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Abstract

Finding sought visual targets requires our brains to flexibly combine working memory information 

about what we are looking for with visual information about what we are looking at. To 

investigate the neural computations involved in finding visual targets, we recorded neural 

responses in inferotemporal (IT) and perirhinal (PRH) cortex as macaque monkeys performed a 

task that required them to find targets within sequences of distractors. We found similar amounts 

of total task-specific information in both areas, however, information about whether a target was 

in view was more accessible using a linear read-out (i.e. was more “untangled”) in PRH. 

Consistent with the flow of information from IT to PRH, we also found that task-relevant 

information arrived earlier in IT. PRH responses were well-described by a functional model in 

which “untangling” computations in PRH reformat input from IT by combining neurons with 

asymmetric tuning correlations for target matches and distractors.

Introduction

Searching for a specific object, such as your car keys, begins by activating and maintaining a 

representation of your target in working memory. Finding your target requires you to 

compare the visual content of a currently-viewed scene with this working memory 

representation to determine whether your target is currently in view. Our ability to rapidly 

and robustly switch between different targets suggests that this process is highly flexible. 

How do our brains achieve this?

Theoretical proposals of how our brains might find objects and switch between targets differ 

in their details [1–4], but all propose that visual and target-specific working memory signals 

are first combined to produce a target-modulated visual representation, followed by a second 

stage in which the combined signals are reformatted to produce a signal that reports when a 

currently-viewed scene contains a target (Fig. 1). However, the means by which these 

signals are combined and reformatted remains little-understood. Working memory signals 

are thought to be maintained in higher-order structures, such as prefrontal cortex (PFC), and 
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these signals are thought to be “fed back” to earlier structures for combination with visual 

information [e.g. 3, 5, 6] although see [4]. The initial combination of visual and working 

memory signals is likely to occur within higher stages of the ventral visual pathway (e.g. V4 

and inferotemporal cortex, IT) via a process known as “feature-based” or “object-based” 

attention, as evidenced by V4 and IT neurons whose responses are modulated by both the 

identity of the visual stimulus as well as the identity of a sought target [7–14]. While many 

models incorporate the simplifying assumption that the initial combination is implemented 

similarly by all neurons (e.g. a multiplicative enhancement aligned with a neuron’s preferred 

visual stimulus), experimental evidence suggests that these initial mechanisms are in fact 

quite heterogeneous [7, 8, 11, 13, 15]. These little-understood rules of combination likely 

determine the computations that the brain subsequently uses to determine whether a target is 

present in a currently-viewed scene.

To explore how visual and working memory signals are combined, we trained macaque 

monkeys to perform a well-controlled yet simplified version of target search in the form of a 

delayed-match-to-sample task that required them to sequentially view images and respond 

when a target image appeared. Our experimental design required them to treat the same 

images as targets and as distractors in different blocks of trials. As monkeys performed this 

task, we recorded responses in IT, the highest stage of the ventral visual pathway. Our 

results suggest that visual and working memory signals are combined in a heterogeneous 

manner and one that results in a non-linearly separable or “tangled” [16] IT representation of 

whether a target is currently in view. To explore the computations by which this type of 

representation is transformed into a report of whether a target is present, we also recorded 

signals in PRH, which receives its primary input from IT [17] and has been demonstrated 

via lesioning studies to play a fundamental role in visual target search tasks [18, but see 19]. 

Our results demonstrate that information about whether a target is currently in view is more 

“untangled” [16] or more linearly separable in PRH and that the PRH population 

representation differs on correct as compared to error trials. Models fit to our data revealed 

that the responses of neurons in PRH are well-described by an untangling process that works 

by combining signals from IT neurons that have asymmetric tuning correlations for target 

matches and distractors (e.g. have similar tuning for target matches and anti-correlated 

tuning for distractors).

Results

IT and PRH responses are heterogeneous

We recorded neural responses in IT and PRH as monkeys performed a delayed-match-to-

sample, sequential object search task that required them to treat the same images as targets 

and as distractors in different blocks of trials (Fig. 2a). Behavioral performance was high 

overall (monkey 1: 94% correct; monkey 2: 92% correct; see Supp. Fig. 1a for performance 

as a function of trial position). Performance remained high on trials that included the same 

distractor presented repeatedly before the target match (monkey 1: 89% correct; monkey 2: 

86% correct), confirming that the monkeys were generally looking for specific images as 

opposed to detecting the repeated presentation of any image [consistent with 15]. 

Altogether, we presented four images in all possible combinations as a visual stimulus 
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(“looking at”), and as a target (“looking for”), resulting in a four-by-four response matrix 

(Fig. 2b). As monkeys performed this task, we recorded neural responses in IT and PRH. To 

examine response properties, unless otherwise stated, we counted spikes after the onset of 

each test (i.e. non-cue) stimulus within a window that accounted for neural latency but also 

preceded the monkeys’ reaction times (80 – 270 ms; see Methods and Supp. Fig. 1b for 

reaction time distributions). We then screened for neurons that were significantly modulated 

across the 16 conditions, as assessed by a one-way ANOVA (see Methods). Unless 

otherwise stated, our analyses were based on the data from correct trials.

We note that the three components of this task (described above) each produce distinct 

structure in these response matrices: “visual” selectivity translates to vertical structure (Fig. 

2b), “working memory” selectivity for the current target translates to horizontal structure 

(Fig. 2b), and because matches fall along the diagonal of this matrix and distractors fall off 

the diagonal, differential responses to target matches and distractors translates to diagonal 

structure (Fig. 2b, “four-object target detector”, “single-object target detector”, and 

“suppressed four-object target detector”). We find the “four-object target detectors” 

particularly compelling, as their matrix structure reflects the solution to the monkeys’ task 

(i.e. these neurons fire differentially when an image is viewed as a target versus as a 

distractor, and they do so for all four images included in the experiment; see also Fig. 4c). 

We also note that these examples of relatively pure selectivity existed within IT and PRH 

populations that were largely heterogeneous mixtures of different types of information (e.g. 

Fig. 2b, the “distractor detector”, which fires when image 2 is the stimulus and image 3 is 

the target, and the “mixture” neuron).

PRH contains more “untangled” target match information

How do the heterogeneous responses of IT and PRH neurons relate to a determination of 

whether a currently-viewed image matches the sought target (i.e. the solution to the 

monkey’s task)? To assess this relationship, we began by probing the amount of “untangled” 

target match/distractor information in the IT and PRH populations with a linear read-out 

(Fig. 3a, right). More specifically, we determined how well a linear decision boundary could 

separate target matches from distractors via a cross-validated analysis that involved using a 

subset of the data to find the linear decision boundary via a machine learning procedure 

(SVM) and we then tested the boundary with separately measured trials (see Methods; 

Equation 1). Cross-validated population performance was significantly higher in PRH than 

in IT (Fig. 3b, left) and this result was confirmed in each monkey individually (Supp. Fig. 

2a). Higher PRH performance could not be explained by the repeated presentation of the 

“match” after it had previously been presented in the trial as the “cue” (Supp. Fig. 2a, 

“Adaptation control”) nor by changes in reward expectation as a function of the number of 

distractors encountered thus far in a trial or other position effects (Supp. Fig. 2a, “Position 

control”). Finally, while the analyses described thus far assume trial-by-trial independence 

between neurons, correlated variability has been shown to impact linear read-out population 

performance for some tasks [20, 21]. For our data, we tested the independence assumption 

by analyzing smaller subpopulations of simultaneously recorded neurons, and found similar 

results when the noise correlations were kept intact and when they were scrambled (Supp. 

Fig. 2b).

Pagan et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We were also interested in determining whether our recorded responses were consistent with 

a putative role in the circuitry that transforms sensory information into a behavioral 

response. Consistent with this hypothesis, PRH linear classification performance peaked 

well before the monkeys’ behavioral reaction times, which were longer than 270 ms on these 

trials (Fig. 4a; see Supp. Fig. 2c for a similar analysis but based on trials grouped by reaction 

time). We also found that linear classification performance on error trials as compared to 

correct trials trended toward lower values in IT and was significantly lower in PRH (Fig. 

