can be reduced by at most a factor of
two. However, this reduction may be smaller in practice because
matrices that reach the lower bound are not guaranteed to exist.

Asymptotic Bounds. Bounds on the growth rate of Tp(n,d) have
been discovered and rediscovered in different contexts in in-
formation theory, combinatorics, and group testing (33, 34). In
the context of superimposed codes, D’yachkov and Rykov (35)
obtained the following bounds:

Q(d* logn/logd) < Tp(n,d) < O(d* logn).

Ruszinko (34) and Fiiredi (36) give an interesting account on the
lower bound and provide simpler proofs. The lower bound was
also obtained for sufficiently large d with d <n'/?> by Chaudhuri
and Radhakrishnan (37) in the context of d-cover-free systems
for system complexity, which was extended to the general case by
Clementi et al. (38).

For the upper bound, it follows from the analysis of a greedy-type
construction given by Hwang and S6s (39), that for ¢ > 164> we have

Tp

W (1,d) <16 d*-log;(2) - (logy(n) = 1) < 11d* log, (n).  [31]
An efficient polynomial-time algorithm for generating similar
constant-weight d-disjunct ¢ x n matrices with ¢ = O(d? logn) was
given by Porat and Rothschild (20).

Nonasymptotic Results. When working with particular values of
d and n, constants in theoretic bounds become crucial. Most
theoretical results, however, are concerned with growth rates and
even if explicit constants are given, such as those in Eq. 3, they
may be too loose to be of practical use.

In this section we are interested in the code length ¢ required to
guarantee the unique recovery of up to d = 6 simultaneous firings
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Table 3. Decoding statistics for a 60 x 60 pixel array using a pixel dead time of 20 ns and TDC
interval length of 40 ps

Successfully decoded, %

L T

No. of
No. simultaneous  occurrences d=2(51) d=3(85 d=4(142) d=5(174) d=6(206)
1 1,021,073 100.000 100.000 100.000 100.000 100.000
2 419,174 100.000 100.000 100.000 100.000 100.000
3 192,232 44.015 100.000 100.000 100.000 100.000
" 4 87,389 2.289 89.808 100.000 100.000 100.000
5 38,526 0.026 44.271 99.574 100.000 100.000
“ 6 16,126 0.000 7.590 96.366 99.895 100.000
7 6,186 0.000 0.404 84.481 99.208 100.000
8 2,216 0.000 0.000 59.206 94.540 99.549
9 725 0.000 0.000 27.448 83.586 97.793
10 231 0.000 0.000 7.792 59.307 91.342
1 70 0.000 0.000 1.429 30.000 71.429
12 17 0.000 0.000 0.000 5.882 70.588
13 6 0.000 0.000 0.000 0.000 0.000
14 1 0.000 0.000 0.000 0.000 100.000
Pixel firings missed: groupwise, individual, %
32.571 9.636 0.833 0.135 0.025
19.145 2.381 0.012 0.000 0.000
Results shown correspond to the decoding of 1,000 sequential scintillation events. d, disjunctness; number of g
TDGs is given in parentheses in column headings. Total number of pixel firings, 3,145,990. 2%
BE
¥
on a 60 x 60 pixel array, thatisn = 3,600. We do this by studyingthe ~ This can be turned into the upper bound on T, (n,d) shown in =

various models used to obtain upper and lower bounds on T'(n,d)
and numerically evaluating the original expressions, instead of
bounding them. By optimizing over parameters such as weight or
matrix size, we obtain the best numerical values for the bounds, as
permitted by the different models. These will be used as a reference
point to evaluate the quality of the codes given in Table 2.

All bounds are evaluated using Sage (40) and summarized in

Table 1 ford =2,...,6. We omit results for d = 1, which only
requires the columns of the matrix to be unique.
Upper bounds on T(n,d). Constructing a d-disjunct binary tXxn
matrix, or providing an algorithm for doing so, immediately yields
t as an upper bound for one of the T'(n,d) values. In the liter-
ature there are three main techniques to obtain d-disjunct ma-
trices of various sizes; we discuss each of these in the following
paragraphs.

Sequential picking. The construction given by Hwang and Sés (39)
for obtaining an upper bound on T, (n,d) works as follows.

