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Abstract
There is an increasing interest in iterative reconstruction (IR) as a key tool to improve quality and
increase applicability of X-ray CT imaging. IR has the ability to significantly reduce patient dose,
it provides the flexibility to reconstruct images from arbitrary X-ray system geometries and it
allows to include detailed models of photon transport and detection physics, to accurately correct
for a wide variety of image degrading effects. This paper reviews discretisation issues and
modelling of finite spatial resolution, Compton scatter in the scanned object, data noise and the
energy spectrum. Widespread implementation of IR with highly accurate model-based correction,
however, still requires significant effort. In addition, new hardware will provide new opportunities
and challenges to improve CT with new modelling.

1. Introduction
Computed tomography (CT) was introduced as a clinical imaging tool in the 1970s. Since
then, it has seen impressive improvements in hardware and software. In the last decades, the
number of detector rows has increased continuously, effectively turning multi detector row
CT systems into cone beam CTs. To increase scanning speed, the rotation time has been
reduced, reaching values below 300 ms per rotation, and the original approach of sequential
circular scanning has been replaced by helical (spiral) orbits (Kalender 2006). In the last 20
years, flat-panel detectors have been introduced for planar and tomographic X-ray imaging
(Kalender and Kyriakou 2007). These detectors are being used in dedicated CT applications,
such as flexible C-arm CT systems for angiography and cardiac imaging, digital
tomosynthesis for mammography and high resolution dental imaging. This evolution of the
hardware was parallelled by new developments in image reconstruction software. New
“exact” analytical reconstruction algorithms have been derived for CT with 2D detectors,

9. Supplemental data
Two movies are provided illustrating motion correction with phase weighting:

i. Movie of a rabbit heart scanned with a flat-panel VCT system using an 18 s gantry period and reconstructed with phase-
weighted iterative reconstruction (PW-MLTR). An entire cardiac cycle is shown for each trans-axial cross-section. This is
repeated for a stack of trans-axial cross-section at consecutive longitudinal positions.

ii. Movie of a rabbit heart scanned with a flat-panel VCT system using an 18 sec gantry period and reconstructed with phase-
weighted iterative reconstruction (PW-MLTR). An entire cardiac cycle is shown for each longitudinal cross-section. This is
repeated for all longitudinal cross-sections containing the rotation axis at consecutive angles.
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moving along helical (Katsevich 2002, Noo 2003) and other, more exotic acquisition
trajectories (Pack et al. 2004). In addition, as a side effect of these developments, new
insight has been gained in reconstruction from truncated projection (Clackdoyle and Defrise
2010).

Although analytical reconstruction algorithms usually produce excellent images, there is a
growing interest in iterative reconstruction. One important reason for this is a growing
concern about the radiation doses delivered to the patients. Another reason is the higher
flexibility and robustness of iterative algorithms, which will allow new CT designs that
would pose problems for analytical reconstruction algorithms.

In iterative reconstruction (IR), one models the fact that there are a finite number of
measured rays, whereas analytical methods are derived assuming a continuum of rays. In
contrast to analytical reconstruction, iterative methods assume right from the start that the
image to be reconstructed consists of a finite number of samples too. This is obviously an
approximation, but it allows application of numerical methods to solve the reconstruction
problem. The algorithms can be considered as a feedback mechanism, with a simulator of
the CT-physics (re-projection) in the feedback loop. The feed forward loop updates the
reconstruction image, based on deviations between the measured and simulated scans (this
usually involves a backprojection). The output of the algorithms is very sensitive to the CT-
simulator in the feedback loop; for accurate results, it is essential to use a sufficiently
accurate simulator. There is more freedom in the feed forward loop, which can be exploited
by algorithm designers to improve the (local or global) convergence properties (De Man and
Fessler 2010).

This paper discusses the physics models that are used in the feedback loop. The basic model
that is often used can be written as follows:

(1)

where Yi is the measured transmission sinogram value along projection line i, bi is the
corresponding value that would be measured in absence of attenuation (blank or air
calibration scan), μj is the linear attenuation coefficient at voxel j, lij represents the effective
intersection length of the projection line i with voxel j and si represents possible additive
contributions, such as Compton scatter. The model is completed by assuming a probability
distribution for the noise ni. The index i combines all dimensions of the sinogram (including
axial and transaxial detector position, view angle), the index j typically represents the three
dimensions of the reconstruction volume. An alternative representation is

(2)

which takes the log-converted data as the input. A noise model for  can be obtained by
propagating the noise model for (1) through the logarithm. Many analytical algorithms and
some iterative ones, such as the well-known SART algorithm (Andersen and Kak 1984,
Byrne 2008), use the same weight for all data during the computations. This corresponds to

assuming that  is independent of i.

The models (1) and (2) have several limitations. They assume a monochromatic
transmission source, prior knowledge of the scatter contribution and no detector crosstalk.
They cannot accurately account for the finite sizes of the transmission source and the
detector elements, and cannot model blurring effects due to continuous gantry rotation.
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Although these approximations are acceptable in many applications, there are also many
cases where better models have significantly improved the final reconstruction.

Below we discuss various aspects of the physics model in iterative CT reconstruction.
Section 2 discusses problems and opportunities of the discretisation, and section 3 shows
how the models can be extended to take into account effects limiting the spatial resolution.
Compton scatter in the scanned object is discussed in section 4. Section 5 analyses the
complex noise characteristics of data from the energy-integrating X-ray detectors and
presents ways to approximate it. Section 6 briefly discusses incorporation of the energy
spectrum and section 7 shows how artifacts due to motion can be reduced or eliminated.

2. Discretisation
Any practical IR algorithm needs to make accurate approximations of the true, continuous
nature of the object. Typically, the reconstructed object is represented as a weighted sum of
a finite set of spatial basis functions, with a grid of cubic, uniform, non-overlapping voxels
covering the reconstructed field of view being perhaps the most common and intuitive
example of such a basis set. The reconstruction algorithm solves for the coefficients of this
expansion, i.e., the attenuation (or density in polyenergetic reconstruction) of each uniform
voxel in the grid. An alternative, but closely related expansion replaces the voxels with a set
of spherically symmetric Kaiser-Bessel functions, known as “blobs” (Lewitt 1990, Matej
and Lewitt 1996, Ziegler et al. 2006, Carvalho and Herman 2007). During the
reconstruction, projections of the object are simulated either by tracing rays and computing
intersection lengths with each basis function (for voxels, common choices are the ray-tracing
algorithms of Siddon (1985) or Joseph (1982)), or by a “footprint”-based approach (De Man
and Basu 2004, Ziegler et al. 2006, Long et al. 2010). Note that the system model assumed
in iterative reconstruction (involving discretised object and detectors) is fundamentally
different from the one used in the derivation of analytical algorithms (where the object is
assumed continuous). This indicates that notions such as sufficient sampling (e.g., in the
case of sparse acquisitions) may not directly translate from the analysis of analytical
reconstruction to IR, as discussed in (Bian et al. 2013).

A host of new considerations for object discretisation is likely to arise with the growing
interest in the application of iterative reconstruction to time-resolved CT imaging, such as in
motion-compensated cardiac reconstruction (Isola et al. 2010, Isola et al. 2008), or perfusion
imaging on slowly rotating cone-beam systems (Neukirchen et al., 2010). In motion-
compensated reconstruction, a new strategy for computation of basis footprints to account
for changes in sampling due to the motion field was shown to be necessary and developed
for blob-based representation (Isola et al. 2008). Examples from cardiac emission
tomography suggest that other object representations, such as deformable meshes (Brankov
et al. 2004, Brankov et al. 2005) could provide an interesting alternative to conventional
discretisation with voxels or blobs for modelling motion in IR. In perfusion imaging and
other applications involving tracking contrast enhancement, IR is enabled by representing
the time-varying attenuation (or density) at each location in the object as a superposition of a
finite number of temporal basis functions (e.g., gamma-variate distributions) and then
solving for the coefficients of this expansion (Neukirchen et al. 2010, Johnston et al. 2012).
This essentially means that the reconstruction problem is now decomposed into a set of
spatio-temporal basis functions, instead of the purely spatial basis functions discussed
above. More details on the dynamic aspects of iterative reconstruction are given in section 7.

Here, we discuss some considerations regarding object discretisation in IR that arise
regardless of the chosen method of re-projection. In particular we will review: i) artifacts
due to inconsistencies caused by the discrete approximation of true continuous physical
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objects, ii) region-of-attention strategies to reduce the computational burden of using finely
spaced basis functions, and iii) issues related to the use of discrete object and detector
models in simulation studies of algorithm performance.