4b). Poorer error trial performance could not be attributed simply to a difference in firing 

rate (grand mean firing rates: IT correct = 7.6 Hz, error 7.2 Hz, p=0.26; PRH correct = 5.6 

Hz; error 5.5 Hz, p=0.45).

What response properties can account for higher performance in the PRH as compared to the 

IT population? We computed a single-neuron measure of linearly separable target match 

information (“IL”) as a function of the separation of the responses to the target match and 

distractor conditions (Fig. 4c, inset; see Methods, Equation 3). We note that this measure 

maps directly onto the amount of “diagonal structure” in a neuron’s response matrix (see 

Methods) and thus an idealized “four-object target detector” will have high IL, a “single-

object target detector” will have a bit less, and a highly visual neuron or working memory 

neuron will have none (Fig. 2b). Consistent with the population results presented in Fig. 3b 

(left), we found that PRH had significantly higher mean single-neuron linearly separable 

target match information than IT (p<0.0001; Fig. 4c). To relate our single neuron and 

population performance measures, we ranked the neurons in each population by their IL and 

recomputed population performance as a function of the N best neurons. In PRH, the best 

neurons were indeed “four-object target detectors” (Fig. 4c, right) and performance saturated 

fairly quickly as a function of N (Supp. Fig. 2d, left). In contrast, in IT we found that the 

best neurons were detectors for at most two objects as targets (Fig. 4c, right) and IT 

performance was lower than PRH performance for equal-sized N (Supp. Fig. 2d, left). These 

results suggest that the compelling “four-object target detectors” we found in PRH were 

responsible for a large portion of the population performance differences we uncovered 

between IT and PRH. However, even after removing the best N neurons (as many as 23) 

from PRH, performance in PRH remained higher than IT (Supp. Fig. 2d, right). Notably, 

many of the top 23 PRH neurons had single-object target detector structure (Fig. 4c, right). 

Together, these results suggest that higher PRH linear classifier performance can be 

attributed both to the existence of “four-object target detectors” that are absent in IT as well 

as neurons with “single-object target detector” structure that are present in both areas but are 

more numerous in PRH.

IT and PRH contain similar total target match information

Higher task performance in PRH versus IT when probed with a linear population readout 

could reflect more total task-relevant information in PRH (i.e. because PRH receives task-

relevant input that IT does not). Alternatively, these results could arise from a scenario in 

which IT and PRH contain similar amounts of total task-relevant information but that 

information might be formatted such that it is less accessible to a linear read-out in IT as 

compared to PRH (e.g. Fig. 3a, center versus right). To discern between these alternatives, 

we probed the total information for this task in a manner that did not depend on the specific 
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format of that information. More specifically, total information for this task depends only on 

the degree to which the response clouds corresponding to target match and distractor 

conditions are non-overlapping, but not on the specific manner in which the response clouds 

are positioned relative to one another (Fig. 3a, compare center and right). As a measure of 

the total information available for match/distractor discrimination in the IT and PRH 

populations, we performed a cross-validated, ideal observer match/distractor classification 

of the population response on individual trials (see Methods, Equation 2).

We found that this measure of total task-relevant information was slightly lower in IT, but 

not significantly so (Fig. 3b, right). Notably, even when the number of PRH neurons was 

halved relative to IT (i.e. 50 PRH neurons versus 100 IT neurons), such that IT ideal 

observer performance was now slightly higher than PRH (PRH=86%, IT=88%), linear 

classifier performance remained higher in PRH (PRH=80%, IT=66%). These results 

demonstrate that IT and PRH contain similar amounts of “total” information for this task but 

that information is more “tangled” in IT and more “untangled” in PRH (e.g. Fig. 3a, center 

versus right).

Evidence for feed-forward “untangling” between IT and PRH

More “untangled” target match information in PRH as compared to IT could reflect a variety 

of mechanisms that differ in terms of the flow of information to and between IT and PRH. 

Here we consider three such general schemes. In each case, we refer to “cognitive” signals 

as the combination of all types of target-dependant modulation, including response 

modulations that can be attributed to changing the identity of the target and/or whether the 

stimulus was a match or a distractor. Importantly, these schemes can be distinguished via 

their predictions about the relative amounts and/or the timing of cognitive information in IT 

as compared to PRH.

In the first scheme (Fig. 5a), cognitive information is fed back to both brain areas, and 

stronger PRH diagonal signals are accounted for by a stronger cognitive input to PRH as 

compared to IT. This class includes models in which cognitive information takes the form of 

a working memory input that is combined with visual information in IT and PRH, as well as 

models in which the diagonal signal is computed elsewhere and is then fed back to these two 

areas; in both cases, the magnitude of the combined cognitive modulation is predicted to be 

larger in PRH as compared to IT.

Second (Fig. 5b), stronger PRH diagonal signals may be accounted for by cognitive 

information that is fed back exclusively to PRH, which in turn passes some of this 

information back to IT. As in the first scheme, this cognitive information may take the form 

of a working memory and/or a diagonal signal. In either case, this scheme predicts that 

cognitive information should arrive earlier in PRH as compared to IT.

Third (Fig. 5c), cognitive information may be exclusively fed back to IT. Accounting for 

stronger diagonal signals with this scheme requires that cognitive signals are combined with 

visual signals in IT in a “tangled” manner such that they are not accessible via a linear read-

out, and that “untangling” computations in PRH reformat this information such that it 

becomes more linearly accessible. This class of models predicts that the magnitude of 
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cognitive information should be approximately matched in the two brain areas and that 

cognitive information should arrive earlier in IT than PRH.

To test the predictions of these three schemes, we performed a modified ANOVA analysis to 

parse each neuron’s responses into firing rate modulations that could be attributed to: 1) 

changing the visual image, 2) changing the cognitive context, and 3) noise due to trial-by-

trial variability (see Methods, Equation 4). We found that cognitive modulations were 

approximately equal in strength in IT and PRH and that these modulations arrived slightly 

earlier in IT as compared to PRH (Fig. 5d, e), consistent with the third scheme in which 

cognitive information is fed back only to IT and PRH inherits its cognitive information from 

IT as opposed to other sources (Fig. 5c; but see also below). A decomposition of the 

combined cognitive signal into its linear (“working memory”) and nonlinear (i.e. interaction) 

components revealed that, consistent with other reports [e.g. 22], working memory signals 

during the delay period (“persistent activity”) are present but are weak in both areas 

(Supplementary Fig. 3c). Additionally, the nonlinear component predominated during the 

stimulus-evoked response period (Supplementary Fig. 3c), consistent with either working 

memory signals that combine nonlinearly (e.g. multiplicatively) with visual signals in these 

areas [e.g. 23] or with visual and working memory combinations that are inherited from 

elsewhere (e.g. V4). We describe these nonlinear signals in more detail in the next section.

We do acknowledge that the results we present here cannot definitively rule out some 

alternate proposals. For example, variants of a model in which IT and PRH both receive the 

same strength working memory input but have different rules of combination (i.e. to produce 

“tangled” signals in IT and more “untangled” signals in PRH) would predict responses that 

are indistinguishable from the model we provide evidence for here (Fig. 5c). Additionally, 

similar to other hierarchical descriptions of information processing [e.g. 16, 24, 25], we do 

not know that PRH receives its information via a direct projection from IT to PRH (e.g. 

information may first flow through the pulvinar or some other structure). In the next section, 

we evaluate the degree to which the class of “functional models” that are mathematically 

equivalent to the model proposed in Fig. 5c can quantitatively account for our recorded 

responses. Similar to other functional model descriptions [e.g. 23–25, 26, 27, 28], the value 

of taking this type of approach is that it has the potential to provide insight into the 

algorithms by which information is transformed as it propagates through the brain (i.e. from 

IT to PRH), even in the absence of certainty regarding its exact biological implementation 

[29].