( 1 ) of a fixed

w

weight w we pick a random element g € Gy. After we make this
choice we determine the family B; of sets in Gy whose overlap with g
is w/d or more (this includes g itself). We then remove all of the
bad items B; from G to get G; = Gy\B;. We repeat the procedure,
picking at each point a g from G;, determining B;; and forming
Git1, until G, is empty. We can then form a ¢ X n matrix 4 with the
support of each column corresponding to one of the selected g. This
matrix will be d-disjunct because, by construction, it has constant
column weight w and satisfies Eq. 2 with overlap u <w/d. For the
number of rows in A, notice that the size of each B; satisfies

N w\ [ t—w
e 5,()()
i=w/d]

Because the size of the initial family G was (;}) we have that

=)/ 2,006
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Starting with a family of initially all good sets Gy =

e

Eq. 3 by following the parameter choice and analysis given in ref.
39. Essentially the same argument was used earlier by Erdos
et al. (27, proposition 2.1) to prove an alternative bound. Entries
a—c in Table 1 are obtained respectively by optimizing Eq. 3, the
bound given in (27) with optimal choice of w, and the smallest
t >w satisfying Eq. 4 (see also ref. 41, p. 232).

Random ensemble. An alternative to picking compatible columns
one at a time is to draw an entire set of columns from a suitable
distribution and check if the resulting matrix is indeed d-disjunct.
An upper bound on the required number of rows is obtained by
finding the smallest ¢ such that the probability that the matrix
does not satisfy d disjunctness is strictly bounded above by one.

Consider a txn matrix A with entries drawn independent,
identically distributed (ii.d.) from the Bernoulli distribution;
each entry takes on the value 1 with probability # and the value
0 with probability 1 — . For any column in A4, the probability that
it is covered by d <n of the other columns is given by

t

p=(1-p1-p"), [51

because each entry in the column is not covered by the union of

the other d if and only if its value is 1, and the corresponding

entries in the other d columns are all 0. Because we want to

minimize the chance of overlap, we find the minimum with re-

spect to 3, giving # = 1/(d + 1). By taking a union bound over all

possible sets, we can bound the probability that at least one
column in A is covered by some d others as

P(A not d —disjunct) <n (n ; 1 )p. [6]

This setup forms the basis for the analysis given by D’yachkov and
Rykov (35). In Table 1, row (d), we show the smallest ¢ for which this
probability is strictly less than one; for the optimal S, this is given by

oo () fen(1-g )|
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To construct matrices with constant-weight w, we can uni-

formly draw columns from § = Eﬂ) The probability that a

fixed column is covered by d others can be evaluated as follows.
Let Ry(t,w,i) denote the number of ways we can cover a fixed set
of w entries in a t-length vector with d columns, given that i
entries have already been covered. With only a single column
left, we first cover the remaining w —i entries, leaving i entries to
be freely selected in the remaining ¢ — (w —i) positions. This gives

Ri(t,w,i) = <t_w.+i).

1

For d>1 we can cover up to w —i entries and cover the others
using the remaining d — 1 columns. Therefore,

A w=i\ (t=w ] o
Ry(t,w,i) = Z(Wj ’)( W“’_;T]>Rd_1(t,w,z +7).

=0

The probability that a column is covered by d others is then

given by
N
p=riw /(1) m

and we can again use the union bound given by Eq. 6. To de-
termine the smallest possible ¢ we start at # = 1 and double its
value until the right-hand side of Eq. 6 is less than one and then
use binary search to find the desired ¢. This is repeated for all
suitable column weights w and row (e) of Table 1 lists the small-
est value of ¢ obtained using this procedure.

The use of the union bound in Eq. 6 ignores the fact that many
of the columns and d sets are independent. To obtain sharper
bounds for a similar problem, we follow Yeh (42) and apply
Lovasz local lemma (43), stated in ref. 44, corollary 5.1.2.

Lemma 1. (The Local Lemma, Symmetric Case). Let E1, E»,.. . .E, be
events in an arbitrary probability space. Suppose that each event E;
is independent of all other events E; except at most y of them, and
that P(E;)<pforall 1<i<n.If

ep(p+1)<1 [8]

then P(N_E;) > 0.
Working again with n columns drawn uniformly and in-

dependently from ( [rtz] ), let E;; denote the event that column i

is covered by the set J of d other columns. Any event E; j, is
independent from E;, ;, whenever (J;U{i; })N(,U{i»}) =0, and
the number of events u that violate this condition is given by

()= (35)

All we then need to do is find the smallest ¢ for which, with an
optimal choice of w, the condition in Eq. 8 is satisfied using p as
given in Eq. 7. That is, find a ¢ such that

-d
e~Rd(t,w,0)(:;> k+1)<1.