2.1. Discretisation artifacts in iterative reconstruction
The very fact that the object is discretised into a finite number of basis functions inherently
leads to discrepancies between the measured projection data and the simulated re-projections
estimated during the reconstruction (Zbijewski and Beekman 2004a, Pan et al. 2009,
Herman and Davidi 2008). Finite-dimensional object representation is thus both a crucial
enabler and a potential source of significant errors in reconstruction, as discussed in the
general context of (linear) statistical inverse problems in (Kaipio and Somersalo 2007). As
presented in (Zbijewski and Beekman 2004a) for cubic voxels, even in the case of “ideal”
discretisation where each voxel represents the average attenuation (or density) of the
continuous object within its volume, the simulated re-projection of such representation will
be mismatched with the measured projections in areas corresponding to interfaces between
tissues. Because IR algorithms seek to maximise the agreement between the re-projections
and the measured data, these unintended mismatches may cause artifacts. Typically, such
artifacts are most pronounced around sharp material boundaries and appear as edge
overshoots and aliasing patterns. Figure 1 illustrates these effects for a simulation of a
clinical fan-beam CT scanner. No artifacts attributable to object discretisation are present in
the analytical (filtered backprojection or FBP) reconstruction onto a grid of “natural” voxels,
given by de-magnified detector pixel size (figure 1(A)). Figure 1(B) shows the result of
iterative reconstruction onto the same object grid, exhibiting the edge and aliasing artifacts
explained above.

Intuitively, using many basis functions to represent the object (e.g., smaller voxels) should
alleviate such discretisation-induced artifacts, as has been shown by Zbijewski and Beekman
(2004a). In particular, it was demonstrated that while statistical reconstruction onto a voxel
grid typical for analytical reconstruction results in severe edge artifacts (fig 1),
reconstruction on twice as fine a grid followed by binning back onto the “natural voxels” is
sufficient to remove most of the artifacts (1 (C)). The binning step mitigates the increased
noise in the finely sampled reconstruction; this approach has been shown to outperform
simple post-smoothing of the low resolution reconstructions in terms of the trade-off
between artifact reduction and resolution (Zbijewski and Beekman 2004a). Reconstruction
using finely sampled voxel basis has also been demonstrated to outperform an approach
based on smoothing the measured projections (Zbijewski and Beekman 2006a), which
intends to compensate for the blur introduced by discretisation and improve the match
between measured and simulated projections (Kunze et al. 2005). Finally, even though basis
functions such as the blobs are expected to show slightly less pronounced edge artifacts than
square voxels (Matej and Lewitt 1996), such artifacts have still been observed in blob-based
CT reconstructions (Ziegler et al. 2006). It has also been shown that, at least in some cases,
voxel-based reconstruction on a fine grid outperforms blob-based reconstruction on a
coarser grid in terms of edge artifact reduction (Zbijewski and Beekman 2006a). Some
projection operators were demonstrated to be more immune to such artifacts than others
(e.g., the trapezoidal separable footprint outperformed distance-driven projector in (Long et
al. 2010) in this respect), but in general the root cause of the problem is using a finite
number of basis functions to represent a continuous object (Pan et al. 2009), regardless of
the particular form of the basis functions or projection operator. Iterative reconstruction is
thus likely to typically require finer object discretisations than analytical reconstruction to
minimise edge artifacts. Note that using more basis functions may degrade the conditioning
of the reconstruction problem, so that judicious choice of regularisation may become
increasingly important in constraining the solution. Furthermore, the edge and aliasing
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artifacts due to discretisation may occur alongside similar artifacts caused by the Gibbs
phenomenon, where the reconstruction algorithm attempts to recover high frequencies lost
in the detection process, compound by mismatches between the true blurring in the system
and its model used by the reconstructor, as described in (Snyder et al. 1987) for emission
tomography.

2.2. Non-uniform discretisation and other region-of-interest techniques
Using fine discretisations to reduce edge artifacts (or for any other purpose) may pose
practical problems, because the reconstruction time increases with the size of the basis set
used to represent the object (the number of elements in the reconstruction grid). This
increase could be partly mitigated if computations on a fine reconstruction grid could be
restricted only to those areas of the object where the improved discretisation is most likely to
be beneficial (region-of-interest, ROI). One example where this approach could be applied is
in reduction of Non-Linear Partial Volume effect (NLPV, also known as edge-gradient
effect (De Man 2001)), in particular around metallic implants. NLPV is caused by
inconsistencies in projection data arising from attenuation gradients occurring within the
field of view of a single detector cell due to the logarithmic relationship between attenuation
and measured intensity (Glover and Pelc 1980, Joseph and Spital 1981). NLPV is therefore
an unavoidable result of using finite detector apertures, but can be alleviated if the
reconstruction accounts for the process of formation of this artifact by finely discretising the
object space (to better capture the image gradients) and by subsampling the detector cells (to
capture the averaging of detected intensities across image gradients) (Stayman et al. 2013,
Van Slambrouck and Nuyts 2012). Since the NLPV artifacts are most pronounced around
high-intensity image gradients, e.g., around metallic implants, strategies where the object
discretisation is made finer only in the vicinity of such structures were proposed (Stayman et
al. 2013, Van Slambrouck and Nuyts, 2012). In (Van Slambrouck and Nuyts 2012), grouped
coordinate ascent is employed to allow for sequential update (and associated faster
convergence) of image regions with different discretisation. In (Stayman et al. 2013), a non-
uniform reconstruction grid is applied within an algorithm where prior knowledge of the
shape and composition of the implant (e.g., a CAD model) is used to recast the
reconstruction objective function as estimation of the underlying anatomy and registration of
the known implant. The discretisation of the known implant model is now easily decoupled
from the discretisation on the underlying volume, allowing for significant upsampling of
only the implant without incurring large computational cost.

The examples discussed above considered spatial basis functions that are most commonly
used in iterative reconstruction of X-ray CT data, i.e., cubic voxels and blobs. Non-uniform
discretisation could perhaps be achieved more naturally when using a polygonal mesh to
represent the object (similar to finite-element analysis), as shown for emission tomography
in (Brankov et al. 2004). The mesh is defined by its vertices, whose density is varied
throughout the space based on the level of local image detail. This focuses the computations
on the regions of highest detail, while also benefitting from a likely more compact object
representation than in the case of voxel basis. It remains to be seen whether this approach
could benefit IR in X-ray CT, where the image resolution and spatial detail in the
reconstructed distributions is significantly higher than in emission tomography and the
spectrum of detection and estimation tasks differ from those in emission tomography.

Another application benefitting from selective use of fine object discretisation is high
resolution imaging of large body sites, such as the heart. In this case, high-resolution
representation of only a selected ROI (e.g., the heart itself) is likely sufficient for diagnosis.
Restricting the finely sampled iterative reconstruction only to this ROI would reduce
computation, but cannot be achieved with standard IR algorithms because re-projections of
the complete field of view are needed to compute the objective function. In (Ziegler et al.
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2008), this limitation is overcome by using an initial analytical high resolution
reconstruction of the complete volume (relatively computationally inexpensive) to compute
projections of the volume without the ROI (masked out from the analytical reconstruction),
which are then subtracted from the original data to yield projections of the ROI only, which
are subsequently reconstructed with IR at high resolution. Related approaches using IR with
two different voxel grids were proposed by Hamelin et al. (2007, 2010).

A situation where the complete object fills only a relatively small volume within the field-
of-view (FOV) could also benefit from an approach that exploits region-of-interest
discretisation. If the area of the FOV that does not contribute to the projections (i.e., air
surrounding the object) can be identified inside the discretised volume through image
processing techniques, the forward and back-projection could be limited only to those spatial
basis functions that cover the object (attenuator), saving memory and computation time,
especially if the forward and back-projector utilise pre-computed voxel footprints (Benson
and Gregor 2006).

2.3. Discretisation in simulation studies
Development of reconstruction algorithms usually heavily relies on simulation studies,
where projections of digital phantoms are computed and then reconstructed. Such simulation
studies frequently rely on discrete representations of the object and the detector, mainly
because of the flexibility of this approach in capturing the complexities of real anatomy
compared to the alternative approach of analytical modelling. The assessment of
reconstruction algorithms based on the results of such numerical simulations can however be
biased due to the choice of the basis set used in the discretisation.

In (Goertzen et al. 2002), several phantoms were simulated using Siddon ray-tracing
algorithm (Siddon 1985) and voxel image representation for a range of numbers of rays per
projection pixel and voxel sizes. Filtered-back projection (FBP) reconstructions of these
simulations were performed onto a voxel matrix of fixed sampling distance and examined
for discretisation-induced artifacts. It was shown that to reduce discretisation-induced
artifacts in the reconstructions of simulated data with realistic amounts of noise, the
simulation grid sampling should be at least half of that of the reconstruction grid, and at least
4 rays should be traced per detector pixel (for the clinical CT system geometry with 1 mm).
Note that the applicability of these criteria to more accurate CT simulators that include blurs
due to detector aperture, focal spot size, and source-detector motion has not yet been
explored in the literature.