Taken together, the results reported in Figures 3–5 are consistent with a functional model in 

which visual and working memory signals are initially combined within or before IT in the 

ventral visual pathway in a heterogeneous and “tangled” manner, followed by reformatting 

operations in PRH that “untangle” target match information. These results are reminiscent of 

the untangling phenomena described at earlier stages of the ventral visual pathway (i.e. from 

V1 to V4 to IT) for invariant object recognition [16, 30–32], and thus suggest that the brain 

transforms information into a manner that can be accessed via a linear population read-out 

not only for perception (i.e. identifying the content of a currently-viewed scene), but also for 

more cognitive tasks (i.e. finding a specific sought target object).
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A pairwise LN model can account for PRH untangling

Next we were interested in evaluating whether an “untangling” transformation from IT to 

PRH could provide an accurate quantitative account of our data. We thus set out to 

determine the simplest class of models that could take our recorded IT responses as input 

and produce a model population that had properties similar to our recorded PRH. We began 

by ruling out a priori the class of models in which IT neurons combine linearly to produce 

PRH cells because we know that linear operations can move linearly separable information 

around within a population (i.e. between neurons) but cannot transform non-linearly 

separable information into a linearly separable format. Thus we began by testing the class of 

nonlinear models in which a static nonlinearity (i.e. thresholding and saturation; see 

Methods, Equation 10) was fit to each IT neuron such that its response matrix conveyed 

maximal linearly separable target match information (IL, Fig. 4c). Inconsistent with the large 

gains in linear read-out performance we observed from IT to PRH, we found only modest 

overall gains in this model population (Fig. 6a, right, “N Model”).

Next we considered the class of models in which pairs of IT neurons combine via a linear-

nonlinear model (“LN model”) to produce the responses of pairs of PRH cells (Fig. 6b). In 

fitting our model, we imposed the important constraint that information could not be 

replicated multiple times in the transformation from IT to PRH (i.e. the same neuron could 

not be copied multiple times). To enforce this rule, our model created two PRH neurons by 

applying two sets of orthonormal linear weights to the pair of IT inputs (e.g. 

( ) and ( )) and each IT neuron was included only once (see 

Methods, Equations 12–14). We searched all possible pairwise combinations of IT neurons 

and nonlinearities and selected the combinations that produced the largest gains in linearly 

separable information (see Methods). The resulting LN model population nearly matched 

the population performance increases in PRH over IT with a linear read-out and replicated 

PRH population performance on the match/distractor task with an ideal observer read-out 

(Fig. 6a, “LN Model”). The LN model also replicated a number of single-neuron response 

differences in PRH relative to IT, including a decrease in the visual modulation strength and 

an increase in the congruency (i.e. alignment) of visual and target signals (Supp. Fig. 4), 

despite the fact that the model was not explicitly fit to account for these parameters. The fact 

that such a simple model reproduced the transformation we observed in our data from IT to 

PRH provides support for the proposal that PRH receives its inputs for this task primarily 

from IT, as opposed to other sources. The simplicity of the model also lended itself to an 

exploration of the specific computational mechanisms underlying untangling, as described 

below.

Untangling relies on asymmetric tuning correlations in IT

To understand how the pairwise LN model untangles information, it is useful to first 

conceptualize how a nonlinearity can act to increase linearly separable information (IL) in a 

neuron’s matrix. As described in Fig. 7a, a nonlinearity can be effective in situations when 

the variance (i.e. the “spread”) across one set of conditions (e.g. the matches; Fig. 7a, red 

solid) is higher than the other set (e.g. the distractors; Fig. 7a, gray). In such scenarios, the 

nonlinearity can change a subset of responses within the high variance set and thus increase 

the difference between the mean response to matches and distractors (Fig. 7a, red dashed vs 
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gray); this translates into an increase of the amount of linearly separable target match 

information (see Methods Equation 19 for a more extensive description of the conditions 

required). Our results (Fig. 6a) suggest that pairing plays an important role in producing 

linearly separable information (as compared to applying a nonlinearity without pairing). 

How does pairing make a nonlinearity more effective? We can envision the responses of 

these neurons in a population space similar to that depicted in Fig. 3a (i.e. a population of 

size 2) where the representation of target matches and distractors is initially nonlinearly 

separable or “tangled” (Fig. 7b). In this example, the firing rate distributions of both neurons 

have the same mean response to matches and distractors (hence no linearly separable 

information) and the same variance in their responses to matches and distractors (hence a 

nonlinearity applied to either of them would produce no increase in linearly separable 

information). However, a rotation of the population response space produces a variance 

difference between matches and distractors for both neurons (Fig. 7c), and hence a scenario 

in which a nonlinearity is effective at producing a more linearly separable representation 

(Fig. 7d). This type of rotation can be achieved by pairing the two neurons via orthogonal 

linear weights (i.e. positive weights for one pairing, and a positive and negative weight for 

the other pairing). In general, a linear pairing of two neurons tends to be effective when the 

two neurons have “asymmetric tuning correlations” for matches and distractors (e.g. a 

positive correlation, or similar tuning, for matches and a negative correlation, or the opposite 

tuning, for distractors). When two such neurons are combined, these tuning correlation 

asymmetries translate into variance differences between matches and distractors, and thus a 

scenario in which a nonlinearity will be effective at producing a representation that can be 

better accessed via a linear read-out (Fig. 7c, d).

We have formalized the intuitions presented in Fig. 7 into a quantitative prediction of the 

amount of linearly separable information that can be gained by pairing any two IT neurons 

via an LN model of the form we fit to our data; our prediction relies on the degree of 

asymmetry in the neurons’ match and distractor tuning correlations (see Methods, Equations 

22, 24). Empirically we found that this prediction provided a good account of the linearly 

separable information extracted by our LN model of the transformation from IT to PRH 

(correlation of the actual and predicted information gains for each pair: r=0.84), confirming 

that the asymmetric tuning correlation mechanism is a good description of how the pairwise 

LN model “untangled” information.

This description of untangling via asymmetric tuning correlations reveals that for any given 

IT neuron, its best possible pair is one that has a perfect tuning correlation for one set (e.g. 

matches) and a perfect tuning anti-correlation for the other set (e.g. distractors). However, 

we note that modest tuning correlation asymmetries are also predicted to translate into 

increases in linearly separable information (under appropriate conditions; see Methods, 

Equation 19). We found that our model did largely rely on modest (as opposed to maximal) 

tuning correlation asymmetries (Supp. Fig. 5a–d) and that such modest tuning correlation 

asymmetries are ubiquitously present in populations of neurons that reflect mixtures of 

visual and target signals (Supp. Fig. 5e–f).

Pagan et al. Page 8

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Discussion

Finding specific targets requires the combination of visual and target-specific working 

memory signals. The ability to flexibly switch between different targets imposes the 

computational constraint that this combination must be followed by a reformatting process 

to construct a signal that reports whether a target is present in a currently-viewed scene (Fig. 

1). While the locus of the combination of visual and target-specific signals is thought to 

reside at mid-to-higher stages of the ventral visual pathway [7–13], the rules by which the 

brain combines and reformats this information are not well understood. Our results build on 

earlier studies to: 1) discriminate between models that describe where and how visual and 

target signals combine (Fig. 5), 2) provide a functional model in which visual and target-

specific signals combine to produce a linearly inseparable or “tangled” representation of 

target matches in IT that is then “untangled” in PRH (Figs. 3,4,6, Supp. Fig. 4); and 3) 

provide a neural mechanism that can account for the untangling or reformatting process 

(Fig. 7, Supp. Fig. 5). Notably, our results are not predictable from earlier reports. 

Specifically, a series of groundbreaking studies reported signals that differentiate target 

matches from distractors not only in PRH [15, 33], but also in V4 [8] and IT [11]. Thus it 

has been difficult to discern the degree to which the target match signals present in PRH are 

inherited from combinations of visual and working memory inputs at earlier stages of the 

ventral visual pathway (e.g. V4 and IT) as compared to working memory inputs directly to 

PRH. While we can not definitively rule out the latter hypothesis, our results demonstrate 

that consistent with the former suggestion, the task-specific information contained in PRH is 

also present in an earlier structure (but contained in a different format). Moreover, here we 

provide both a computational (i.e. “untangling”) and mechanistic (i.e. “pairing via 

asymmetric tuning correlations”) description of how that information might be reformatted 

within a feed-forward scheme.

