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The abundance, genetic diversity, and crucial ecological and evolu-
tionary roles of marine phages have prompted a large number of
metagenomic studies. However, obtaining a thorough understand-
ing of marine phages has been hampered by the low number of
phage isolates infecting major bacterial groups other than cyanoph-
ages and pelagiphages. Therefore, there is an urgent requirement
for the isolation of phages that infect abundant marine bacterial
groups. In this study, we isolated and characterized HMO-2011, a
phage infecting a bacterium of the SAR116 clade, one of the most
abundant marine bacterial lineages. HMO-2011, which infects “Can-
didatus Puniceispirillum marinum” strain IMCC1322, has an ∼55-kb
dsDNA genome that harbors many genes with novel features rarely
found in cultured organisms, including genes encoding a DNA poly-
merase with a partial DnaJ central domain and an atypical methane-
sulfonate monooxygenase. Furthermore, homologs of nearly all
HMO-2011 geneswere predominantly found inmarinemetagenomes
rather than cultured organisms, suggesting the novelty of HMO-2011
and the prevalence of this phage type in the oceans. A significant
number of the viral metagenome sequences obtained from the ocean
surface were best assigned to the HMO-2011 genome. The number of
reads assigned to HMO-2011 accounted for 10.3%–25.3% of the total
reads assigned to viruses in seven viromes from the Pacific and Indian
Oceans, making the HMO-2011 genome the most or second-most fre-
quently assigned viral genome. Given its ability to infect the abundant
SAR116 clade and its widespread distribution, Puniceispirillum phage
HMO-2011 could be an important resource for marine virus research.

Viruses are the most abundant biological entities in diverse
marine environments, as revealed by electron microscopy,

epifluorescencemicroscopy, and flow cytometry studies (1–3). The
average number of virus-like particles in surface seawater is ∼107
per mL, and it typically exceeds the number of prokaryotes by an
order of magnitude. Marine viruses play an important role in
nutrient cycles by mediating a significant proportion of bacterial
mortality. This so-called “viral shunt” diverts organic matter from
particulate forms to dissolved forms, influencing the overall bio-
geochemistry of various elements (4). Viruses affect the commu-
nity composition and genetic diversity of marine organisms by
selectively infecting susceptible hosts (5, 6), which also increases
the genetic diversity of the viruses themselves throughmechanisms
such as antagonistic coevolution (6, 7).
Recent metagenomic studies of the oceans have revealed the

numerous novel genetic repertoires of marine viromes (8–14).
However, most genome fragments in these viromes cannot be cat-
egorized into any known viral group (8, 9, 13, 14). Because most
marine viruses are believed to be phages (15), a more thorough
understanding of the ecological and evolutionary roles of marine
viruses and a better interpretation of the rapidly increasing virome
sequences require the isolation and genomic analysis of individual
viruses, especially phages infecting diversemarine bacterioplankton.
The importance of phage isolation is exemplified by studies on

marine cyanophages and pelagiphages. The isolation and charac-
terization of cyanophages have shown that they have auxiliary
metabolic genes (16), including photosynthesis-related genes that
are expressed during infection and modulate host metabolism
toward successful infection (17–21). Cyanophages are important in
the diversification of hosts and horizontal gene transfer and are
extensively used to interpretmarinemetagenome sequences (6, 22,
23). Very recently, four pelagiphages, viruses infecting the SAR11

clade, were isolated (24). Pelagiphage genome sequences have
been found to be crucial for the interpretation of viromes from the
Pacific Ocean (24). However, there are many abundant marine
bacterial groups, including SAR86, SAR116, and Bacteroidetes, for
which few phages have been isolated or characterized. Given the
poor assignment of virome sequences into specific viral groups and
the presence of difficult-to-cultivate or unculturable bacterial groups
in the ocean, cultivating these bacteria and isolating the phages
infecting them are prerequisites for understanding phage diversity.
The SAR116 clade is one of the most abundant groups of het-