The results obtained by this method are given in row (f) in Table 1.
We omit similar results obtained using a Bernoulli model, or the
g-ary construction considered by Yeh (42), because they give larger
values of ¢.
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Random selection with postprocessing. A third approach to gen-
erating d-disjunct matrices is to start with a ¢ xm matrix with
m>n, drawn from a certain random ensemble, and randomly
mark for deletion one of each pair of columns whose overlap is
too large. Whenever the expected number of columns marked
for deletion is strictly less than n —m + 1 we can be sure that a d-
disjunct ¢ xn matrix exists and can be generated using this ap-
proach. (Note that some of the approaches described in the
previous paragraph are a special case of this with m =n.) A
variation on this approach is to pick a column and mark it for
deletion if there exists any other d columns that cover it. Starting
with the latter approach for the Bernoulli model with
p=1/(d+1), a bound on the probability of a column being
marked is found by applying a union bound to Eq. 5:

P(covered) < (m; 1) <1 —#) .

The expected number of columns marked is then bounded by

t

-1 d4
E(cols) = m - P(covered) <m m ) 1-——— ],
fcols) = m- Plcovered) < (" ( (d+1)d+l>

and the smallest ¢ for which the left-hand side of this inequality is
strictly less than m —n + 1 is given in row (g) of Table 1. A
similar derivation based on constraints on the pairwise overlap
of columns can easily be seen to yield

-1 w
m t w t—w
E(columns marked) < < 2 )(w) i_%/:d]( i ) (W_,')v

which leads to the results shown in row (h). The best results for
Tp(n,d) based on bounds of the probabilistic method in row (i)
were obtained for groupwise covering of constant weight vectors,
a model which was studied earlier by Riccio and Colbourn (45).
For completeness we list in row (j) the results based on a random
g-ary construction similar to the one we discussed earlier. A final
method we would like to mention chooses m = n, but instead
of removing marked columns, it augments the matrix with the
identity matrix below all marked columns, thus fixing a (poten-
tial) violation of d-disjunctness by increasing the number of
rows. The results of this method by Yeh (42) are presented in
row (k).

Remarks on the upper bounds. Although different models may
lead to the same growth rates in T'(n,d), there is a substantial
difference in resulting values when numerically evaluated and
optimized. The groupwise models easily outperform bounds based
on pairwise comparison overlap. In addition there is a large gap
between matrices with constant-weight columns, and those gen-
erated with i.i.d. Bernoulli entries, the former giving much more
favorable results. The second approach given above, based on
drawing fixed ¢ X n matrices is clearly outperformed by the third
approach in which a #xm matrix is screened and reduced in
size by removing columns that violate disjunctness or maximum
overlap conditions, even if the Lovész local lemma is used to
sharpen the bounds.

Lower Bounds on T(n,d). Most of the lower bounds listed in Table 1
are derived using the concept of a private set. Let F be a family
of sets (the columns of our matrix 4). Then T is a private set of
FeF,if TCF, and T is not included in any of the other sets in
F. For F €D, ,(n,d) with length ¢, constant column weight w,
and maximum overlap y, it is easily seen that, by definition, each
(u+1) subset of F eF is private. The number of such private
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sets | F|- ( ) cannot exceed the total number of these sets,

w
u+1
(M i 1), and it therefore follows (26, 35) that

|f|s(”il)/<ﬂil).

Based on this we can find the smallest ¢ for which there are values
w and u obeying (w—1)/u>d, such that the right-hand side of
the above inequality exceeds the desired matrix size. This gives
a lower bound on the required code length and the resulting
values are listed in row (p) of Table 1. A slightly better bound
on the same class of matrices follows from an elegant argument
due to Johnson (46), and is given in row (o).

Ruszinké (34) studies d disjunctness in constant-weight ma-
trices without considering maximum overlap and provides the
following argument. Let F € D,,(n,d) be a family of w subsets in
[t], such that no d sets in F cover any other set. Moreover, as-
sume that w = kd for some integer k. Any F € F can be parti-
tioned into d sets of length k, and it follows from the
d-disjunctness of F that at least one of these d subsets is private
to F (otherwise it would be possible to cover F with d other
columns). The key observation then, is that Baranyai’s theorem

(47) guarantees the existence of s = (WM/) d) / d different parti-

tions of F such that no subset in the partitions is repeated. Each of
these s partitions contains a private set, so the total number of
private sets is at least |F|-s. Rewriting this gives

710(uja) / (o)

With proper rounding this can be extended to general weights w,
giving the results shown in row (s). The results in rows (q) and (r)
are also obtained based on private sets, but we will omit the exact
arguments used here. Finally, an evaluation of the information-
theoretic bound (1) is given in row (t).

Numerical Experiments

To illustrate the strength of the proposed design, we analyze the
performance of some of the group-testing designs given in Table 2,
by using them to decode scintillation events in a PET setting.