Another form of bias caused by using discrete object and system models in numerical
assessment of iterative reconstruction algorithms may arise from simply employing the same
discretisation in the simulation of the test projection data as in the subsequent
reconstructions, regardless of how fine that discretisation is. Having such a perfect match is
sometimes referred to as the “inverse crime” (Herman and Davidi 2008, Kaipio and
Somersalo 2007, Bian et al. 2013). While “inverse crime” simulations are sufficient for
investigating stability, upper performance bounds, and theoretical aspects of a reconstruction
algorithm (Bian et al. 2013, Sidky and Pan, 2008), they are likely to overestimate an
algorithm’s performance compared to its behaviour with real data (Kaipio and Somersalo
2007). As mentioned above, such overestimation can be avoided when the discretisation in
the simulation is finer than that assumed by the reconstructor, which usually involves a
denser voxel grid, but often also denser detector sampling, depending on the chosen
mechanism for forward projection (De Man et al. 2000, De Man et al. 2001, Nuyts et al.
1998, Zbijewski and Beekman 2004a, Elbakri and Fessler 2003a).
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2.4. Summary
Discretisation of the object is an approximation that may significantly affect the output of
simulations and iterative reconstruction algorithms. Artifacts are reduced by using finer
discretisations, but the computation time increases accordingly. This can be mitigated by
using non-uniform discretisations, using the finer grids only at the locations where it matters
most. For realistic simulations, one should avoid committing the “inverse crime”.

3. Finite spatial resolution
Ignoring finite spatial resolution effects due to detector size, focal spot size, motion of the
CT gantry, crosstalk and/or afterglow will result in loss of resolution, because the blurring of
the data will propagate unhampered into the final reconstruction.

The implementation of a forward projection and backprojection often involves some
interpolation, which in turn can yield some blurring effects. In analytical reconstruction, this
causes a blurring of the reconstructed image, unless it is compensated by adjusting the ramp
filter. In contrast, in iterative reconstruction, the blurring will be iteratively inverted,
resulting in a sharper image. However, the true blurring is usually more severe than the
blurring due to interpolation, and additional work is needed for a proper compensation.

3.1. Stationary PSF
An easy model is to assume a stationary point spread function, which is modelled either as a
convolution in the projection domain (typically blurring the views, but not along the angles)
or as a 3D convolution in image space. The blurring kernel is typically chosen to be
Gaussian, with a different standard deviation in axial and transaxial directions. This model
has been applied also as a sinogram precorrection method (Carmi et al. 2004, Rathee et al.
1992) and as a correction applied after reconstruction (Rathee et al. 1992, Wang et al. 1998).
The precorrection method has the advantage that the known noise properties of the data can
be taken into account (La Rivière 2006).

3.2. Voxel footprints
As mentioned above, a voxel footprint is the (position dependent) projection of a voxel on
the detector. Projectors based on such a footprint usually take into account the geometry of
the divergent beam and the finite detector size. Doing so, they account for the related
blurring, which would be ignored when simple ray tracing were used. An additional
advantage of footprint based (back)projectors is that they avoid the creation of Moiré
patterns which are often produced by algorithms derived with straightforward discretisation
(De Man and Basu 2004).

The footprint depends on the basis function assumed for the voxel. For traditional pixels, De
Man and Basu (2004) proposed the “distance driven projector”, where the projection of a
voxel is approximated with a rectangular profile both in transaxial and axial direction. Long
et al. (2010) extended this to a trapezoidal shape, which enables more accurate modelling for
projection lines obliquely intersecting the voxel grid. Examples of other basis functions are
the blobs (Lewitt 1992) discussed above, and a related approach using Gaussian blobs, also
called “sieve”, as proposed by Snyder and Miller (1985). Matej and Lewitt (1996) reported
that the use of blobs results in less noisy images when compared to the traditional pixel grid.
However, the width of the blob should be less than the spatial resolution of the data,
otherwise overshoots near the edges are created. In these approaches, the blob or sieve could
be regarded as a stationary resolution model, while the reconstructed image converges to the
ideal image, convolved with the point spread function.
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3.3. Detector crosstalk and afterglow
Detector crosstalk results in a blurring of adjacent detector signals within the same view.
Detector afterglow causes blurring from the detector signal of a particular view into the
signal of the same detector in the next view(s). It seems relatively straightforward to extend
the footprint approach, which already models the finite detector size, to model the crosstalk
between adjacent detectors as well. One can either convolve the computed sinogram views
with a convolution kernel (Thibault et al. 2007), or enlarge the detectors into overlapping
virtual detectors (Zeng et al. 2009a) during footprint computation. These techniques
correspond to the following model (ignoring scatter, i.e. si = 0, see (2)):

(3)

where g represents the crosstalk kernel. This involves an approximation, because the
blurring due to crosstalk and afterglow is between the detected photons, not between the
attenuation values. Extending (1) with the crosstalk smoothing kernel g yields

(4)

A maximum-likelihood algorithm for this model has been proposed by Yu et al. (2000) and
was used in Feng et al. (2006) and Little and La Rivière (2012). In this last paper,
reconstruction based on the non-linear model (4) did not outperform reconstruction using the
linear model (3) in simulations with the FORBILD phantom. Kernel g can represent detector
crosstalk as well as the effect of detector afterglow. However, because afterglow involves
adjacent views, modelling it as blurring over angles is not compatible with the ordered
subsets approach. Forthmann et al. (2007) discuss issues about the correct definition of
kernel g for afterglow correction in dual focal spot CT systems.

Note that ML algorithms assume that Yi in (4) is Poisson distributed. However, the
afterglow and (at least part of) the crosstalk occur after the X-rays interacted with the
detector, and therefore they cause noise correlations. It would be more accurate to assume
uncorrelated noise before the smoothing kernel g is applied (La Rivière et al. 2006).

3.4. Finite source size
The finite size of the focal spot of the X-ray tube can be modelled by subsampling, i.e., by
representing the source as a combination of point sources. Applying that to (4) results in

(5)

where bis represents the X-rays sent from the source in position s to detector i, and  is the
beam geometry for that particular point source. Based on this model, reconstruction
algorithms for maximum likelihood (Browne et al. 1995, Yu et al. 2000, Bowsher et al.
2002, Little and La Rivière 2012) and simultaneous algebraic reconstruction (SART) (Yu
and Wang 2012) have been proposed. Browne et al. (1995) did not use a footprint approach,
but represented the detectors by subsampling those as well, using ray tracing between all
detector points and source points. Note that the apparent focal spot size may be different for
different positions on the detector due to the anode angulation (La Rivière and Vargas
2008).
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Because each point source has its own projection matrix, algorithms based on these models
need to compute forward and backprojections for every point source in every iteration. For
that reason, some authors use a simpler model, like (4), with a kernel g that is designed to
include effects of the finite focal spot size as well (Feng et al. 2006). In 2D, this can be a
good approximation if there are many views and small detectors, because then eccentric
point source positions in one view will correspond with good accuracy to a central point
source position in another view (La Rivière and Vargas 2008).

3.5. Fit a model to known resolution loss
Instead of modelling the physics accurately, some authors prefer to create a model that
accurately mimics the effective resolution loss. One advantage is that this can be tuned with
measurements or Monte Carlo simulations, including all possible effects contributing to
resolution loss.

Feng et al. (2006) used the model of (4) for SPECT transmission scanning with sources of
finite size. Michielsen et al. (2012) used a position dependent version of (4) to compensate
for resolution loss due to tube motion in tomosynthesis. Zhou and Qi (2011) proposed to
accurately measure the projection matrix, and then model it as a combination of sinogram
blurring, ideal projection and image blurring. The combination of these three operators
offers enough flexibility to obtain a good fit, while their sparsity allows fast computation
times.

3.6. 2D simulation
A 2D CT acquisition was simulated, assuming a perfect point source but detectors with
finite width and suffering from significant cross talk: each detector detected 11.3% from the
X-rays arriving in its neighbours. The focus-detector distance was 100 cm, the distance
between focus and rotation centre was 55 cm, there were 300 detectors with a size of 1.5
mm. The acquisition consisted of 1000 views, with monochromatic 70 keV X-rays and
40000 photons sent to every detector. The object was a disk consisting of fat, containing 35
rings with soft tissue attenuation and two disks consisting of bone. To avoid the “inverse
crime” during simulation, the object was represented in a matrix of 1952 × 1952 (pixel size
0.125 mm), and 5 rays per detector element were computed. The resulting sinogram was
reconstructed in a matrix of 488 × 488 (pixel size 0.5 mm) with three algorithms: filtered
backprojection (FBP), a maximum likelihood algorithm for transmission tomography
without (MLTR) and with (MLTR-resol) resolution recovery using (4). The ML-algorithms
did not use regularisation, and up to 40 iterations with 50 subsets each were applied.
Simulations with and without Poisson noise were done. The phantom and two noisy
reconstructions are shown in figure 2. The bias was estimated as the square root of the mean
squared difference (RMS) between the noiseless images and the true object. The noise was
estimated as the RMS between the noisy and noise-free images for each algorithm. A bias-
noise curve was obtained by post-smoothing the FBP image with a Gaussian kernel with
varying width, and by varying the iteration number for MLTR. The result is shown in figure
3. When compared to FBP, MLTR obtains lower bias for the same noise level, thanks to its
more accurate noise model. Incorporation of the resolution model yields a further
improvement. The iterative algorithms can reach lower bias levels than FBP, in particular
when the finite resolution is modeled.