While not definitive, a number of lines of evidence support a model in which PRH reformats 

information arriving (directly or indirectly) from IT. First, anatomical evidence suggests that 

the primary input to PRH is in fact IT [17]. Second, our results demonstrate that nearly all 

the information for this task found in PRH is also contained in IT, suggesting that PRH need 

not get its input from other sources (Fig. 3b). Third, the relative amounts and timing of 

cognitive signals are consistent with this description (Fig. 5e). Finally, our results 

demonstrate that a simple linear-nonlinear model can account for the transformation (Fig. 

6a, Supp. Fig. 4). As described above, ours is a “functional model” of neural computation 

that describes how signals are transformed as they propagate from one stage of processing 

(i.e. IT) to a higher brain area (i.e. PRH). Similar to other functional model descriptions [e.g. 

23–25, 26, 27, 28], we cannot rule out alternate proposals that predict the same neural 

responses but have different pathways (e.g. additional structures or parallel inputs) for the 

flow of information.

Our results reveal that visual and working memory signals are combined in a manner that 

results in a largely “tangled” representation of target match information in IT. This finding is 

consistent with visual and working memory signals that are combined, in part, via 

misaligned or “incongruent” object preferences (e.g. to produce the distractor detector in 

Fig. 2b; see also Supp. Fig. 4, right column). Similar incongruent neurons have also been 
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reported in other studies [8, 11]. If the brain could (in theory) achieve an “untangled” 

representation at the locus of combination by congruently combining visual and working 

memory signals, why might it instead combine these signals in a tangled and partially 

incongruent fashion only to untangle them downstream? We do not know, but we can 

speculate. First, working memory signals corresponding to a sought target are likely to be 

fed back to higher stages of the visual system (i.e. from PFC to V4 and/or IT) and because 

V4 and IT lack a precise topography for object identity, developing circuits that precisely 

align these two types of signals may be challenging [34]. Second, having signals that report 

incongruent combinations might be functionally advantageous for tasks that are more 

complex than the one we present here [35]. For example, incongruent signals might be 

useful during visual search tasks when evaluating where to look next (e.g. “I am looking for 

my car keys and I am looking at my wallet; my keys are likely to be nearby” [36]).

Our results describe a mechanism by which information may be reformatted within PRH by 

combining IT neurons with asymmetric tuning correlations. Similar to other functional 

models [e.g. 23, 24, 26, 27, 28, 37], our model is designed to capture neural computation in 

a simplified manner that is not directly biophysical but can be mapped onto biophysical 

mechanism. How might untangling via linear-nonlinear pairings of neurons with asymmetric 

tuning correlations be implemented in the brain? While simple pairwise combinations of IT 

neurons were sufficient to explain the responses we observed in PRH, each input probably 

reflects a functional “pool” of hundreds of neurons that (directly or indirectly) project from 

IT to a particular site in PRH [17]. Such connections could be wired via a reinforcement 

learning algorithm [e.g. 38] during the natural experience of searching for targets.

Our results demonstrate that target match information is formatted in a manner more 

accessible to a simple (i.e. a linear) read-out in PRH as compared to IT. While we do not 

know the precise rules that the brain uses to read-out target match information, 

mechanistically, we envision that this could be implemented in the brain by a higher order 

neuron that “looks down” on a population and determines whether a target is in view. 

Simple decision boundaries - such as linear hyperplanes - are consistent with the machinery 

that can be implemented by an individual neuron (e.g. a weighted sum of its inputs, followed 

by a threshold) whereas highly nonlinear decision boundaries are likely beyond the 

computational capacity of neurons at a single stage [16, 32]. Does PRH reflect a “fully 

untangled” representation of target match information? Probably not. While other studies 

have also suggested that the responses of PRH neurons explicitly reflect target match 

information [15, 33], PFC neurons have been reported to convey more target match 

information than neurons in PRH [5]. Given that PRH projects to PFC [39], the 

representation of target matches reflected in PRH may be further untangled in PFC and used 

to guide behavior. Alternatively, target match information reflected in PRH and PFC might 

constitute different pathways (e.g. from PRH, signals might propagate more deeply into the 

temporal lobe) and might be used for different purposes.

Methods

The subjects in this experiment were two naive adult male rhesus macaque monkeys (8.0 

and 15.0 kg). Aseptic surgeries were performed to implant head posts and recording 

Pagan et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chambers. All procedures were performed in accordance with the guidelines of the 

University of Pennsylvania Institutional Animal Care and Use Committee.

All behavioral training and testing was performed using standard operant conditioning (juice 

reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli, reward 

and data acquisition were controlled using customized software (http://mworks-project.org). 

Stimuli were presented on a LCD monitor with a 85 Hz refresh (Samsung 2233RZ, [41]). 

Both IT and PRH were accessed via a single recording chamber in each animal. Chamber 

placement was guided by anatomical magnetic resonance images and later verified 

physiologically by the locations and depths of gray and white matter transitions that 

included characteristic transitions through subcortical structures (e.g. the putamen and 

amygdala) to reach PRH. The region of IT recorded was located on both the ventral superior 

temporal sulcus (STS) and the ventral surface of the brain, over a 4 mm medial-lateral 

region located lateral to the anterior middle temporal sulcus (AMTS) that spanned 14–17 

mm anterior to the ear canals [12, 30]. The region of PRH recorded was located medial to 

the AMTS and lateral to the rhinal sulcus and extended over a 3 mm medial-lateral region 

located 19–22 mm anterior to the ear canals [12]. We recorded neural activity via a 

combination of glass-coated tungsten single electrodes (Alpha Omega, Inc.) and 16- and 24-

channel U-probes with recording sites arranged linearly and separated by 150 micron 

spacing (Plexon Inc.). Continuous, wideband neural signals were amplified, digitized at 40 

kHz and stored via the OmniPlex Data Acquisition System (Plexon, Inc.). We performed all 

spike sorting manually offline using commercially available software (Plexon, Inc.). While 

we were not blind to the brain area recorded in each session, we attempted to record from 

any neural signals that we could isolate within the predefined brain areas irrespective of 

their response properties and we did not perform any online data analyses to select specific 

recording locations. Additionally, our offline spike sorting procedures were performed blind 

to the specific experimental conditions (i.e. whether a condition was a target match or a 

distractor) and our data analyses were automated to avoid the introduction of bias. The 

number of neurons that we recorded (our sample size) was designed to approximately match 

previous publications [e.g. 30]; no statistical tests were run to determine the sample size a 

priori. Monkeys initiated a trial by fixating a small dot. After a 250 ms delay, an image 

indicating the target was presented, followed by a random number (0–3, uniformly 

distributed) of distractors, and then the target match. Each image was presented for 400 ms, 

followed by a 400 ms blank. Monkeys were required to maintain fixation throughout the 

distractors and make a saccade to a response dot located 7.5 degrees below fixation after 150 

ms following target onset but before the onset of the next stimulus to receive a reward. The 

same 4 images were used during all the experiments. Approximately 25% of trials included 

the repeated presentation of the same distractor with zero or one intervening distractors of a 

different identity. The same target remained fixed within short blocks of ~1.7 minutes that 

included an average of 9 correct trials. Within each block, 4 presentations of each condition 

(for a fixed target) were collected and all four target blocks were presented within a 

“metablock” in pseudorandom order before reshuffling. A minimum of 5 metablocks in total 

(20 correct presentations for each experimental condition) were collected.

Responses were only analyzed on correct trials, unless otherwise stated. Target matches that 

were presented after the maximal number of distractors (n=3) occurred with 100% 
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probability and were discarded from the analysis. Unless otherwise stated, we measured the 

response of each neuron as the spike count in a time window 80 ms to 270 ms after stimulus 

onset. To maximize the length of our counting window but also ensure that spikes were only 

counted during periods of fixation, we randomly selected responses to target matches from 

the 74.2% of correct trials on which the monkeys’ reaction times exceeded 270 ms. 