erotrophic bacteria inhabiting the surface of the ocean. Since its
initial discovery through the cloning of 16S rRNA genes from the
Sargasso Sea (25), many culture-independent studies have shown
that the SAR116 clade contributes significantly—more than 10% in
some cases—to the bacterial assemblages of the marine euphotic
zone (26–33). The genome sequences of two bacteria in this clade,
HIMB100 and “Candidatus Puniceispirillummarinum” IMCC1322,
have recently been reported (34, 35). Both strains have genes for
proteorhodopsin-based photoheterotrophy, carbon monoxide de-
hydrogenase, and dimethylsulfoniopropionate demethylase, sug-
gesting the diverse metabolic potential and biogeochemical impor-
tance of the SAR116 clade. Considering the widespread distribution
and ecologically meaningful genome characteristics of this clade,
their phages are likely to be abundant in marine environments and
may provide useful references for functional and phylogenetic an-
notation of marine viromes.
Here, we report the isolation and genomic characterization of

HMO-2011, a phage that infects strain IMCC1322 of the SAR116
clade. The HMO-2011 genome harbors many novel genes, such as
a gene encoding aDNApolymerasewith aDnaJ central domain.The
genome of HMO-2011 was a notable resource for the identification
of unknown marine viral gene fragments, as HMO-2011 accounted
for 10.3%–25.3% of viral metagenome reads assigned to viruses.

Results and Discussion
Isolation and General Characterization.A marine phage, designated
HMO-2011, that can infect “Candidatus Puniceispirillum marinum”
strain IMCC1322 of the SAR116 clade was isolated from a surface
seawater sample from the East Sea (Sea of Japan), where the host
strain had been previously cultivated (34). This bacteriophage is the
first lytic phage isolate that infects the SAR116 clade. Transmission
electron microscopy (TEM) images showed that HMO-2011 had an
isometric head with an average diameter of ∼58 nm and a short tail
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(Fig. 1A). Although tails could often not be clearly identified, this
morphological feature suggested that HMO-2011 belongs to the
Podoviridae. A one-step growth curve indicated that HMO-2011
is lytic (Fig. 1B). The latent period was ∼6 h. The burst size was
∼500, which is similar to that of Silicibacter phage DSS3phi2 (36).
The lytic ability of the phage was confirmed by coculture with
strain IMCC1322. The titer of HMO-2011 increased until 3 d
after inoculation and was maintained thereafter whereas the cell
numbers of IMCC1322 decreased after 1 d (Fig. S1). In the host
range experiment, HMO-2011 did not infect any type strain of
the six species tested, which share greater than 90% 16S rRNA
gene sequence similarity with strain IMCC1322 (SI Text).

Overall Genome Features. The genome sequence of HMO-2011 was
assembled as a 55,282-bp circular dsDNA, with a GC content of
43.1 mol%. Considering that the dsDNA genomes of all tailed
phages are linear, the circular assembly of the HMO-2011 genome
suggested circular permutation or terminal redundancy (37).
Seventy-four ORFs were predicted in the genome sequence of
HMO-2011 (Table S1). The HMO-2011 genome has a modular
structure (Fig. 2) that is typical of phage genomes (38), and the
genome contains modules for DNA metabolism and replication
(6 ORFs), structure and assembly (19 ORFs), and packaging and
lysis (3 ORFS), as well as two auxiliary metabolic genes and 44
ORFs predicted to encode hypothetical proteins. The gene con-
tent and order of the DNA metabolism/replication module were
similar to those of marine podoviruses such as P-SSP7, Syn5, and
SIO1, which supported the TEM image-based classification of
HMO-2011 as a podovirus (Fig. 2; also see SI Text). ManyORFs in
the HMO-2011 genome were highly similar to genes found only in
metagenome sequences rather than those in isolated phages or
bacteria. In the following sections, analyses of a few selectedORFs
and comparison of the genome with viromes are discussed. ORFs
for DNA replication and metabolism, including primase (Fig.
S2A), helicase, endonuclease, and integrase; structure (Figs. S2B
and S3), packaging, and lysis; and auxiliary metabolic genes are
discussed in detail in SI Text.