3.7. Summary
Accurate modelling of the finite resolution effects increases the computation time, because it
requires multiple samples over the detectors and the focal spot. However, good results have
been reported with approximate models that basically replace increased sampling with well-
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chosen smoothing operations during the computations. The use of such models improves the
achievable tradeoff between bias and noise.

4. X-ray scatter
Detection of X-rays that have scattered in the object to be reconstructed can result in
significant image quality degradation. Both management of scatter and correction of scatter-
induced artifacts have been steadily growing in importance in X-ray CT. This is due to
continuing increase of the axial coverage of modern multi-detector CT scanners and,
perhaps more significantly, due to the introduction of large area digital solid-state detectors
(e.g. flat-panel detectors, CCD cameras) for X-ray tomography and the rapid proliferation of
such cone-beam CT (CBCT) devices in clinical, pre- clinical and material testing
applications. Deleterious effects of X-ray scatter in CT reconstructions include cupping and
streak artifacts, decreased contrast and resolution, and decreased image contrast-to-noise
(Johns and Yaffe 1982, Joseph and Spital 1982, Glover 1982, Endo et al. 2001, Siewerdsen
and Jaffray 2001, Kyprianou et al. 2005, Colijn et al. 2004, Zbijewski and Beekman 2006b).

While scatter can be partially mitigated by judicious selection of imaging geometry, e.g. by
using long air gaps (Neitzel 1992, Siewerdsen et al. 2004), or by direct rejection with anti-
scatter grids, the level of achievable scatter removal is often limited by other image quality
considerations (e.g. the increase in dose needed to compensate for primary attenuation in a
grid while maintaining full spatial resolution (Siewerdsen et al. 2004, Neitzel 1992, Kwan et
al., 2005)), design constraints, and cost of devices (e.g. need of larger detectors and gantry
when using gaps) and thus many volumetric CT systems will require additional software
scatter correction.

In iterative statistical reconstruction, scatter is often included in the measurement model as
an additive, known a priori term representing the mean amount of scatter per detector pixel
(si in eq (1) and (2)). While accounting for the scatter is straightforward (especially for
Poisson noise model (1), where the projection data is never log-corrected, and thus the
additive nature of scatter is maintained throughout reconstruction), estimating the required
mean scatter background accurately and efficiently remains challenging. A variety of scatter
estimation techniques have been developed to aid correction in radiography and in analytical
CT reconstruction, where a scatter estimate is typically subtracted from measured
projections as a pre-processing step (Glover 1982). Iterative (statistical) methods have the
potential to improve over simple subtraction-based scatter pre-correction because (i) they
inherently better handle projection noise (and negative projection values) for cases with high
scatter-to-primary ratios and low signal levels, and (ii) by its design, statistical
reconstruction process consists of iterative computation of image estimates and their
reprojections, which can be readily modified to incorporate simulation of scatter
contribution from the latest image estimate instead of using a fixed guess for the scatter
term. Despite these potential advantages, only few papers to date report on inclusion of
scatter estimates in iterative reconstruction (Elbakri and Fessler 2003a, Zbijewski and
Beekman 2006b, Jin et al. 2010, Wang et al. 2010, Evans et al. 2013), and future research is
needed to evaluate the gains in image quality and identify clinical applications most likely to
benefit from this approach. The following review summarises scatter estimation
methodologies currently in use in CT imaging (a recent, more in-depth survey of scatter
correction methodologies can be found in (Ruhrnschopf and Klingenbeck 2011a, 2011b),
recognising that all of them could potentially be implemented in the iterative framework, but
only a small subset has already been applied and validated in this context. Three broad
categories of methods are considered: (i) scatter measurement techniques, (ii) analytical
methods for estimating scatter from projection data, and (iii) simulation of the scatter
component from an (intermediate) object/patient representation. The approaches in the first
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two categories are employed as pre-correction in analytical CT reconstruction, but could
also provide a fixed scatter guess for statistical reconstruction. The approaches in the third
category naturally fit in iterative reconstruction: the scatter estimates will improve with the
improving quality of the successive image estimates. Considering also that very accurate
simulation techniques exist (e.g. Monte Carlo), the combination of iterative reconstruction
with scatter simulation is an attractive avenue for scatter correction.

4.1. Physical scatter measurements
Typically, experimental measurements of X-ray scatter exploit some form of beam blockers
placed in front of the X-ray source and before the object. Detector signals directly behind
the blocker are assumed to be mainly scattered photons (neglecting effects such as off-focal
radiation and blocker penetration). Various experimental designs have been proposed,
ranging from extrapolation of measurements in the shadow of tube collimators (Siewerdsen
et al. 2006) to beam blocker arrays extending across the projection image. In the latter case,
the main practical concern is to alleviate the need for a double scan (one with the blocker
array to estimate scatter, one without the blocker array to measure the total signal
everywhere in the detector plane). This can be achieved through acquisition of only a small
subset of projections with the blocker in place and computation of the global scatter estimate
by interpolation (Ning et al. 2004), by using blockers only in a first of a sequence of scans
(prior scan - e.g. in the monitoring of radiation therapy treatment) (Niu et al. 2012), by
employing moving blockers (Liu et al. 2005, Zhu et al. 2005, Jin et al. 2010, Wang et al.
2010), or by exploiting data redundancy in the design of blocker pattern (Niu and Zhu 2011,
Lee et al. 2012). Novel variations on the concept of beam blocker measurements include a
complementary method where a collimator (beam pass) creates pencil beams at the entrance
to the object that induce negligible scatter and thus provide estimates of primary signal
(Yang et al. 2012, Sechopoulos 2012), or using an array of semi-transparent (instead of
opaque) blockers that modulate the primary distribution so that Fourier techniques can be
used to separate scatter and primary signals (Zhu et al. 2006).

Scatter estimates obtained through the experimental methods described above can be
included in statistical reconstruction as the background scatter term, which in this case
remains fixed throughout the iterations. In addition, since iterative reconstruction methods
are inherently better suited to handling scanning geometries with missing data (Zbijewski
and Beekman 2004b, Bian et al. 2010), they could potentially be applied to projections
obtained with beam blockers without the need for interpolation in blocker shadows, such as
presented in (Jin et al. 2010, Wang et al. 2010) for the case of full rotation CBCT with
moving beam stop array. Furthermore, statistical reconstruction methods can somewhat
mitigate the increase in image noise that accompanies correction by simple subtraction of
measured scatter estimates (Wang et al. 2010).

4.2. Analytical scatter models
Scatter estimation by means of computational models provides an alternative to direct
physical measurements in that it does not require modifications to scanner equipment or
increase in imaging dose. In their simplest form, such computational models represent the
scatter fluence as a constant across the projection plane, assuming the same value for entire
scan (Glover 1982) or different values for individual views (Bertram et al. 2005). A
potentially more accurate approach models the scatter as a point spread function (kernel)
applied to primary fluence and tries to estimate the scatter from projection data (scatter
+primary) by deconvolution (Love and Kruger 1987, Seibert and Boone 1988). The
knowledge of the scatter kernel is essential for this deconvolution; the kernels are usually
assumed to depend on object thickness (estimated locally based on water equivalent
projections) and are either measured (Li et al. 2008) or pre-simulated with Monte Carlo
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(MC) methods (Maltz et al. 2008, Sun and Star-Lack 2010). A somewhat related analytical
model (Yao and Leszczynski 2009) separates the scatter distribution into object-dependent
terms that are captured by the primary intensity, and terms which are independent of the
object and thus can be pre-computed; primary is iteratively estimated from measured
projection using this model. Other possible analytical approaches involve approximating the
object by a simple ellipsoid, for which scatter can be either pre-computed or estimated at
relatively low cost using MC simulations (Bertram et al. 2006), a hybrid method combining
this approach with scatter kernels (Meyer et al. 2010), and algorithms utilising calibration
scans to establish relationships between scatter properties of typical objects (e.g. spatial
distribution of scatter-to-primary ratio) and some basic parameters accessible in projection
images or raw reconstructions (e.g. local breast diameter) in a manner allowing for
interpolation of a scatter estimate for any new projection dataset (Cai et al. 2011).