Including trials with faster reaction times did not change the results reported here (i.e. claims 

of significant and non-significant differences between IT and PRH for the data pooled across 

the two monkeys, see also Supplementary Fig. 2c). As a measure of unit isolation, we 

determined the signal-to-noise ratio (SNR) of each spike waveform as the difference 

between the maximum and minimum of the mean waveform trace, divided by two times the 

standard deviation across the differences between the actual waveforms and the mean 

waveform [42]. We screened units by their SNR and by a one-way ANOVA to determine 

those units whose firing rates were significantly modulated by the task parameters. When 

determining the screening criteria to include units in our analysis, we were concerned that 

setting any particular fixed value, particularly a highly stringent value, might differentially 

affect the two populations (e.g. due to lower firing rates in one of our populations). The most 

liberal screening procedure we applied (one-way ANOVA p < 0.05 and SNR > 2) resulted in 

167 and 164 units in IT and PRH, respectively, and for all but the analysis shown in Fig. 4b 

and Supplementary Fig. 2b, these are the criteria we used for the Results. SNR was not 

statistically different in the two resulting populations, as assessed by a statistical comparison 

of their means (mean IT = 3.47, PRH = 3.55, p=0.55). Applying increasingly stringent 

criteria to the ANOVA (to p<0.0001) or to unit isolation (to SNR > 3.5) did not change the 

results (i.e. claims of significant and non-significant differences between IT and PRH for the 

data pooled across the two monkeys).

To assess the impact of simultaneous trial-by-trial variability (i.e. “noise correlations”) on 

population performance (Supplementary Fig. 2b), we analyzed data simultaneously collected 

on the multi-channel U-probes (described above). During spike sorting, we defined at least 

one unit on every available channel, and we determined the 17 units from each session that 

produced the most significant p-values in the one-way ANOVA screen (without setting an 

absolute threshold on this p-value nor on SNR isolation). We assessed linear classifier 

performance for these simultaneously recorded subpopulations in the manner described 

below. We used a similar approach to compute population performance on error trials (Fig. 

4b). Specifically, for each multi-channel recording session, we determined misses as 

instances in which the monkey failed to break fixation in response to the target match and 

false alarms as instances in which the monkey’s eyes made a downward saccade in response 

to a distractor. We confined our analysis to false alarms in which the monkey fixated for a 

minimum of 270 ms before the response and for both types of error trials, we counted spikes 

in the same window used on correct trials (80 to 270 ms after stimulus onset). We compared 

linear classifier performance on error and correct control trials in the manner described 

below.

Population performance

To determine population measures of the amount and format of information available in IT 

and PRH to discriminate target matches and distractors, we performed a series of 

Pagan et al. Page 12

Nat Neurosci. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification analyses. Specifically, we considered the spike count responses of a population 

of N neurons to P presentations of M images as a population “response vector” x with a 

dimensionality equivalent to Nx1. We performed a series of cross-validated procedures in 

which (unless otherwise stated) we randomly assigned 80% of our trials (16 trials) to 

compute the representation (“training trials”) and we set aside the remaining 20% of our 

data (4 trials) to test the representation (“test trials”). We tested two types of classifiers:

Linear classification - SVM—To determine how well each population could 

discriminate target matches from distractors across changes in target identity using a linear 

decision rule, we implemented a linear readout procedure similar to that used by [30]. The 

linear readout amounted to using the training data to find a linear hyperplane that would best 

separate the population response vectors corresponding to all of the target match conditions 

from the response vectors corresponding to distractors (Fig. 3b, left). The linear readout took 

the following form:

(1)

where w is a Nx1 vector describing the linear weight applied to each neuron (and thus 

defines the orientation of the hyperplane), and b is a scalar value that offsets the hyperplane 

from the origin and acts as a threshold. The population classification of a test response 

vector was assigned to a target match when f(x) exceeded zero and was classified as a 

distractor otherwise. The hyperplane and threshold for each classifier were determined by a 

support vector machine (SVM) procedure using the LIBSVM library (http://

www.csie.ntu.edu.tw/cjlin/libsvm) with a linear kernel, the C-SVC algorithm, and cost (C) 

set to 0.1.

Ideal observer classification—To determine how well each population could 

discriminate target matches from distractors across changes in target identity using an ideal 

observer, we computed from the training trials the average spike count response ruc of each 

neuron u to each of the 16 different conditions c. Assuming Poisson trial-by-trial variability, 

the likelihood that a test response k arose from a particular condition for a neuron was 

computed as the Poisson probability density:

(2)

We then computed the likelihood that a test response vector x arose from each condition c 
for the population as the product of the likelihoods for the individual neurons. Finally, we 

computed the likelihood that a test response vector arose from the category “target match” 

versus the category “distractor” as the mean of the likelihoods for target matches and 

distractors, respectively. The population classification was assigned to the category with the 

higher likelihood (Fig. 3b, right).

To compare population performance between the different classifiers, we performed the 

same resampling procedure for each of them. On each iteration of the resampling, we 

randomly assigned trials without replacement for training and testing and when 
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subpopulations with fewer than the full population were tested, we randomly selected a new 

subpopulation of neurons without replacement from all neurons. Because some of our 

neurons were recorded simultaneously but most of them were recorded in different sessions, 

unless otherwise stated, trials were shuffled on each iteration to destroy any (real or 

artificial) trial-by-trial correlation structure that might exist between neurons. Our 

experimental design resulted in 4 target match conditions and 12 distractor conditions; on 

each iteration we randomly selected 1 distractor condition from each image (for a total of 4 

distractor conditions) to avoid artificial overestimations of classifier performance that could 

be produced by taking the prior distribution into account (e.g. scenarios in which the answer 

is more likely to be “distractor” than “target match”). We calculated means and standard 

error for performance as the mean and standard deviation, respectively, across 200 

resampling iterations.

To assess the impact of correlated noise on population performance, we compared classifier 

performance when the trial-by-trial variability was kept intact as compared to when it was 

randomly shuffled (Supplementary Fig. 2b), for populations of 17 simultaneously recorded 

sites (where the data were extracted in the manner described above). Performance was 

computed as the mean across recording sessions; standard error was computed as the 

standard deviation across 200 iterations in which trials were randomly assigned as training 

and testing, and, for populations smaller than 17, the subset of neurons was randomly 

selected, and, for the “shuffled noise” case, trials were randomly shuffled. To compare 

performance on correct and error trials (Fig. 4b), we extracted the error trials from these 

same multi-channel recording sessions. For each error trial (misses and false alarms; 

described above), we randomly selected a correct trial condition that was matched for the 

same target and visual stimulus as the condition that led to the error. We set aside these 

correct (and error) trials for cross validation, and trained the linear classifier on separate 

correct trials, as described above. Performance on each resampling iteration was computed 

as the average across all recording sessions; standard error was computed as the standard 

deviation across 800 resampling iterations in which correct trials were randomly assigned as 

training and test, and, for populations smaller than 17, the subset of neurons were randomly 

selected.

