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Abstract
Arsenic is present in the environment and has become a worldwide health concern due to its
toxicity and carcinogenicity. However, the specific mechanism(s) by which arsenic elicits its toxic
effects has yet to be fully elucidated. The transcription factor nuclear factor (erythroid-derived 2)-
like 2 (Nrf2) has been recognized as the master regulator of a cellular defense mechanism against
toxic insults. This review highlights studies demonstrating that arsenic activates the Nrf2-Keap1
antioxidant pathway by a distinct mechanism from that of natural compounds such as sulforaphane
(SF) found in broccoli sprouts or tert-butylhyrdoquinone (tBHQ), a natural antioxidant commonly
used as a food preservative. Evidence also suggests that arsenic prolongs Nrf2 activation and may
mimic constitutive activation of Nrf2, which has been found in several human cancers due to
disruption of the Nrf2-Keap1 axis. The current literature strongly suggests that activation of Nrf2
by arsenic potentially contributes to, rather than protects against, arsenic toxicity and
carcinogenicity. The mechanism(s) by which known Nrf2 activators, such as the natural
chemopreventive compounds SF and lipoic acid, protect against the deleterious effects caused by
arsenic will also be discussed. These findings will provide insight to further understand how
arsenic promotes a prolonged Nrf2 response, which will lead to the identification of novel
molecular markers and development of rational therapies for the prevention or intervention of
arsenic-induced diseases. The National Institute of Environmental Health Science (NIEHS)
Outstanding New Environmental Scientist (ONES) award has provided the opportunity to review
the progress both in the fields of arsenic toxicology and Nrf2 biology. Much of the funding has led
to (1) the novel discovery that arsenic activates the Nrf2 pathway by a mechanism different to that
of other Nrf2 activators, such as sulforaphane and tert-butylhydroquinone, (2) activation of Nrf2
by chemopreventive compounds protects against arsenic toxicity and carcinogenicity both in vitro
and in vivo, (3) constitutive activation of Nrf2 by disrupting Keap1-mediated negative regulation
contributes to cancer and chemoresistance, (4) p62-mediated sequestration of Keap1 activates the
Nrf2 pathway, and (5) arsenic-mediated Nrf2 activation may be through a p62-dependent
mechanism. All of these findings have been published and are discussed in this review. This award
has laid the foundation for my laboratory to further investigate the molecular mechanism(s) that
regulate the Nrf2 pathway and how it may play an integral role in arsenic toxicity. Moreover,
understanding the biology behind arsenic toxicity and carcinogenicity will help in the discovery of
potential strategies to prevent or control arsenic-mediated adverse effects.
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INTRODUCTION TO ARSENIC
Arsenic is a naturally occurring metalloid that exists in practically all environmental media,
such as air, soil, and water. Mostly, it exists in two oxidative forms, trivalent arsenite
(As(III)) and pentavalent arsenate (As(V)) [1]. Millions of people worldwide are exposed to
arsenic by drinking contaminated water and inhalation of particulate matter [2, 3]. Arsenic is
associated with a wide variety of adverse effects, such as skin lesions, peripheral vascular
diseases, reproductive toxicity, and neurological effects [3]. In addition, several
epidemiological studies have correlated arsenic exposure to various human malignancies in
the skin, lung, urinary bladder, liver, and kidney [4]. Within the Past two decades, the World
Health Organization (WHO), as well as the United States Environmental Protection Agency
(EPA), reduced the allowable arsenic concentration in drinking water from 50 ppb to 10 ppb
(WHO [5], 1993 and EPA [6], 2001). However, owing to the toxicity of arsenic, arsenic
trioxide (ATO) is currently being used as a cancer chemotherapeutic for the treatment of a
variety of human cancers, predominantly acute promyelocytic leukemia [7,8].

Arsenic can undergo a series of methylations and oxidative reductions to generate a number
of metabolites, including monomethylarsonous acid (MMA(III)), monomethylarsonic acid
(MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)), that
are excreted from the bladder, making the bladder the major target organ that is susceptible
to the toxic effects of arsenic [9]. Arsenic has also been shown to have multiple biological
effects, including alterations in signal transduction pathways, damage to DNA, and
inhibition of its repair, induction of apoptotic cell death, and effects on global DNA
methylation [7]. Several studies have demonstrated that arsenic exposure results in the
generation of reactive oxygen species (ROS) in various cellular systems. Moreover, addition
of inhibitors of oxidative stress, such as catalase, superoxide dismutase or glutathione
peroxidase, or antioxidants, such as glutathione or vitamin E, decreases the toxic effects
caused by arsenic [3,10–13]. Therefore, the cytotoxic and genotoxic effects of arsenic are
also attributed to its ability to be a potent inducer of ROS; however, the exact mechanism(s)
by which arsenic causes its harmful effects are still under investigation.