4.3. Iterative scatter estimation from reconstructions: Monte Carlo methods
Both the experimental and computational methods of scatter estimation described above
suffer from a number of simplifying assumptions and thus yield approximate results. Despite
this, remarkably accurate scatter correction can usually be achieved with such methods,
largely due to the often smooth, slowly varying nature of scatter distributions. There is
however growing evidence that under certain imaging conditions (e.g. high scatter-to-
primary ratio, presence of an anti-scatter grid, or metal objects in the patient), significant
heterogeneity may be introduced into the scatter distribution and thus more accurate scatter
estimates may be needed to achieve complete artifact correction and maximise improvement
of quantitative accuracy (Mainegra-Hing and Kawrakow 2010, Zbijewski et al. 2012).
Monte Carlo simulations are a likely candidate to provide such high-fidelity estimates
although computational load of calculations used to be a limitation. Compared to the
analytical methods described above, MC-based approaches utilise reconstructed images or
image estimates during iterative reconstruction instead of projections to compute scatter.
Initial reconstruction is computed from scatter-contaminated data, segmented and employed
for MC simulation of scatter (re-projection). The thus obtained scatter estimate is used to
compute a new reconstruction with reduced level of scatter-induced artifacts and the process
of MC scatter computation and reconstruction can be iterated until satisfactory correction
has been obtained. This framework readily fits into the statistical reconstruction process,
where image estimates are also obtained iteratively and computation of successive image
updates (that can be used as input for MC scatter simulation) is an inherent part of the
algorithm.

Until recently, the long computation times associated with low noise MC simulations
remained the major limitation of MC-based scatter correction. Encouraging developments in
MC acceleration suggest however that practical implementation of Monte Carlo scatter
estimation is achievable. One approach to MC acceleration involves the application of the
so-called variance reduction techniques (e.g. forced detection, Woodcock tracking,
interaction splitting), which, when optimised for simulation of X-ray scatter, can potentially
result in 10–100× reduction of computation time necessary to reach a given level of noise
(Mainegra-Hing and Kawrakow 2010). Such methods can be further supplemented by
techniques that exploit the smoothness of X-ray scatter fields (to the extent that the
particular imaging scenario supports such assumption) to simplify or de-noise the MC
simulations. For example, one can reduce the number of simulated photons and rely on
either (i) model-based fitting of smooth surfaces in the projection plane to reduce the noise
in the resulting scatter estimates (Colijn and Beekman 2004, Jarry et al. 2006), or on (ii)
forcing the photons from each interaction to a fixed, small number of nodes in the projection
plane and interpolating between them to obtain the complete distribution (Poludniowski et
al. 2009). Furthermore, since the scatter varies slowly between the projections (angularly),
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one could either combine these approaches with simulating only a subset of projections, or
exploit this angular smoothness by further reducing the number of tracked photons and
fitting a smooth three dimensional scatter distribution to the stack of noisy MC-simulated
projections (Zbijewski and Beekman 2006b, Bootsma et al. 2012). In (Zbijewski and
Beekman 2006b), a 3D fit that included the angular dimension reduced simulation time by
3–4 orders of magnitude (depending on the desired simulation error) compared to fitting
only in the projection plane; this level of acceleration may be difficult to achieve by methods
that rely only on reducing the number of simulated projection angles. Poly-energetic
statistical reconstruction (Elbakri and Fessler 2003a) was combined with accelerated MC
utilising a combination of variance reduction, and de-noising by means of a three
dimensional Richardson-Lucy fit (Richardson 1972, Lucy 1974) to provide scatter
correction for cone-beam micro-CT (Zbijewski and Beekman 2006b). Estimation of water
density was improved from 12% to 1% after 2 cycles of MC scatter correction. Another
recently proposed acceleration strategy combines an analytical model of 1st-order scatter
with a coarse MC simulation of the typically homogeneous higher-order scatter (Kyriakou et
al. 2006). Advances in computer hardware are also likely to play an important role in
reducing the computation times of MC scatter estimation to levels acceptable in clinical
practice. One important recent development is the implementation of MC simulation of X-
ray photon propagation on graphics processing units (GPUs) (Badal and Badano 2009). A
27-fold acceleration over single-CPU implementation has been reported, indicating the
potential for fast simulation environment within standard desktop PC.

It is possible to combine some of the above mentioned methods to enable additional speed-
ups of scatter re-projection. Also several very fast scatter estimation methods have been
proposed for emission tomography that have not been tested yet in transmission CT.
Potentially interesting are methods to accurately model effects of object non-uniformity on
scatter re-projection Snu when low noise scatter projections of uniform objects Su are
already known or can be calculated quickly and accurately with e.g. the above mentioned
analytical methods (Li et al. 2008, Maltz et al. 2008, Sun and Star-Lack 2010, Bertram et al.
2006). Using Correlated Monte Carlo methods (Spanier and Gelbard 1969), such a scatter
estimate can then be rapidly transformed to the scatter projection of a non-uniform object by

scaling it with a ratio of MC simulations of the non-uniform object  and the uniform

object , both obtained with only a very low number photon tracks ( ),
but in which correlated noise partly cancels out during division, as has been shown for
SPECT scatter modelling (Beekman et al. 1999).

All scatter correction methods that are based on simulation of scatter from reconstruction
(re-projection) are potentially prone to errors due to truncation of the true object volume
caused by limited field-of-view of the system, cone-beam artifacts, and the choice of the
reconstructed region of interest. While some authors have shown that restricting the MC
simulation only to the region of the object directly illuminated by the X-ray beam is
sufficient for achieving accurate scatter estimates (Zbijewski and Beekman 2006b), there
may be circumstances when significant portions of this irradiated volume cannot be
reconstructed, e.g. for interventional C-arm systems which often exhibit lateral truncation. In
such cases, a likely solution is some form of model-based, virtual “extension” of the
reconstructed object during the MC simulation (Bertram et al. 2008, Xiao et al. 2010).

4.4. Summary
Modelling the scatter contribution is becoming more important due to the increasing
detector size, and in particular for cases where no anti-scatter grids can be used. Ingenious
hardware modifications have been invented for measuring the scatter. Analytical models
have been proposed as well, and due to software and hardware improvements, it becomes
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feasible to estimate the scatter with accurate Monte Carlo simulation techniques during
iterative reconstruction. Further improvements of accuracy and computation times are
possible by combining complementary existing methods and by better exploiting the
potential of iterative reconstruction.

5. Noise models and the energy spectrum
Noise models for X-ray CT measurements are important (Whiting 2002, Whiting et al.
2006) for statistical image reconstruction methods (particularly for low-dose scans), for
performing realistic simulations of CT scans, for adding noise to CT measurements to
“synthesise” lower dose scans, and for designing sinogram data compression schemes (Bae
and Whiting 2001). For photon counting detectors, the measurements have simple Poisson
distributions provided dead-time losses are modest (Yu and Fessler 2000, Yu and Fessler
2002), although pulse pileup can complicate modelling for detectors with multiple energy
bins (“spectral CT”) (Taguchi et al. 2012, Srivastava et al. 2012, Heismann et al. 2012).
However, for transmission imaging systems that use current integrating detectors, such as
current clinical X-ray CT systems, the measurement statistics are considerably more
complicated than for the ideal photon counting case. There are numerous sources of
variability that affect the measurement statistics, including the following.

• Usually the X-ray tube current fluctuates slightly (but noticeably) around its mean
value.

• For a given X-ray tube current, the number of X-ray photons transmitted towards a
given detector element is a random variable, typically modelled by a Poisson
distribution around some mean.

• The energy of each transmitted photon is a random variable governed by the source
spectrum.

• Each transmitted photon may be absorbed or scattered within the object, which is a
random process.

• X-ray photons that reach a given detector element may interact with it, or may pass
through without interacting.

• An X-ray photon that interacts with the detector can do so via Compton scattering
and/or photoelectric absorption.

• The amount of the X-ray photon’s energy that is transferred to electrons in the
scintillator is a random variable because the X-ray photon may scatter within the
scintillator and then exit having deposited only part of its energy,

• The energised electrons within the scintillator produce a random number of light
photons with some distribution of wavelengths.

• The conversion of light photons into photoelectrons involves random processes.

• Electronic noise in the data acquisition system, including quantisation in the
analog-to-digital converters that yield the final (raw) measured values, adds further
variability to the measurements.

The following diagram summarises most of these phenomena.
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The overall effect of all of these sources of variability is that (i) the raw data variance is not
equal to the mean, and (ii) there can be negative apparent transmission values (after
correcting for ADC offset and dark current) for low X-ray intensities. Both of these
properties differ from the Poisson variates associated with counting statistics. We now
examine these random variations in more detail to help develop statistical models for X-ray
CT. (See also (Lei 2011: Ch. 5.2).) For simplicity, we focus on the situation where the X-ray
source does not move but where we acquire repeated scans of an object. This scenario is
useful for validating statistical models experimentally.

5.1. X-ray tube current fluctuations
Often X-ray CT systems include deliberate tube current modulation to reduce X-ray dose
while maintaining image quality (Gies et al. 1999, Kalender et al. 1999, Greess et al. 2000,
Hurwitz et al. 2009, Angel et al. 2009). In addition to these intentional changes in tube
current, in practice the X-ray tube current fluctuates continuously like a random process.
Therefore the number of transmitted photons fluctuates between projection views more than
would be predicted by Poisson statistics alone. This fluctuation affects the entire projection
view, leading to slight correlations between the measurements in a given view, even after
correction using reference measurements. In contrast, most of the other random phenomena
are independent from view to view and even from ray to ray, consistent with the usual
assumption of independence used by image reconstruction algorithms. (The mean effect of
these fluctuations can also be corrected using suitable statistical image reconstruction
methods (Thibault 2007, Nien and Fessler 2013).) Much of the literature on noise statistics
in X-ray imaging has been focused on radiography where there is only a single exposure so
tube current fluctuations have been unimportant. For conciseness we also ignore these
fluctuations here, though they may be worth further investigation in future work.