Single neuron measures of task-relevant information

Single-neuron measure of linearly separable target match information—As a 

single-neuron measure of match/distractor linear discriminability, we computed how well a 

neuron could linearly separate the responses to 4 target matches from the responses to 12 

distractors (Fig. 4c). This was measured by the squared difference between the mean 

response to all target matches μMatch and the mean response to all distractors μDistractor, 

divided by the variance of the spike count across trials, averaged across all 16 conditions 

 [43]:

(3)
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Single-neuron measures of visual and cognitive information

We began by performing a two-way analysis of variance (ANOVA), to parse each neuron’s 

total response variability  (i.e. total variance across all trials and conditions) into four 

terms: modulation across visual stimuli , modulation across sought targets , 

nonlinear interactions of visual and target modulations , and trial-by-trial variability 

:

(4)

where νtot = 319 (total number of degrees of freedom), νvis = 3 (degrees of freedom of 

visual modulation), νtarg = 3 (degrees of freedom of target modulation), νNL = 9 (degrees of 

freedom of visual/target modulation interactions), νnoise = 304 (degrees of freedom of noise 

variability). We then computed the ratios of signal modulations and noise variability to 

establish the magnitudes of visual, linear cognitive, nonlinear cognitive, and total cognitive 

modulation. In particular, we calculated the fraction of a neuron’s variance that could be 

attributed to changes in the identity of the visual image (Fig. 5d, Supp. Fig. 3, Supp. Fig. 4), 

normalized by the noise variability, as: . The fraction of a neuron’s variance that could 

be attributed to changes in the target (i.e. working memory signal; Supp. Fig. 3) was 

captured by the variance of linear target modulations, normalized by the noise variability: 

. The fraction of a neuron’s variance that could be attributed to nonlinear cognitive 

modulation (Supp. Fig. 3) was captured by the variance of nonlinear interactions of visual 

and target identity, normalized by the noise variability: . The fraction of a neuron’s 

variance that could be attributed to overall changes in the cognitive context (i.e. overall 

cognitive signal; Fig. 5d-e, Supp. Fig. 4) was captured by the combined variance that could 

be attributed to linear and nonlinear target modulations, normalized by the noise variability: 

.

Measuring the amount of signal modulation in the presence of noise and with a limited 

number of samples leads to an overestimation of the signal. For example, consider a 

hypothetical neuron that produces the exact same firing rate response to all task conditions; 

due to trial-by-trial variability, the computed average firing rate responses across trials will 

differ, thus giving one the impression that the neuron does in fact respond differentially to 

the stimuli. To correct for this bias, we first estimated the amount of measured signal 

modulation that is expected under the assumption of zero “true” signal: assuming Poisson 

variability, the bias is almost exactly equal to the number of degrees of freedom of the signal 

divided by the number of trials: . Unbiased estimates were then obtained by 

subtracting this value from our information measurements.

Congruency—For those neurons that were significantly modulated (F test, p<0.05) by 

both visual and target information, or their interaction, we were interested in measuring the 

degree to which visual and target signals had been combined “congruently” (i.e. with similar 
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object preferences). In doing so, it became necessary to evaluate congruency for the linear 

(  and ) and nonlinear interaction ( ) terms separately. We defined “linear 

congruency” as the absolute value of the Pearson correlation between the visual marginal 

tuning (i.e. the average response to each image as the visual stimulus) and the target 

marginal tuning (i.e. the average response to each image as the target):

(5)

where R(vis = i, targ = k) is the average response to visual stimulus i, while searching for 

target k. To measure “nonlinear congruency”, we considered the nonlinear modulation 

described above and we sought to determine the degree to which these modulations fell 

along the diagonal (i.e. congruent nonlinear combinations of visual and target signals) 

versus off the diagonal (i.e. incongruent combinations). We quantified this by parsing the 

total nonlinear variability  into a term capturing the diagonal modulation  and a term 

capturing the non-diagonal modulation :

(6)

where νNL=9 (degrees of freedom of nonlinear interactions, as above), νdiag= 1 (degrees of 

freedom of diagonal modulation), νnondiag=8 (degrees of freedom of nondiagonal 

modulation). We defined nonlinear congruency as the ratio between diagonal modulation 

and the sum of diagonal and nondiagonal modulation:

(7)

The final congruency index was computed as a weighted average of linear and nonlinear 

congruency, where the weights were determined by the firing rate variance for each term:

(8)

We designed the congruency index to range from 0 to 1 and to take on a value of 0.5 (on 

average) for “random” alignments of visual and working memory signals. Because the range 

of obtainable congruencies depends on a neuron’s tuning bandwidth and overall firing rate, 

as benchmarks for these values, we determined the upper and lower congruencies that could 

be achieved for each neuron by computing congruencies for all possible shuffles of its rows 

and columns; we found that the obtainable range was on average very broad (average 

minimum 0.09; average maximum 0.87) and we confirmed that “random” alignments of the 

rows and columns produce average congruency values near 0.5 (0.48).
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Modeling the transformation from IT to PRH

Static nonlinear model of the transformation from IT to PRH—Our goal was to 

determine the class of models that could transform the responses of IT neurons into a new 

artificial neural population with the response properties we observed in PRH (including 

increases in the amounts of “untangled” target match information). We fit the newly 

generated neurons to maximize the total amount of linearly separable target match 

information in the model population (IL, see Equation 3). In our model neurons, we imposed 

Poisson trial-by-trial variability. We could thus compute IL by replacing the noise variance 

term  with the mean responses across all conditions,μ:

(9)

To fit a nonlinear model (the “N model”; Fig. 6a), we defined the nonlinearity Φ applied to 

each IT neuron as a monotonic piecewise linear function, with a threshold and saturation:

(10)

where kthr indicates the threshold value, ksat indicates the saturation value and xi indicates 

the mean response of the IT neuron to condition i. Note that if kthr is lower than xi and ksat is 

larger than xi for all conditions then no nonlinearity is applied, so the formulation allows for 

the extreme case where Φ (x)= x.

When applying this nonlinearity, we wished to avoid artificially creating information by 

applying transformations that could not be physically realized by neurons. Specifically, it is 

important to note that Linear-Nonlinear-Poisson (LNP) models operate by applying a 

nonlinearity to the mean neural responses across trials, and then simulate trial-by-trial 

variability with a Poisson process. In contrast, actual neurons can only operate on their 

inputs on individual trials, and thus their computations are influenced by the trial-by-trial 

variability of their inputs. As an example, consider a toy neuron receiving only one input: 

when condition A is presented on three different trials the neuron receives 7, 8, and 9 spikes; 

when condition B is presented on three trials, the neurons receives 8, 9, and 10 spikes. The 

mean input is thus 8 spikes for condition A and 9 spikes for condition B. An LNP model 

might attempt to take these inputs and apply a threshold at 8.5 spikes, below which it might 

set the firing rate to 0 spikes; such a nonlinearity would set the mean response to 0 spikes for 

condition A and 9 spikes for condition B, and after Poisson noise was regenerated, the 

distribution of responses for conditions A and B would be highly non-overlapping (e.g. 

Poisson draws for condition A might be 0, 0, 0 and Poisson draws for condition B might be 

8, 9, and 10). However, artificially separating the input distributions in this way by a 

threshold violates laws of information processing. This can be demonstrated by noting that if 

the same threshold were applied trial-by-trial, it would produce 0, 0 and 9 spikes for 

condition A (mean 3) and 0, 9, and 10 spikes for condition B (mean 6.3), thus preserving the 

fact that the two distributions are in fact overlapping. In our model we aimed at exploiting 
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the simplicity and expressive power of LNP models while also taking trial-by-trial response 

variability into consideration such that we did not artificially create information. Our 

strategy was twofold: first, we constrained the model by imposing that nonlinearities could 

only reduce the difference between the means of any pair of conditions. This was 

accomplished by imposing that matrix values could only be “squashed” towards the 

threshold and the saturation, i.e. values below the threshold are set to the value of threshold, 

and values above the saturation are set to the saturation value (see Equation 10). Second, we 

renormalized the response matrix after applying the nonlinearity to ensure that the overall 

signal-to-noise ratio was not artificially increased by the generation of Poisson variability. In 

particular, we made the conservative assumption that the trial-by-trial variability was not 

modified by the nonlinearity, and therefore was equal to the mean response across all 

conditions before the application of the nonlinearity μbefore (see Equation 9). If the overall 

mean response was shifted by the nonlinearity to a new value μafter, it was necessary to 

rescale the matrix to insure that the signal to noise ratio was consistent with the true 

variability, equal to μbefore (i.e. no information was artificially created). This was 

accomplished by multiplying the response matrix by the ratio of μafter and μbefore:

(11)

where M indicates the response matrix before normalization, and M normalized is the response 

matrix after normalization.

When fitting the N model to our data (Fig. 6a), we explored all possible nonlinearities by 

allowing kthr and ksat to take any of the values in the original response matrix, for a total of 

120 possible nonlinearities. The selected values were those that maximized the linearly 

separable target information (IL, Equation 9).