DNA Polymerase. The DNA polymerase encoded by ORF12 has
an unusual domain architecture. A part of the DnaJ central
domain (Pfam protein families database ID PF00684), also
called a zinc finger domain, was found between the 3′–5′ exo-
nuclease domain (PF01612) and the DNA polymerase family A
domain (PF00476) (Fig. 3A). The DnaJ central domain is a cys-
teine-rich domain that is usually found in type I DnaJ family
proteins (molecular chaperones) and is characterized by four
repeats of the CXXCXGXG motif involved in zinc binding (39,
40). ORF12 has two repeats of this motif, which is known to bind
one zinc ion (Fig. 3B) (41). To the best of our knowledge, this is
the first report of a DnaJ central domain found in a family ADNA

polymerase of a cultured organism. In analyses using PfamAlyzer
(42) and the Conserved Domain Architecture Retrieval Tool (43),
no family A DNA polymerase in the Pfam database and non-
redundant (nr) database of GenBank was found to have a DnaJ
central domain (see SI Text for details). However, many protein
sequences predicted from marine metagenomes had the same
domain architecture as that of ORF12, indicating the wide dis-
tribution of this type of DNA polymerase in marine environments
(Fig. 3B and Table S2; see also SI Text). Phylogenetic analysis of
the polymerase domain of ORF12 supported the above findings;
ORF12 formed a robust cluster with many metagenome-derived
DNA polymerases, and this cluster was well separated from the
DNA polymerases of other bacteria and phages (Fig. 3C). Among
cultured organisms, the most closely related DNA polymerase
was found in Vibrio phage VpV262, a member of the Podoviridae.

Auxiliary Metabolic Genes. Auxiliary metabolic genes (AMGs) are
phage-encodedmetabolic genes putatively involved in the regulation
of host metabolism (15). HMO-2011 has two AMGs that are pre-
dicted to encode a MazG domain-containing protein and a hydrox-
ylase alpha-subunit of methanesulfonate monooxygenase (MsmA).
A single MazG nucleotide pyrophosphohydrolase domain

(PF03819) was found in ORF21. Many marine phages have pro-
teins containing MazG domains, suggesting the importance of this
domain in the proliferation of marine phages (44–46). In bacteria,
MazG domain proteins have been shown to function in stress
responses or removal of noncanonical nucleotides (47–49). It has
been suggested that phageMazGproteinsmay contribute to phage
propagation by helping sustain the metabolism of starved host
bacteria (44, 46). However, the functions of the diverse MazG
proteins in phages remain to be fully elucidated (45).
Another AMG (ORF61) was predicted to encode an MsmA

protein. To the best of our knowledge, this is the first MsmA gene
found in an isolated virus. Because methanesulfonate mono-
oxygenase mediates the oxidation of methanesulfonic acid to
formaldehyde and sulfite and because formaldehyde can be further
metabolized by host strains (34, 50), ORF61 may assist in the C1
metabolism of hosts (see SI Text for further discussion). However,
theRieske domain ofORF61 lacked the four cysteine and histidine
residues needed to bind the iron–sulfur cluster that is essential for
electron transfer, making the functionality of this ORF unclear (51)
(Fig. S2C). This sequence feature, found only in one of two putative
MsmAs of IMCC1322 (SAR116_2109) among cultured organisms,
was found in many global ocean sampling (GOS) metagenome
sequences and marine viromes (Fig. S2C).

Distribution in Marine Environments. The genome analyses of
HMO-2011 showed that many ORFs shared a greater number of
similar sequences in marine metagenomes than in the nr database
of GenBank (Fig. 3 and Fig S2). In a more comprehensive analysis
using all 74 ORFs as queries against the nr, environmental
non-redundant (env_nr), GOS, and BroadPhageMetagenomes
(BroadPhage) databases, sequences similar to the HMO-2011
genome were most frequently retrieved from the BroadPhage
database of Community Cyberinfrastructure for Advanced Mi-
crobial Ecology Research and Analysis (CAMERA) (52) (Fig. S4;
also see SI Text). Considering that the BroadPhage database
contains data for viromes from diverse marine habitats, this result
suggested that HMO-2011 is a phage representing a previously
unknown phage type prevalent in marine environments and that
the HMO-2011 genome could be a good reference for taxonomic
binning of marine viromes.
To test the usefulness of the HMO-2011 genome as a reference