5.2. Transmitted photons
For a given tube current, the number of photons Ni transmitted towards the ith detector
element is a random variable having a mean N̄i that is proportional to the tube current. The
mean N̄i is ray dependent due to the geometrical factors relating emission from the X-ray
source to the detector position including X-ray tube angulation and detector solid angle, as
well as bowtie filters and the heel effect (Whiting et al. 2006). For a given tube current, it is
widely hypothesised that the number of transmitted photons has a Poisson distribution, i.e.,

(6)

The variance of Ni equals its mean: Var{Ni} = N̄i. It is also reasonable to assume that {Ni}
are all statistically independent for a given tube current.

5.3. X-ray photon energy spectra
For practical X-ray sources, the transmitted photons have energies ε that are random
variables governed by the source spectrum. Because of geometrical effects such as anode
angulation (La Riviére and Vargas 2008) and bowtie filters (Toth et al. 2005), the X-ray
photon energy distribution can be different for each ray. Let pi(ε) denote the energy
distribution for the ith ray, which has units of inverse keV. This distribution depends on the
X-ray source voltage, which we assume to be a fixed value such as 120 kVp. (For certain
scans that use fast kVp switching the spectrum varies continuously (Zou and Silver 2008,
Xu et al. 2009) and it can be important to model this effect.) The energy of each of the Ni X-
ray photons that are transmitted towards the ith detector is drawn independently (and
identically for a given i) from the distribution pi(ε).
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5.4. X-ray photon interactions in the object
For an X-ray photon with energy ε that is transmitted towards the ith detector element, the
survival probability that the photon passes through the object without any interactions in the
object is given by the Lambert-Beer law:

(7)

where the line integral is along the path  between the X-ray source and the ith detector
element, and μ(x⃗, ε) denotes the linear attenuation coefficient of the object at position x ⃗ and
for energy ε. The survival events for each photon are all statistically independent. Let Mi
denote the number of X-ray photons that reach the ith detector element without interacting
within the object. For a given tube current, the {Mi} are statistically independent Poisson
random variables with mean

(8)

where the survival probability of an X-ray photon is

(9)

For a polyenergetic source, we must consider the X-ray source spectrum because photons of
different energies have different survival probabilities.

5.5. X-ray photon interactions in detector, scintillation, and photo-conversion
The ideal photon counting X-ray detector (PCXD) would count every (unscattered) X-ray
photon that is incident on it, i.e., the recorded values would be {Mi}. In practice, when an X-
ray photon is incident on a detector element, there are several possible outcomes. The
photon may pass through the detector without interacting and thus fail to contribute to the
recorded signal. Similar to (7), the probability of failing to detect is e−dsμs(ε) where ds
denotes the scintillator thickness and μs denotes its (usually large) linear attenuation
coefficient. The scintillators used in X-ray detectors are usually high Z materials, so it is
likely that the X-ray photon will transfer all of its energy to an electron in the scintillator by
photoelectric absorption. It is also possible for the X-ray photon to undergo one or more
Compton scatter interactions and then either exit the detector element or deposit its
remaining energy in a final photoelectric absorption. These interactions are random
phenomena and their distributions depend on the X-ray photon energy. For example, higher
energy photons are more likely to escape the detector element without interacting.

For an incident X-ray photon of energy ε, the amount of its energy deposited within the
detector is a random variable having a quite complicated distribution over the range from 0
to ε. The electrons that are energised by the X-ray photon can release their energy in several
ways including emitting light photons and by interacting with other electrons, some of
which in turn produce light photons. The number of light photons produced and the
wavelengths of those photons depends on the type of electron interactions. Although it may
be convenient to approximate the number of light photons as having a Poisson distribution,
e.g., (Elbakri and Fessler 2003b), this can be only an approximation because the number of
light photons has a maximum value that depends on ε.

Nuyts et al. Page 16

Phys Med Biol. Author manuscript; available in PMC 2013 July 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Some of the light produced in a scintillator will reach the photosensitive surface of the
photosensor (typically a photodiode (Boyd 1979, Takahashi et al. 1990)). Depending on the
quantum efficiency of the photosensor, some fraction of these light photons will produce
photoelectrons that contribute to the recorded signal.

Ideally, each X-ray photon interaction in a detector element would produce the same
number, say K, photoelectrons (De Man et al. 2007, Iatrou et al. 2007); these would then be
recorded with additional electronic noise, and (ignoring A/D quantisation) a reasonable
measurement model would be the popular “Poisson+Gaussian” model (Snyder et al. 1993,
1995, Ma et al. 2012):

(10)

where μεi represents the dark current of the ith channel and  the electronic noise variance.
In this case we correct the measurements for the dark current and gain K:

for which the moments are

The dispersion index of the corrected measurement Yi, the ratio of its variance to its mean,
would be

Being larger than unity, this is called over dispersion.

In practice, the number of photoelectrons produced by an X-ray photon is a random variable
whose distribution depends on ε. When Mi X-ray photons are incident on the ith detector
element, let Kim denote the number of photoelectrons produced by the mth X-ray photon, for
m = 1,…, Mi. We assume that {Kim} are statistically independent random variables with
distributions

(11)

where εim denotes the energy of the mth X-ray photon incident on the ith detector element
and where the energy distribution of X-ray photons that passed through the object without
interacting is
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(12)

where ρi was defined in (9). The total number of photoelectrons produced in the ith
photosensor is

(13)

The ideal electronic readout system would record the value of Ki for each detector element.
One can show that the moments of Ki are

(14)

(15)

Rearranging yields the following nonlinear relationship between the variance and the mean
of Ki:

(16)

The parenthesised ratio quantifies the dispersion due to variability in the number of
photoelectrons produced by each X-ray photon. This ratio is related to the reciprocal of the
“statistical factor” or Swank factor derived in (Swank 1973) and investigated in (Ginzburg
and Dick 1993, Blevis et al. 1998). The reciprocal is also related to the noise equivalent
quanta (NEQ) (Whiting 2002: eqn. (6)).

The sum (13) greatly complicates statistical modelling of X-ray CT measurements, both
because the number Mi of elements in the sum is a (Poisson) random variate, and the
distribution of Kim is quite complicated. This makes it essentially intractable to find realistic
log-likelihoods, even in the absence of electronic noise and quantisation. The value of Kim
depends on how the X-ray photon interacts with the detector (photoelectric absorption, or
one or more Compton scatter events or combinations thereof) and depends also on the
energy ε. Thus the distribution of Kim is a mixture of numerous distributions. One simple
model assumes every (recorded) X-ray photon has a single complete photoelectric
absorption, and that the number of photoelectrons produced has a Poisson distribution whose
mean is γε for some gain factor γ. Under this model, (11) “simplifies” to the following
mixture distribution:

(17)

where ds and μs(ε) denote the thickness and linear attenuation coefficient of the scintillator.
This model leads to the compound Poisson distribution considered in (Whiting 2002, Elbakri
and Fessler 2003b). Even though this model is already complicated, it is still only an
approximation because it ignores many effects; for example, lower energy X-ray photons are

Nuyts et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2013 July 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



more likely to interact near the entrance surface of the scintillator, which is usually farthest
from the photosensor so the optical gain is lowest. This depth dependence implies that the
gain parameter γ should be a function of ε. Accurate modelling usually involves Monte
Carlo simulations (Badano and Sempau 2006).

As a more tractable approach, Xu and Tsui (2007, 2009) proposed an exponential dispersion
approximation (Jorgensen 1987) for which Var{Ki} = φ(Eμ[Ki])p where p > 1 and φ > 0 is
the dispersion parameter.

5.6. Electronic readout noise
Fluctuations in the leakage current of the photosensor and noise in the preamplifier input
(Knoll 2000 p. 288), often called electronic noise, add additional variability to the recorded
values. A reasonable model for the raw recorded values is

where αi is a scale factor that depends on the gain of the preamplifier and A/D converter,
and ε̃i is modelled as additive white Gaussian noise (AWGN) with mean ε̄i and standard
deviation σε. The mean ε̄i is related to the mean dark current of the photosensor and to the
offset of the A/D converter; these factors can be calibrated so we assume ε̄i is known.
Similarly we assume that the gain αi is known through a calibration process. We correct for
these deterministic factors as follows:

(18)

where now the (scaled) electronic noise is zero mean:  and where now the
standard deviation σi = σε/αi has units of “photoelectrons.” Clearly the statistics of Yi are at
least as complicated as those of Ki.