Simulation Parameters. In PET, scintillation crystals are used to
convert 511-kEv annihilation photons into bursts of low-energy
(visible light) photons. We use the standard software package
Geant4 (48, 49) to simulate this process for some 1,000 scintillation
events for a 3 x 3 x 10 mm® cerium-doped lutetium oxyorthosilicate
crystal (7.4 g/em®, n = 1.82, absorption length = 50 m, scintilla-
tion yield = 26,000 photons/MeV, fast time constant = 40 ns, yield
ratio = 1, resolution scale = 4.41) coupled to a 3-x 3-x0.75-mm
silicon sensor by 50 pm of optical grease (n = 1.5, absorption
length = 50 m). For each event the simulation yields the location
and arrival time of the low-energy photons relative to the start of
the event.

The silicon sensor is assumed to have a 70% fill factor and
a quantum efficiency of 50% for blue photons. Once a photon is
detected a pixel will be unable to detect a new photon for a
known dead time, simulated to lie between 10 and 80 ns. We
assume that each pixel takes up the same fraction of detector
area and assign photons uniformly at random to a pixel. This
increases the pixel firing rate by avoiding hitting dead pixels in
high-flux regions, thereby making the decoding process more
challenging. We do not model dark counts and cross-talk be-
tween pixels, because they would account to less than 1% of the
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total number of detected photons and therefore do not signifi-
cantly affect the result.

In terms of pixel firings, we ignore the jitter in the time be-
tween an incident photon and the actual firing of a pixel. This
assumption greatly simplifies the simulation and is not expected
to have any significant influence on the results. The signal delays
over the interconnection network between pixels and TDCs are
assumed to be uniform, that is, the travel time of the signal from
each pixel to any connected TDC is assumed to be the identical,
and can therefore be set to zero without loss of generality. TDCs
are further assumed to be ideal in the sense that they have no
dead time; a time stamp is recorded whenever an event occurred
during the sampling interval.

Decoding. Pixel firings give rise to specific patterns of TDC re-
cordings through the group-testing design embedded in the in-
terconnection network. For each time window we can construct
a binary vector with ones in positions corresponding to TDCs
that recorded a time stamp during that interval, and zero for all
other entries. Given such a test vector y, the decoding process
starts by identifying all codewords g; that are covered by y. When
the group testing matrix 4 is a d-disjunct matrix, it immediately
follows that whenever there are no more than d simultaneous
firings, only the codewords corresponding to those pixels will be
selected, and the decoding is successful. Whenever there are
s >d pixels that fired simultaneously, many more than s columns
may be covered by y. At this point we use two of various possible
decoding methods. The first is a groupwise method in which we
return all feasible columns whenever none of them can be
omitted to form y, or nothing otherwise. The second, individual
decoding scheme returns all columns that have a one in a position
where all other feasible columns have a zero (and therefore can-
not be omitted). Finally, note that we only recover the pixels that
fired when decoding of the corresponding column is successful,
otherwise they are missed. Neither method has false positives.

Results

In our simulations we considered sensors with both 60 x 60 and
120 x 120 pixel arrays, and a variety of different pixel dead times
and TDC interval lengths. Due to space limitations we can only

350
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—e—d=3
300 —e—d=4 N
—o—d=5
—o—d=6
250 1

- - -Cross strip 5
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Fig. 2. Comparison between the number of TDCs used for the best-known
codes in Table 3 and a standard cross-strip design, for different numbers of
pixels n. The cross-strip design connects each row and column to a single TDC,
giving a d = 1 disjunct encoding. The number of TDCs in the cross-strip design
grows as O(y/n), much faster than the O(d? log n) in group-testing matrices.
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Table 4. Percentage of pixel firings missed by individual decoding for various combinations of
pixel dead time, TDC interval length, and disjunctness

Dead time

(no. of firings)  TDC interval, ps

No. simultaneous d=2 d=3

Pixel firings missed, %

d=4 d=5 d=6

10 ns (3.4 m) 5 6
10 7
20 11
40 14
20 ns (3.1 m) 5 6
10 7
20 11
40 14
40 ns (2.8 m) 5 6
10 7
20 11
40 14
80 ns (2.5 m) 5 6
10 7
20 11
40 14