genome in metagenome analysis, seven marine viromes were se-
lected and used for metagenomic binning analysis. These seven
viromes, all from the ocean surface, included four from the In-
dian Ocean (13) and three from the Pacific Ocean (Table 1 and
Table S3; see SI Materials and Methods for the selection process,
brief description, and sequence processing). Each read from the
selected viromes was used as a query in BLASTN analyses against
a genome database that included HMO-2011 and 4,541 other
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Fig. 1. Morphological features and one-step growth curve of HMO-2011. (A)
Transmission electron microscopy images showing purified phage particles. A
distal part of the tail was detached from the head in the lower image. (Scale
bar, 20 nm.) (B) Increase in phage titers during one-step growth. The data
shown are averages from triplicate experiments, and error bars indicate SDs.
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viruses and was assigned to a single best-matching reference ge-
nome. The results showed that 6.7%–12.8% of the total reads
were assigned to viruses and that 0.9%–2.0% of total reads were
assigned to HMO-2011. HMO-2011 contributed 10.3%–25.3% of
the reads assigned to viral genomes, being the most or second-
most frequently assigned viral genome for all seven samples
(Table 1, Fig. 4, and Table S3). In addition, more than 90% of the
reads recruited by HMO-2011 were assigned to HMO-2011,

suggesting that this phage does not share a significant fraction of
viromes with other viruses (Table 1).
HMO-2011 remained the most or second-most frequently

assigned viral genome when virome reads were assigned to a single
best-matching ORF in the reference viral genomes by BLASTX
(Table S3). The proportion of sequences assigned to viral genomes
by BLASTX increased 1.7- to 2.4-fold compared with those
obtained by BLASTN analyses, ranging from 15.8% to 23.0%.
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to positions 228–386 of ORF12 are presented. Conserved residues in the CXXCXGXG motifs of the DnaJ central domain are in orange. Other conserved
residues are in yellow. GOS indicates sequences obtained from the GOS project (478–682 amino acids). Broad indicates sequences from the Broad-
PhageMetagenomes database of the CAMERA (143–147 amino acids). Broad sequences are short because they were obtained through pyrosequencing.
Alignment was generated using COBALT at the National Center for Biotechnology Information. (C) An unrooted maximum-likelihood tree of the polymerase
domain (PF00476) of family A DNA polymerases. Filled circles indicate nodes with bootstrap values of ≥90. Empty circles indicate nodes with bootstrap values
of ≥70. See SI Materials and Methods for more information about the procedure used for tree building.
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HMO-2011 was assigned by 1.6%–3.5% of the total reads, con-
tributing 9.1%–19.0% of the reads assigned to viral genomes (Table
S3). Fragment recruitment plots of the virome reads assigned to
HMO-2011 by BLASTX showed that many ORFs related to DNA
replication/metabolism, packaging and lysis, and virion structure
were highly assigned (Fig. S5). Some ORFs encoding hypothetical
proteins, such as ORF4, ORF27, ORF57, ORF58, ORF59,
ORF63, and ORF69, were also frequently assigned. Distribution
patterns of percent identities, bitscores, and alignment lengths of
the reads assigned to each of the highly assigned viruses showed that
there were no consistent differences among viruses, suggesting that
the effect of so-called “greedy recruitment” by viruses without close
relatives in the search databases was not so significant (Fig. S6) (24).
Taken together, the metagenomic binning results by BLASTN and
BLASTX clearly showed that HMO-2011 is a phage that represents
a group of phages widespread in the ocean surface and that the
HMO-2011 genome is an important reference for binning of
marine viromes.