5.7. Post-log statistics
FBP and PWLS image reconstruction methods use the logarithm of the offset-corrected data
(18):

(19)

where

(20)

comes from an air scan or blank scan with no object present, with a high X-ray flux so that
the SNR is large, and where E0 denotes expectation when μ = 0. For a polyenergetic
spectrum one must correct yi for beam hardening.

Using a first-order Taylor expansion, the variance of the log sinogram yi is approximately
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where Ȳi ≜ Eμ[Yi]. If Yi had a Poisson distribution, then Var{Yi} = Ȳi and Var{yi} ≈ 1/Ȳi:
More realistically, from (18) and (16):

A PWLS formulation should use weights that are the reciprocal of the variance of the log
data:

(21)

For a counting detector the parenthesised term in the denominator is unity and there is no

electronic noise ( ), so the data-based weighting wi = Ȳi ≈ Yi is often used (Sauer and
Bouman 1993). When electronic noise is important, often the parenthesised term in the
denominator is ignored or assumed to be unity, leading to the weighting (Thibault et al. 2006
eqn. (18)):

(22)

5.8. Other considerations
5.8.1. Compton scatter in object—The analysis above ignored the effects of X-ray
photons that undergo Compton scatter within the object and reach the detector and are
recorded. This effect positively biases the recorded values. It also affects the variance of the
measurements, leading to further object-dependent nonlinearities in the relationship between
mean and variance, even after correcting for scatter as described in section 4.

5.8.2. Quantisation noise—CT measurements are recorded by A/D converters with
finite, discrete levels, so there is also quantisation noise in the measurements (Whiting 2002,
De Man et al. 2007), as well as a finite dynamic range leading to the possibility of overflow.
The variance due to quantisation noise can be absorbed in the electronic noise variance σi in
(18). However, quantisation noise does not have a Gaussian distribution so developing an
accurate log-likelihood is challenging (Whiting 2002).

5.8.3. Detector size—X-ray detectors have finite width, so the infinitesimal line integral
in (7) is an approximation. The exponential edge-gradient effect (Joseph and Spital 1981)
affects not only the mean recorded signal as described in section 3, but also its variance.
Hopefully this effect on the variance is small because accounting for it seems to be
challenging.
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5.8.4. X-ray noise insertion and related work—Using a variety of simplified noise
models, numerous methods have been proposed for adding “synthetic” noise to X-ray CT
sinograms to simulate lower dose scans (Mayo et al. 1997, Frush et al. 2002, Karmazyn et
al. 2009, Massoumzadeh et al. 2009, Benson and De Man 2010, Wang et al. 2012, Zabic et
al. 2012).

5.9. Summary
The statistical phenomena in X-ray CT measurements are so complex (Siewerdsen et al.
1997) that it is unlikely that a highly accurate log-likelihood model will ever be practical.
Instead, the field seems likely to continue using simple approximations such as the Poisson
+Gaussian model (10) or the standard Poisson model (Lasio et al. 2007) for the pre-log data,
or a WLS data-fit term (Gaussian model) with data-dependent weights (22) for the post-log
data. Apparently these models are adequate because the Swank factors and the polyenergetic
spectra often have fairly small effects on the statistics in practice. A model like (16) could be
the basis for a model-weighted least squares cost function that has a weighting term that is a
function of μ rather than a weighting term that is precomputed from the data as used in
much previous work such as (Sauer and Bouman 1993, Fessler 1994). It is rather uncertain
whether further refinements in statistical modeling could lead to noticeably improved image
quality. Possibly the most important question is whether it would be beneficial to work with
the raw measurements {Yi} in (18) rather than the log measurements considered in (Sauer
and Bouman 1993). The logarithm could become problematic at very low doses where the
Yi values can be very small or even non-positive due to photon starvation and electronic
noise.

6. The energy spectrum
The polychromatic nature of standard X-ray sources not only complicates the noise
statistics, if uncorrected it also leads to beam hardening and image artifacts (cupping and
shadows) (McDavid et al. 1975, Brooks and Chiro 1976). Assuming that the scanned object
consists of a single material with position dependent density (which can be zero to represent
air), the monochromatic measurements (acquired at energy ε̃) can be modelled as

(23)

whereas for the polychromatic measurements one has

(24)

where ρ(x ⃗) is the position dependent density of the material, με is the mass attenuation

coefficient at energy ε,  is the monochromatic blank scan and  represent the
polychromatic distribution of blank scan photons. Whereas  is a linear function of the line

integral ∫ ρ(x⃗)dl,  is a nonlinear, but monotone, function of that integral, so one can
derive analytically (if the spectrum is known) or with calibration measurements a function to

convert  to . This is the basis of the so-called water correction (Herman 1979); (24) can
also be used to implement a simple polychromatic projector, consisting of a single forward
projection followed by a simple sinogram operation (Van Slambrouck and Nuyts 2012).
When multiple materials are present, (24) can be extended by summing over all materials ζ:
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(25)

where ρζ denotes the density map of the ζ’th material. In CT, the attenuation by a material
is dominated by the Compton effect and photoelectric effect, and the energy dependence of
these two functions is (almost) independent of the material. Consequently, the attenuation of
a material as a function of the energy can be well modelled as a weighted combination of
Compton scatter and photoelectric, or a set of two materials with sufficiently different
behaviour (Alvarez and Macovski 1976). Thus, the sum in (25) can be restriced to the
chosen pair of base materials.

If the material densities are known or can be estimated (e.g. from a first reconstruction), then
(25) can be computed for the spectrum of the scanner and also for an ideal monochromatic
beam, to estimate and correct for the beam hardening artifact. Alternatively, by putting
constraints on the possible material combinations, the number of unknowns can be reduced
to one value per image pixel, allowing direct reconstruction of ρζ(x⃗), ζ ∈ {1, 2} from single
energy data. Of course, less constraining is needed for dual energy CT data. Based on these
ideas, numerous correction methods for analytical reconstruction have been proposed
(Joseph and Spital 1978, Herman 1979, Herman and Trivedi 1983, Joseph and Ruth 1997,
Hsieh et al. 2000, Yan et al. 2000, Kyriakou et al. 2010, Liu et al 2009). Naturally, the
models and methods depend on whether the detector is current integrating or photon
counting (Shikhaliev 2005). Other researchers have combined a model for the polyenergetic
spectrum with the other models described above (object discretization, detector resolution,
and measurement statistics) to develop model-based image reconstruction methods that
“correct” for the polyenergetic spectrum during the iterations (De Man et al. 2001, Elbakri
and Fessler 2002 and 2003a, O’Sullivan and Benac 2003, Lasio et al. 2007).

Alternatively, the polyenergetic spectra can be viewed as providing an opportunity to
estimate object material properties, particularly when combined with multiple
measurements, such as dual-energy scans (Alvarez and Macovski 1976, Clinthorne 1994,
Sukovic and Clinthorne 2000, Fessler et al. 2002, O’Sullivan and Benac 2007, Maass et al.
2011, Semerci and Miller 2012) or detectors with multiple energy bins (“spectral CT”) (Xu
et al. 2007, Xu et al. 2012). By using constraints, one can estimate more materials than
measured energy bins (Mendonca et al. 2010, Long et al. 2011, Depypere et al. 2011, Long
and Fessler 2012). This is an active area of research that will continue to spawn new models
and image reconstruction methods as the detector technology evolves.

6.1. Summary
The energy dependence of photon attenuation makes pre-correction or modelling of the
energy spectrum necessary to avoid beam hardening artifacts. However, it also creates
opportunities for contrast enhancement and improved material identification.

7. Motion
In this section we focus on the specific challenge of performing iterative reconstruction in
the presence of motion. While we describe most techniques in the context of the beating
heart, many of them can also be applied to other types of motion, including breathing,
contrast agent flow, peristaltic motion and involuntary patient motion.

Motion during a CT scan typically causes motion blur or degrades spatial resolution.
Cardiac motion can have speeds on the order of 7cm/s (Ritchie et al. 1992). State-of-the-art
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CT scanners acquire cardiac CT data over time intervals on the order of 100ms. This
corresponds to displacements as high as 7mm, which may lead to unacceptable blur of the
sub-mm resolution images. In addition, motion during the scan causes mutually inconsistent
projection measurements, resulting in streak artifacts. Figure 4 shows a typical motion-
induced streak artifact for a coronary artery. In the next sections we will loosely use the term
motion artifacts to include real artifacts as well as motion blur. Fast scanning offers the
opportunity to image the heart at multiple time frames, providing functional information
about wall motion, valves, ejection fraction, etc. This 4D imaging task has specific
implications for the reconstruction algorithm, as will be discussed later.

The most fundamental way to avoid motion artifacts is to prevent or minimise motion. Beta-
blockers are commonly administered prior to cardiac CT to reduce the heart rate and make
the heart beat more regular. ECG gating is used to select the cardiac phase with least motion.
ECG gating can be prospective: only a particular phase is scanned, or retrospective: only a
specific phase is used for reconstruction. Depending on the heart rate and the specific part of
the heart or coronary of interest, the end-diastolic or the end-systolic phase may be
preferred.