Pairwise linear-nonlinear model of the transformation from IT to PRH

We created pairs of model PRH neurons via two orthonormal linear combinations of pairs of 

IT neurons, each followed by a static monotonic nonlinearity, that maximized the joint 

linearly separable information of the two model PRH neurons. Here we defined the response 

matrices of the two “input” IT cells as I1 and I2; the response matrices of the two “output” 

neurons as O1 and O2; the weights of the two linear combinations (indexed by input neuron, 

output pair) as w11, w21, w12 and w22; and the two monotonic nonlinearities as Φ1 and Φ2.

(12)

where orthogonality of the weights was imposed by:

(13)

and each pair of weights was constrained to a unitary norm:

(14)
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Because the weights were orthogonal and each pair was constrained to be unit norm, we 

could define the weights as a rotation matrix:

(15)

where θ is the angle by which the two-dimensional response space is rotated around the 

origin by the linear operation (compare Fig. 7b and 7c). Constraining the weights to be 

orthonormal is both necessary and sufficient to insure that no information is copied in the 

newly-created neurons: the original space is simply rotated and the separation between the 

response clouds to different conditions are left intact. Conversely, non-orthogonal weights 

would result in “copying over” the original information multiple times (note that copying the 

original information multiple times would not lead to an overall increase of the total 

information because the trial-by-trial variability in the two newly created neurons would be 

correlated). To find the optimal linear combinations for each pair of IT cells, we 

exhaustively explored all possible angles by systematically varying θ from 1 to 360 degrees. 

When responses were negative (i.e. as a result of negative weights), we shifted the values of 

the response matrix to positive values and we renormalized the matrix to ensure that the 

shifting process did not artificially create information. This procedure resembles the 

renormalization we applied for static nonlinearities (Equation 11). First we estimated the 

average trial-by-trial variability in the output matrix as the weighted combination of the 

average noise variances of the two input neurons:

(16)

where  is the noise variability in the output neuron, w1 and w2 are the weights, and  and 

 are the noise variances of the two input neurons. Next, we normalized the shifted 

response matrix M shifted by multiplying it by the ratio between its mean response μshifted, 

and the actual predicted output noise :

(17)

This ensured that the overall signal-to-noise ratio could not be influenced by changes in the 

mean response (i.e. average noise variance under the Poisson assumption) due to the 

nonlinearity or the shift required to make all response values non-negative.

When considering our input population, we allowed for “shifted copies” of our recorded IT 

neurons. More specifically, we allowed the model to make one selection from the set 

defined by each actual IT matrix we recorded and the 23 permutations of that matrix that are 

obtained by simultaneously shifting the four rows and four columns of the matrix. This 

procedure preserved the rules of combination between visual and working memory 

information (i.e. the strengths of visual and cognitive modulation and their congruency; 

Supp. Fig. 4) but shifted their object preferences. Stated differently, our assumption was that 

the rules of combination of visual and working memory signals were not specific to the 
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object preferences of a neuron (i.e. the brain does not employ one rule of combination for 

apple preferring neurons and a different rule for banana preferring neurons) and that any 

inhomogeneities with regard to object preferences that were included in our data set (e.g. an 

excess of selective match detectors for object 1 as compared to object 4) were due to finite 

sampling. For every possible pair of IT neurons, we generated all possible output neurons by 

considering all 24 matrix permutations, each paired by 360 possible angles, and each of 

those with all 120 possible nonlinearities. We also searched similar parameters for all 

possible pairs of output neurons generated by orthogonal weights to determine the pairing 

parameters that produced maximal joint linearly separable information.

Having determined the best parameters for every possible pair of IT neurons, we selected the 

subset of pairings that produced a model PRH population with the maximal amount of total 

linearly separable information while only allowing each IT input neuron to contribute to the 

model output population once. This selection problem can be reduced to an integer linear 

programming problem [44], and we implemented a standard solution using the GLPK 

library (http://www.gnu.org/software/glpk).

The role of asymmetric tuning correlations in untangling

Upon establishing that the pairwise LN model was effective at transforming nonlinearly 

separable information into a linearly separable format (Fig. 6), we were interested in an 

intuitive (and yet quantitatively accurate) understanding of how the model worked. Given 

any neuron’s response matrix, one crucial property that enables a monotonic nonlinearity to 

extract linearly separable information (i.e. to increase the distance between the mean 

response to the matches and the mean response to the distractors) is the degree to which the 

“tails” of the match and distractor distributions are non-overlapping (Fig. 7a). Although one 

could, in theory, fully characterize the match and distractor distributions and arrive to a 

closed-form estimate of the maximum extractable linearly separable information in a 

neuron’s matrix via a nonlinearity, we focused on producing a simple estimate of this 

quantity based just on the first two moments of these distributions (i.e. their means and 

variances). We postulated that the absolute value of the difference in variance across the 

matches ( ) and the variance across the distribution of distractors ( ) is a good 

predictor of the amount of linearly separable information that can be extracted by a 

monotonic nonlinearity (Δinfo):

(18)

where k is a proportionality constant. This estimate assumes that the means of the match and 

distractor distributions are the same and that variance differences thus translate into regions 

in which the high-variance distribution extends beyond the low-variance distribution (Fig. 

7a). An improvement of this estimate could be obtained by correcting for the fact that the 

initial distance between the means of the two distributions (i.e. the amount of pre-existing 

linearly separable information) always decreases the amount of overlap and thus always 

limits the amount of further information that can be extracted:
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(19)

To extend the prediction to pairs of neurons, one must consider the covariance matrix for the 

bivariate distribution of match responses Σ Match and of distractor responses Σ Distractor, 

which can be further decomposed into the variances across matches and distractors and the 

tuning correlations for matches and distractors between the two neurons. Because the 

amount of linearly separable information gained by a pairing is proportional to the absolute 

value of the difference of the variances for matches and distractors (Δσ2 Equation 18), the 

model will tend, to pair IT neurons that maximize Δσ2. Here we derived the amount of Δσ2 

that results from a pairing. First, we computed the variance across match responses 

 for a linear combination with weights w1 and w2 as:

(20)

Analogously, we computed the variance across distractors for the linear combination 

 as:

(21)

Consequently, we obtained the difference between variances by subtracting (21) from (20):

(22)

where  indicates the match/distractor variance difference for input neuron 1, 

indicates the variance difference for input neuron 2,  is the geometric mean of the 

variances for matches of the two neurons, and  is the geometric mean of the 

variances for distractors. It is evident from equation 22 that variance difference between 

matches and distractors after pairing can derive from two different sources. First, variance 

differences can be inherited from the input neurons (  and ):

(23)

For this type of variance difference, pairing is not required as linearly separable information 

could be extracted by applying a nonlinearity to each of the input matrices individually (Fig. 

7a). Second, variance differences that did not exist in the inputs can be produced via 

asymmetric tuning correlations for matches and distractors:
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(24)

As demonstrated in Fig. 6a, the ability of the pairwise LN model to extract linearly separable 

information relied heavily on this second source of variance difference (compare the N 

model to the LN model). Finally, a prediction of how these variance differences translate 

into increases in linearly separable information could be made by applying equation 19 with 

the empirically derived constant of k=0.15 applied to all pairs. Despite the great simplicity 

of this description and the fact that only the first two moments (mean, variance and 

covariance) of the match and distractor distributions are considered, this estimate was quite 

reliable at predicting the gain in linearly separable information in the model (Pearson 

correlation between the increase in linearly separable information for each LN model pair 

and the prediction (Equation 19): r= 0.84, r2 = 0.7).