Most highly assigned viruses other than HMO-2011 in our
binning analyses were pelagiphages and cyanophages (Fig. 4 and
Table S3), which coincide with the results obtained from the
analyses of the Indian Ocean viromes (13) and the Pacific Ocean
viromes (24). The binning analyses of the IndianOcean viromes by
Williamson et al. (13) in the absence of pelagiphages and HMO-
2011 revealed that cyanophages were the most highly assigned
viruses. When four pelagiphages were added for the binning of the
Pacific Ocean viromes, the most abundant viruses were pela-
giphages, followed by cyanophages (24). HTVC010P, a pelagipo-
dovirus, has been found to be highly abundant in the Pacific Ocean
viromes (24). When HMO-2011 was included in the present study,
HMO-2011 became the most or second-most highly assigned virus
whereas pelagiphages and cyanophages were still highly repre-
sented. HTVC010P was always in the top four viruses for all seven
viromes in our analyses (Table S3). Our results confirm the
abundance of pelagiphages and cyanophages shown in previous

Table 1. Binning of marine virome reads to reference viral genomes, including HMO-2011

Sample* Station† Ocean Depth, m

No. of sequence reads Percent, %

Rank
of

HMOkTotal (A)

Assigned
to

viruses‡ (B)

Assigned
to

HMO§ (C)
Recruited
by HMO{

Virus
proportion
(B/A ×100)

HMO
proportion
(C/A × 100)

HMO
contribution
(C/B × 100)

108** Cocos Indian 1.8 289129 23221 3205 3474 8.0 1.1 13.8 1
112** Indian Indian 1.8 401817 33772 5185 5541 8.4 1.3 15.4 1
117** St. Ann Indian 1.8 427102 52940 7291 7973 12.4 1.7 13.8 2
122** Madagascar Indian 1.9 272553 18284 2637 2896 6.7 1.0 14.4 1
001011†† NESAP Pacific 10 214886 16702 4227 4448 7.8 2.0 25.3 1
000990†† SPOT Pacific 5–30 165223 21154 2812 3122 12.8 1.7 13.3 1
1336†† Scripps Pacific 1 2574331 226400 23360 25870 8.8 0.9 10.3 1

HMO-2011 is abbreviated as HMO in this table.
*See Table S3 and SI Materials and Methods for more information about the samples.
†Location of stations: Cocos, 12.06S 96.53E (Cocos Islands, inside lagoon); Indian, 8.30S 80.23E; St. Ann, 4.39S 55.31E (St. Ann Island); Madagascar, 30.54S
40.25E (between Madagascar and South Africa); NESAP, 50N 145W (northeastern subarctic Pacific); SPOT, 33.55N 118.4W (Southern California Bight); Scripps,
32.87N 117.25W (Scripps Pier).
‡Total number of reads assigned to viral genomes.
§Total number of reads assigned to the HMO-2011 genome.
{Total number of reads recruited by the HMO-2011 genome.
kRank of HMO among cultured viruses was determined by comparing the number of reads assigned to each genome. See Fig. 4 and Table S3 for details,
including other highly assigned viruses.
**Sample names as used in ref. 13 (GSIOVIR).
††Sample accession numbers as used on CAMERA website (CAM_SMPL_ or CAM_S_).
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Fig. 4. Highly assigned virus genomes in the binning of virome reads. The contribution of each virus (in%) was calculated using the same formula applied to HMO-
2011 inTable 1 and is indicatedwhen it exceeded4.0%.Only the top 10mosthighly assignedviruses arepresented for eachviromewhereas other viruses are grouped
as Others. (A) Cocos Islands, GSIOVIR108; (B) Indian Ocean, GSIOVIR112; (C) St. Ann Island, GSIOVIR117; (D) between Madagascar and South Africa, GSIOVIR122; (E)
NESAP, CAM_SMPL_001011; (F) SPOT, CAM_SMPL_000990; (G) Scripps Pier, CAM_S_1336. Abbreviation for virus names: Ehv 86, Emiliania huxleyi virus 86; GAP32,
Cronobacter phage vB_CsaM_GAP32; NATL1A-7, cyanophage NATL1A-7; SIO1, roseophage SIO1; Syn1, Prochlorococcus phage Syn1; Syn33, Prochlorococcus phage
Syn33. All viruses starting with P- or S- are Prochlorococcus or Synechococcus phages, respectively. Four viruses starting with “HTVC” are pelagiphages.