0.23 0.00 0.00 0.00 0.00
1.22 0.01 0.00 0.00 0.00
5.80 0.18 0.00 0.00 0.00
21.02 2.52 0.01 0.00 0.00
0.21 0.00 0.00 0.00 0.00
1.13 0.01 0.00 0.00 0.00
5.33 0.17 0.00 0.00 0.00
19.15 2.38 0.01 0.00 0.00
0.22 0.00 0.00 0.00 0.00
1.16 0.01 0.00 0.00 0.00
5.46 0.19 0.00 0.00 0.00
19.14 2.57 0.01 0.00 0.00
0.24 0.00 0.00 0.00 0.00
1.28 0.01 0.00 0.00 0.00
6.03 0.21 0.00 0.00 0.00
20.98 2.87 0.01 0.00 0.00

Results shown correspond to the decoding of 1,000 sequential scintillation events on a 60 x 60 pixel array. The
first three columns show the dead time (and total number of firings of rings in millions), TDC time interval, and

maximum number of simultaneous hits.

show a select number of tables that are representative of the
results. We describe any significant differences in the text and
provide additional tables in Supporting Information.

Table 3 shows the simulation results obtained using a 60 x 60
array with interconnection networks based on the superimposed
codes from Table 2, with disjunctness ranging from 2 to 6. The
pixel dead time and TDC interval length are chosen to be 20 ns
and 40 ps, respectively. These times are somewhat strict because
pixel dead times are typically longer and the TDC intervals
shorter. Both choices cause an increase in the number of si-
multaneous photons per TDC sampling window, thereby making
recovery more challenging. Although the maximum number of
simultaneous firings reaches as high as 14, such events are ex-
ceedingly rare, with six or fewer simultaneous hits amounting to
97.7% of the total number of hits (hence the maximum d = 6).
Decoding often remains successful beyond the disjunctness level
of the interconnection network, although the probability of
success decreases quickly with increasing numbers of simulta-
neous hits. Using groupwise decoding, it can be seen that even
with a 4-disjunct interconnection network, more than 99% of all
pixel firings are successfully recovered. For the 120 x 120 array,
this number is slightly lower at 98.5% because fewer photons hit
dead pixels, thus causing an increase in the number of firings and,
consequently, a shift in the number of simultaneous hits. The
results based on individual decoding are even better, attaining
recovery rates of 99.98% and 99.93%, respectively.

A more complete picture on the relationship between the
number of pixel firings missed and the pixel dead time and TDC
interval length is given in Table 4. Shown are the percentage of
pixel firings missed for various pixel dead times and TDC interval
lengths on a 60x 60 pixel array using individual decoding. As
expected, smaller TDC intervals reduce the number of simulta-
neous hits and therefore lead to more uniquely decodable events.
The results for the 120 x 120 setting are similar, except ford =2
where the lowest recovery rate is 63.42%, compared with 78.98%
for the 60 x 60 setting.

As seen, even when the number of simultaneous pixel firings
exceeds the disjunctness of the group-testing design, it often
remains possible to uniquely decode the resulting codeword,
or at least a large fraction of the pixels included. To get more
accurate statistics, we studied the decoding properties of randomly
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generated sparse vectors (corresponding to random pixel firing
patterns) with the number of nonzero entries ranging from 1 to 20.
For each sparsity level we decoded 10,000 vectors and summarize
the success rates in Fig. 3. The plots show that recovery breaks
down only gradually once the sparsity exceeds the disjunctness
level of the matrix. Moreover, the plot shows that individual re-
covery far exceeds the success rate of groupwise decoding.

Discussion

For the adaptation of the group-testing based design in hardware,
a number of issues will need to be addressed. Among them, we
expect the most important to be asynchronicity of the system, and
we here discuss it in more detail. When the delay of the signal from
one pixel to its incident TDCs is nonuniform due to difference in
wiring lengths, it may happen that some of the TDCs record a time
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Fig. 3. Percentage of successfully decoded pixels using individual (solid) and
groupwise decoding (dashed) for a 60x 60 array, as a function of sparsity
level. For each sparsity level 10,000 random vectors were generated and
decoded.
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stamp in one interval and the remaining TDCs in another. As
a consequence, it may be possible that the test vector y contains
partial codewords. This complicates the decoding process:
Groupwise decoding may fail more often, whereas individual
decoding may now return false positives. Even with highly uniform
delays between a pixel and its associated TDCs, it is possible to
lose parts of the codeword when the signal arrival overlaps with
the dead time of the receiving TDCs.

There are two main approaches of dealing with this problem.
The first approach is to carefully choose wiring lengths and
synchronize the logical signal generated by the pixel using a
global clock across the chip to ensure uniform arrival of signals
to the TDC digitizers. Such synchronization has been successfully
implemented in clock design trees for central processing unit
chips (50). The second approach is to consider bursts of con-
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