Statistical tests

For each of our single neuron measures, we reported p-values as an evaluation of the 

probability that differences in the mean values that we observed in IT versus PRH were due 

to chance. As many of these measures were not normally distributed, we calculated these p-

values via a bootstrap procedure [45]. On each iteration of the bootstrap, we randomly 

sampled the true values from each population, with replacement, and we computed the 

difference between the means of the two newly created populations. We computed the p-

value as the fraction of 1000 iterations on which the difference was flipped in sign relative 

to the actual difference between the means of the full dataset (e.g. if the mean for PRH was 

larger than the mean for IT, the fraction of bootstrap iterations in which the IT mean was 

larger than the PRH mean).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Theoretical proposals of the neural mechanisms involved in finding visual targets
Theoretical models propose that visual signals and working memory signals are nonlinearly 

combined in a distributed fashion across a population of neurons, followed by a reformatting 

process to produce neurons that explicitly report whether a target is present in a currently 

viewed scene. The delayed match to sample task is logically equivalent to the inverse of an 

“exclusive or” (xor) operation in that the solution requires a signal that identifies target 

matches as the conjunction of looking “at” and “for” the same object. Shown (top) is a 

theoretical example of such a “target present?” neuron, which fires when (“at”,”for”) is (1,1) 

or (2,2) but not (1,2) nor (2,1). Producing such a signal requires at least two stages of 

processing in a feed-forward network [40]. As a simple example, a “target present?” neuron 

could be constructed by first combining “visual” and “working memory” inputs in a 

multiplicative fashion to produce “hybrid” detectors that fire when individual objects are 

present as targets, followed by pooling. Note that this is not a unique solution.
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Figure 2. The delayed-match-to-sample (DMS) task and example neural responses
a) We trained monkeys to perform a DMS task that required them to treat the same four 

images (shown here) as target matches and as distractors in different blocks of trials. 

Monkeys initiated a trial by fixating a small dot. After a delay, an image indicating the target 

was presented, followed by a random number (0–3, uniformly distributed) of distractors, and 

then the target match. Monkeys were required to maintain fixation throughout the distractors 

and make a downward saccade when the target appeared to receive a reward. Approximately 

25% of trials included the repeated presentation of the same distractor with zero or one 

intervening distractors of a different identity. b) Each of four images were presented in all 

possible combinations as a visual stimulus (“looking at”), and as a target (“looking for”), 

resulting in a four-by-four response matrix. Shown are the response matrices for example 

neurons with different types of structure (labeled). All matrices depict a neuron’s response 

with pixel intensity proportional to firing rate, normalized to range from black (the 

minimum) to white (the maximum) response. We recorded these example neurons in the 

following brain areas (left-to-right): PRH, PRH, PRH, IT, PRH, IT, IT. Single-neuron 

linearly separable information (“IL”; Fig. 4c) values (left-to-right): 0.01, 0.02, 3.33, 0.39, 

0.44, 0.01, 0.06.
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Figure 3. Population performance
a) Each point depicts a hypothetical population response, consisting of a vector of the spike 

count responses to a single condition on a single trial. The four different shapes depict the 

hypothetical responses to the four different images and the two colors (red, gray) depict the 

hypothetical responses to target matches and distractors, respectively. For simplicity, only 4 

of the 12 possible distractors are depicted. Clouds of points depict the predicted dispersion 

across repeated presentations of the same condition due to trial-by-trial variability. The 

target-switching task (Figure 2) requires discriminating the same objects presented as target 

matches and as distractors. b) Performance of the IT (gray) and PRH (white) populations, 

plotted as a function of the number of neurons included in each population, via cross-

validated analyses designed to probe linear separability (left), and total separability (linear 

and/or nonlinear; right). The dashed line indicates chance performance. We measured linear 

separability with a cross-validated analysis that determined how well a linear decision 

boundary could separate target matches and distractors (see Text, Methods). We measured 

total separability with a cross-validated, ideal observer analysis (see Text, Methods). Error 

bars correspond to the standard error that can be attributed to the random assignment of 

training and testing trials in the cross-validation procedure and, for populations smaller than 

the full data set, to the random selection of neurons.
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Figure 4. Additional population performance measures
a) Evolution of linear classification performance over time. Thick lines indicate 

performance of the entire IT (gray) and PRH (black) populations for counting windows of 

30 ms with 15 ms shifts between neighboring windows. Thin lines indicate standard error. 

The dotted line indicates the minimum reaction time on these trials (270 ms). b) Linear 

classification performance on error (dotted) as compared to correct (solid) trials (same 

conventions as Fig. 3b, left; see Methods). Each error trial was matched with a randomly 

selected correct trial that had the same target and visual stimulus as the condition that 

resulted in the error and both sets of trials were used to measure cross-validated performance 

when the population read-out was trained on separately measured correct trials, as described 

above. Error trials included both misses (of target matches) and false alarms (i.e. responding 

to a distractor). We performed the analysis separately for each multi-channel recording 

session and then averaged across sessions. c) Left, Histograms of linearly separable target 

match information (“IL”; see Methods Equation 3, computed for IT (gray) and PRH (white). 

Arrows indicate means. The last bin includes PRH neurons with IL of 1.1, 1.4, and 3.3, and 

5.3. The first (broken) bin includes IT and PRH neurons with negligible IL (defined as IL < 
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0.05; proportions = 0.75 in IT and 0.56 in PRH). Right, Response matrices of the IL top-

ranked PRH and IT neurons shown with the same conventions as Fig. 2b and the rankings 

labeled.
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Figure 5. Discriminating between classes of models that predict more “untangled” target match 
information in PRH than IT
a–c) Black lines indicate visual input; cyan lines indicate “cognitive input” that can take the 

form of working memory or target match information (see Text). d) Average magnitudes of 

visual (dashed) and cognitive (solid) normalized modulation plotted as a function of time 

relative to stimulus onset for IT (gray) and PRH (black). Normalized modulation was 

quantified as the bias-corrected ratio between signal variance and noise variance (see 

Methods, Equation 4), and provided a noise-corrected measure of the amount of neural 

response variability that could be attributed to: “visual” - changing the identity of the visual 

stimulus; “cognitive” - changing the identity of the sought target and/or nonlinear 

interactions between changes in the visual stimulus and the sought target. e) Enlarged view 

of the cognitive signals plotted in subpanel d. In panels d and e, response matrices were 

calculated from spikes in 60 ms bins with 1 ms shifts between bins.
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Figure 6. Modeling the transformation from IT to PRH
a) Shown are linear classification (left) and ideal observer (right) performance of the 

following populations: IT (gray), PRH (black), the nonlinear (N) model (gray dot-dashed), 

and the linear-nonlinear (LN) model (black dashed), with the same conventions described in 

Figure 3b. To compare performance of the actual and model populations, we regenerated 

Poisson trial-by-trial variability for the actual IT and PRH populations from the mean firing 

rate responses across trials (the response matrix) for each IT and PRH neuron. b) The 

pairwise linear-nonlinear model (LN model) we fit to describe the transformation from IT to 

PRH, shown for two idealized IT neurons. To create the LN model, pairs of IT neurons were 

combined via two sets of orthogonal linear weights, followed by a nonlinearity to create two 

model PRH neurons.
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Figure 7. The neural mechanisms underlying untangling
a) Shown is an idealized neuron that has the same average response to matches (red solid) 

and distractors (gray), and thus no linearly separable information (IL=0). However, because 

the lowest responses in the matrix are matches (red open circles), a threshold nonlinearity 

can set these to a higher value (red solid circles), thus producing an increase in the overall 

mean match response (red dashed) such that it is now higher than the average distractor 

response (gray). Because linearly separable information depends on the difference between 

these means, this translates directly into an increase in linearly separable information in the 

output neuron (IL>0). b) Two idealized neurons depicted in the same format as Fig. 2b. The 

two neurons produce a nonlinearly separable representation in which a linear decision 

boundary is largely incapable of separating matches from distractors. However, these two 

idealized neurons have perfect tuning correlations for matches and perfect tuning anti-

correlations for distractors. c) Pairing the two neurons via two sets of orthogonal linear 

weights produces a rotation within the two-dimensional space and a difference in the 

response variance for matches and distractors for both neurons. d) Applying a nonlinearity 

to the linearly paired responses results in a representation in which a linear decision 
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boundary is partially capable at distinguishing matches and distractors. The effectiveness of 

pairing can be attributed to an asymmetry (i.e. a difference) in the neurons’ tuning 

correlations for matches and distractors (Methods, Equation 24).
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