12346 | www.pnas.org/cgi/doi/10.1073/pnas.1219930110 Kang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219930110/-/DCSupplemental/pnas.201219930SI.pdf?targetid=nameddest=ST3
www.pnas.org/cgi/doi/10.1073/pnas.1219930110


studies and establish SAR116 phages as a significant contributor in
viral assemblages in the ocean surface.
The remarkable power of the HMO-2011 genome in the bin-

ning of metagenome reads was attributed to the high abundance
of SAR116 bacteria in the ocean. The SAR116 clade is reported
to be a significant contributor to bacterial communities in various
ocean regions, including San Pedro Ocean Time-series (SPOT)
site (26, 32), Scripps Pier (30), and the northeastern subarctic
Pacific (33), from which three Pacific Ocean viromes listed in
Table 1 were sampled. The proportion of the SAR116 clade at
four stations where Indian Ocean viromes were reported ranged
from 1.4% to 4.5% (53). The other highly assigned viruses were
mostly pelagiphages and cyanophages that infect the SAR11 clade
andCyanobacteria, respectively. Considering the high abundance of
the SAR11 clade and Cyanobacteria in surface seawater, this result
implied that (i) a high occurrence of bacterial hosts leads to prev-
alence of the phages that infect them and (ii) genomes of phages
infecting abundant groups of bacteria are essential for a thorough
characterization of marine viromes (14, 24). An interesting finding
of our study, especially considering previous studies that showed
that the SAR11 clade is ∼10-fold more abundant than the SAR116
clade in the ocean surface (29, 53), was that the number of reads
assigned to HMO-2011 was in a range comparable with the total
number of reads assigned to four pelagiphages. Although the rea-
son for this comparability cannot be clearly explained at present, we
expect that it is related to the environmentally relevant host range
of each phage and the degree of genome conservation among each
group of pelagiphages or SAR116 phages.
The “Killing theWinner” (KtW) hypothesis has been proposed

to explain phage–host dynamics (4, 54). The prevalence of
SAR116 phages, together with the high abundance of SAR116
bacteria in the ocean, suggests that the KtW hypothesis may work
on a relatively fine phylogenetic scale. Therefore, it can contrib-
ute to strain or genotype-level diversification without having sig-
nificant effects on the community composition of hosts or phages
on a coarse phylogenetic scale (6, 55, 56). In this regard, it is
noteworthy that strain IMCC1322 has a CRISPR (clustered
regularly interspaced short palindromic repeats) locus (http://
crispr.u-psud.fr) (57). None of the 29 spacers in the CRISPR
locus of IMCC1322 exactly matched the HMO-2011 genome, as
was expected on the basis of the lytic ability of the phage. The
presence of a CRISPR locus in IMCC1322 indicates that some
SAR116 bacteria can acquire immunity to phages with a minimal
fitness cost (58, 59), which may confer a competitive advantage in
the marine euphotic zone, the main habitat of SAR116 bacteria.

Concluding Remarks. Metagenomic research on marine viruses has
yielded numerous novel sequences but has provided little insight
into individual viruses. A few methods developed to characterize
single viruses without culturing remain limited in the information
they can provide about the host (60) or genomic content (61)
of viruses. Our results of isolation and genome characterization
of a SAR116 phage demonstrate the importance and strength of
culture-based studies. HMO-2011 is a lytic phage infecting the
SAR116 clade, one of major components of bacterial assemblages
in the marine euphotic zone. The successful isolation of HMO-
2011 was possible owing to the cultivation of a representative
member of the abundant SAR116 clade, which emphasizes the
importance of culturing presently underrepresented bacterial
groups for phage study. The genome of HMO-2011 was found to
have many new genes, including a DNA polymerase with a unique
domain architecture, similar sequences of which are found mainly
in marine metagenomes but not in other cultured organisms. This
genomic uniqueness of HMO-2011 combined with the high
abundance of the SAR116 clade contributed to the remarkable
power of the HMO-2011 genome in the binning of marine
viromes. The HMO-2011 genome explained a significant portion
of viral metagenomes from the Indian and Pacific Oceans, dem-
onstrating that this type of phage is widespread and among the
most abundant phage groups in the global ocean. Conclusively,
our study provides an example of the complementary nature of

culture-dependent and culture-independent approaches, and
HMO-2011 will be an indispensable resource and a valuable
model system for marine virus research. To understand more
comprehensively the abundance, distribution, and ecological roles
of this phage type in the ocean, further studies may focus on
comparative analyses with more viromes from various ocean
regions, functional identification of novel genes in HMO-2011,
and elucidation of infection network and host–phage dynamics
using techniques such as viral tagging and phageFISH (62, 63).