CT technology has evolved dramatically in terms of scanning speed. State-of-the-art CT
scanners have gantry rotation times in the range of 0.27s–0.35s. A half-scan reconstruction
interval is about 200ms. Dual-source CT and multi-sector CT are two techniques to cut this
interval in half, resulting in about 100ms effective acquisition interval. Reducing the rotation
time even further is mechanically very challenging, given that a typical CT gantry weighs
almost 1 ton, hence less costly algorithmic approaches are preferable if they can be
effective.

In the next sections we will discuss iterative reconstruction methods to minimise motion
artifacts and maximise temporal resolution, by reducing the used temporal data interval or
by modelling the motion.

7.1. Use as little data as possible
CT measurements often have significant redundancy. In 2D, a half-scan (a scan with a view
interval of 180° + fan angle) is sufficient to accurately reconstruct a slice. A full-scan (a
scan with 360° worth of data) has a number of conjugate rays that are not theoretically
required, but contain useful information for noise reduction and resolution enhancement.
Similarly in 3D helical scans, all measurements outside of the Tam-Danielsson window
(Tam et al. 1998) are not required for exact reconstruction but still contain useful
information. In FBP, redundant data is handled by projection domain or image domain
weighting factors, such as Parker weighting (Parker 1982) and helical weighting (Wang et
al. 1993). Iterative reconstruction typically uses either no preferential weights (such as in
ART-type algorithms (Gordon et al. 1970)), treating all measurements equally, or statistical
weights (such as in ML-type algorithms (Lange and Carson 1984, De Man et al. 2000) or
weighted least squares approaches (Sauer and Bouman 1993, Sukovic and Clinthorne
2000)), emphasising more reliable data and de-emphasising less reliable data.

A straightforward extension to the traditional weighting approaches is to include a temporal
weighting factor. The statistical weighting factors can be modulated based on the cardiac
phase, such that data closer to the temporal phase of interest receives a higher weight, and
data further from the temporal phase of interest receives a lower weight. The phase-
weighted WLS cost function for example then becomes:
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(26)

where (precorrected and log-converted) measurement yi occurs at time ti and has statistical
weight Wi, A is the projection matrix and μ the image, represented as a column matrix. The
temporal weighting function P(ti, t0) can be made aggressive to completely eliminate the
contribution of data that is far from the phase of interest and not required for reconstruction.
This concept was successfully applied to a helical scan trajectory (Zeng et al. 2009b). The
concept of the Tam window, originally invented in the context of analytic reconstruction, is
applied to iterative reconstruction. Setting the weights to zero outside the Tam window
(figure 4b) can dramatically reduce motion artifacts.

Using iterative reconstruction one can go a step further and reduce the data usage below the
minimum amount needed for exact reconstruction. In (Tang et al. 2010) iterative
reconstruction is performed based on a 90° view interval. However, to avoid image artifacts
induced by the incomplete data, the authors use the half-scan FBP image as prior
information and suggest that the final image should only sparsely differ from this prior
image. The temporal resolution improvement prior image constrained compressed sensing
(TRI-PICCS) weighting scheme is shown schematically in figure 5a. The corresponding
optimisation problem is given by:

(27)

Figure 6a shows results for an in vivo animal dataset reconstructed with FBP showing
significant motion artifacts and figure 6b shows the corresponding PICCS reconstruction,
reducing motion artifacts.

An earlier attempt to improve temporal resolution using sparse view sampling was proposed
by De Man et al. (2003, 2005). The main idea is to use a slow gantry rotation, during which
multiple cardiac cycles are acquired. Each cardiac phase then corresponds to a small number
of views distributed across the full 360°. Using only the phasic data would result in very
sparse view sampling, which would lead to severe view aliasing artifacts. Using all views
would result in a blurred, not phase-specific image. Instead, an initial reconstruction was
based on all views, ignoring phase information. An incremental image was then computed in
the ML/MAP framework and modulating the weights based on the phase of interest. I.e., the
airscan and the transmission scan were both artificially modulated, resulting in phase-
specific low-artifact reconstructions. This process was repeated for 50 different cardiac
phases resulting in a movie of a beating heart. Corresponding movies are downloadable
from movie, see supplemental data. While noisy, this 4D dataset can serve as input for some
of the approaches described in the next section. More recent compressed sensing technique
(Sidky et al. 2006) may be better suited to deal with sparse view sampling and further
enhance these results.

7.2. Motion modelling
The previous section described how to perform independent phasic reconstructions based on
the smallest possible temporal interval. We now give an overview of methods that explicitly
model the temporal variations in the reconstructed images.

The most basic approach is to reconstruct multiple frames and either constrain the
relationship between consecutive frames using temporal basis functions or regularise the
differences between consecutive frames using temporal neighbourhood priors. Since the
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difference between consecutive frames may be sparse, a sparsifying norm on this difference
such as an L1 norm is a good candidate to incorporate in the cost function :

(28)

where μ(t) is the image of frame t and ϕ can be any type of penalty function. In kinetic
parameter iterative reconstruction (KPIR) (Yu et al. 2011), the reconstructed images are
described by a kinetic model and the parameters of the kinetic model become the unknown
in the reconstruction process. A second order model is given by :

(29)

where μ(x⃗, t0), dμ/dt and d2μ/dt2 are the parameters to be estimated for every voxel x⃗.

Figure 7 shows (left) a conventional iterative reconstruction with significant motion artifacts
and (right) a reconstruction based on the KPIR method with a second order motion model
with significantly reduced motion artifacts. While this method does model the change in
attenuation over a time of a given voxel, it does not explicitly model object motion.

The most realistic approach is to estimate the actual motion of the object, i.e. to compute
motion vectors at every location, and incorporate these motion vectors in a joint time-
resolved reconstruction. This is usually performed in three stages: first-pass reconstruction,
motion vector estimation and time-resolved reconstruction. This was demonstrated for rigid
head motion in (Bodensteiner et al. 2007, Nuyts et al. 2011). When performing motion
compensated image reconstruction for non-rigid motion models, regularisation designs
should consider resolution and noise effects (Chun and Fessler 2009, Chun and Fessler,
2012).

7.3. Summary
While many groups have researched the combination of motion and CT iterative
reconstruction, this area still has a long way to go to completely eliminate motion artifacts,
improve robustness, minimise dose and overcome computational hurdles.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) FBP reconstruction from simulated projections of a digital abdomen phantom.
Simulations were performed on a very fine (4096×4096) grid with 0.125 mm voxels and 16
rays traced per 2 mm detector bin. All reconstructions are presented on a 512×512 grid of 1
mm voxels (“natural” voxel size for this geometry with magnification of 2). Iterative
unregularised Ordered Subset Convex (OSC) reconstruction on the 512×512 grid is shown
in (B) at a noise level matching the FBP image (accomplished by low-pass filtering).
Despite better resolution (FWHM of the line pattern), the OSC image is plagued by edge
and aliasing artifacts caused by object discretisation. Artifacts are indicated by arrows; in
each case, an image of a section of the phantom is also shown using a compressed gray scale
to better visualise the artifacts. OSC reconstruction on a fine grid (1024×1024) followed by
downsampling to the same grid as used for FBP is illustrated in (C). Gray scale range is 0.9–
1.1 g/cm3 for full images and 1.0–1.02 g/cm3 for image details. Figure adopted from
(Zbijewski and Beekman 2004a).
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Figure 2.
An example from the 2D simulation, showing the true attenuation image, and the
reconstruction from FBP and from ML with resolution recovery in the presence of noise.
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Figure 3.
The noise versus bias for FBP, MLTR and MLTR with resolution recovery. The curves are
generated by varying the number of iterations for MLTR, and by varying the width of a
Gaussian post-smoothing filter. RMS bias and noise are expressed as % of the background
attenuation.
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Figure 4.
(a) Motion-induced streaking artifacts in a 0.35s CT scan of a coronary artery. Courtesy of
Jed Pack (GE Global Research). (b) The Tam window defines the minimum data required
for accurate helical cone-beam reconstruction.
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Figure 5.
(a) The PICCS uses a short-scan FBP reconstruction as prior information for the iterative
reconstruction based on only a portion of the short-scan. (b) In phase-weighted iterative
reconstruction image increments are computed relative to FBP using increased statistical
weights for the views corresponding to the phase of interest.
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Figure 6.
In vivo animal dataset scanned with GE 64-slice scanner (a) reconstructed with FBP from a
short-scan interval and (b) reconstructed with TRI-PICCS. Reproduced from (Tang et al.
2010).
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Figure 7.
Clinical lung CT scan reconstructed with FBP and KPIR (Courtesy of Zhou Yu (GE
Healthcare)) : the conventional FBP reconstruction (left) shows a ghosting artifact near the
heart wall and blurred vessels due to cardiac and respiratory motion. These artifacts are
significantly reduced by KPIR (right).
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