Materials and Methods
Phage Isolation and Characterization. A surface seawater sample collected at
a station located in the East Sea (38°20′15″ N, 128°33′32″ E) of Korea was
treated with chloroform, and 10-μL aliquots were placed into 96-well plates.
Exponentially growing host bacteria (strain IMCC1322; 150-μL aliquots) were
then added into each well. After 1 wk of incubation at 15 °C, the optical
density of each well was compared with those of control wells inoculated with
autoclaved seawater. Culture lysates were recovered from the wells with lower
optical density and were used to purify putative phages. One of these lysates
was purified three times via plaque assay, and a phage, designated HMO-2011,
was established from a single plaque. See SI Materials and Methods for
descriptions of host bacteria cultivation, plaque assays, the determination of
growth kinetics, and morphological characterization using TEM.

Genome Sequencing. Phage particles from a 100-mL culture lysate were fil-
tered through a 0.2-μm filter and concentrated by ultracentrifugation
(120,000 × g, 30 min; Beckman Coulter). DNA was extracted using a DNeasy
Blood and Tissue kit (Qiagen). Library production (average insert size, ∼5 kb)
and whole-genome shotgun sequencing using Big Dye chemistry was per-
formed by Genotech Co. Ltd. Sequence reads were assembled using phred/
phrap/consed, and the remaining gaps were closed using PCR and primer
walking. The average fold coverage of the genome was 9.9.

Annotation of the Phage Genome. Gene prediction was performed using
Glimmer, based on an interpolated context model built with the IMCC1322
genome sequence. The GeneMark.hmm program, RAST server, and long-orfs
program in Glimmer3 were used to check and edit the original predictions.
Functional annotationof theORFswasperformedwithBLASTP, PSI-BLAST, and
DELTA-BLAST analyses against the nr database of GenBank. Domains were
predicted using the Pfam database, InterProScan, andHHpred. SignalP 3.0 and
TMHMM were used to predict localization and transmembrane helices.

Binning of Virome Reads. A total of seven viromes were selected for meta-
genome binning analyses. Four viromes from the Indian Ocean were selected
without any preliminary analyses because these represented the only viral
metagenomes reported from the Indian Ocean (13). The remaining three
viromes were selected from the metagenomes deposited in the CAMERA da-
tabase, mainly based on the proportion of reads similar to the HMO-2011 ge-
nome (see SI Materials and Methods for details). Binning of virome reads
was performed using BLASTN and BLASTX (version 2.2.25+). Genome or ORF
sequences of HMO-2011 and four pelagiphages (HTVC010P, HTVC011P,
HTVC019P, and HTVC008M) were added to the RefSeq Viral database (release
57) to construct search databases for binning. Each read of seven selected
viromes was used as a query and assigned to a single best-matching viral ge-
nome (BLASTN) or viralORF (BLASTX), only if the alignments satisfied the criteria
of bitscore (≥40) and length (≥50 bp in BLASTN, ≥20 amino acids in BLASTX). All
BLAST parameterswere default values except for queryfiltering options. “dust”
(BLASTN) and “seg” (BLASTX) were disabled. All reads assigned to viruses were
checked against RefSeqmicrobial genomes or proteins at the CAMERAWebsite,
and reads satisfying the above criteria and showing higher bitscores for
microbes were discarded. For BLAST searches at the CAMERA website, the low-
complexity filter was disabled and the parameters were set as follows: match
reward = 2, mismatch penalty = −3, gap open cost = 5, and gap extend cost = 2
for BLASTN; and gap open cost = 11 and gap extend cost = 1 for BLASTX. Re-
cruitment of virome reads by HMO-2011 was also performed to determine the
fraction of recruited reads that was assigned to HMO-2011. The HMO-2011
genome was used as a query for BLASTN against each of the seven viromes. All
parameters and criteria were the same as those used in binning.
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