THE Nrf2-Keap1 PATHWAY
Nrf2 is a transcription factor that is activated in response to oxidative stress. Under
unstressed conditions, Nrf2 is maintained at very low levels by its negative regulator, Keap1
[Kelch-like ECH associated protein 1], which forms an E3 ubiquitin ligase complex with
Cullin 3 (Cul3) and Ring-box 1 (Rbx1) and facilitates the ubiquitination of Nrf2 [14, 15].
Subsequently, Nrf2 is targeted for degradation by the 26S proteasome. When cells are
exposed to stress or electrophilic compounds, pivotal cysteine residues (C273, C288, and
C151) in Keap1 act as “sensors” and are S-alkylated [16–18]. It is hypothesized that
modification of the critical cysteine residues in Keap1 causes a conformational change in the
Keap1-Cul3-Rbx1 E3 ubiquitin ligase complex, hindering ubiquitination of Nrf2 [19].
Subsequently, Nrf2 accumulates and translocates to the nucleus, dimerizes with a small Maf
protein, and binds to the antioxidant response element in the promoter region of
cytoprotective genes that are responsible for the detoxification and elimination of harmful
substances, including arsenic. These genes include intracellular redox-balancing proteins
(e.g., heme oxygenase-1 (HO-1) and thioredoxin reductase-1 (TrxR1)), phase I and II
detoxication enzymes (e.g., NAD(P)H quinone oxidoreductase-1 (NQO1), glutathione S-
transferase (GST), glutamate cysteine ligase catalytic subunit, and regulatory subunit
(GCLM)), xenobiotic transporters (multidrug resistance-associated proteins (MRPs)), and
other stress response proteins [20–22].
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ARSENIC ACTIVATES Nrf2 THROUGH A DISTINCT MECHANISM
Arsenicals have been shown to activate the Nrf2-Keap1 pathway in a variety of human cell
lines including osteoblasts (MC3T3-E1) [23], keratinocytes [24], placental choriocarcinoma
cells [25], HeLa [26], myeloma cells [27], bladder epithelial cells (UROtsa) [28], and breast
cancer cells (MDA-MB-231) [29]. In 2008, studies conducted in our laboratory
demonstrated that arsenic activates Nrf2 through a different mechanism than that of SF and
tBHQ. SF- and tBHQ-mediated activation of Nrf2 is dependent upon modification of the
cysteine 151 sensor in Keap1 (Keap1-C151), also known as the canonical mechanism of
Nrf2 activation. However, As(III) and MMA(III) activate Nrf2 through a Keap1-C151
independent mechanism [29–31]. Recently, our group, along with three other laboratories,
independently demonstrated that p62, a selective substrate adaptor protein that plays a
critical role in autophagy (a bulk-lysosomal degradation pathway), directly binds to Keap1
[32–35]. Overexpression of p62 or an accumulation of p62 due to dysregulation of
autophagy resulted in the sequestration of Keap1 in the autophagosomes and hindrance of
the Keap1-Cul3 E3 ubiquitin ligase complex to properly ubiquitinate Nrf2 [32–35].
Furthermore, Aono et al. demonstrated that osteoblasts treated with arsenic activated Nrf2-
dependent transcription of target genes, including HO-1, peroxiredoxin 1 (Prx1), and p62
[23]. An accumulation of p62 and ubiquitin-conjugated proteins was also observed [23]. p62
has also recently been confirmed to be a downstream target gene of Nrf2, creating a positive
feedback loop [35]. Taken together, these studies highly suggest that autophagy and p62
may play a critical role in arsenic-mediated Nrf2 activation. Further studies are required to
determine whether this p62-dependent, or noncanonical, mechanism of Nrf2 activation is the
mechanism by which arsenic activates the Nrf2 pathway.

THE “DARK SIDE” OF Nrf2
Nrf2 is also beneficial for cancer cells, providing an environment conducive for cell growth
and protection against oxidative stress and chemotherapeutic agents [36]. Constitutive
activation of Nrf2 due to somatic mutations in Keap1 or Nrf2 that disrupt Keap1-mediated
Nrf2 regulation is prominent in several types of human cancer cell lines and tumors [37–40].
More specifically, mutations in Nrf2 have been found in lung, head/neck, esophagus, skin,
and larynx cancers [41, 42]. Keap1 gene mutations were initially identified in lung cancer
cell lines [43] and, thereafter, several reports have identified Keap1 mutations in breast
cancer [44], gall-bladder cancer [45], prostate cancer [46], and many nonsmall cell lung
cancer cell lines and tumors [40]. Moreover, several studies have demonstrated a correlation
between high Nrf2 protein levels in cancer cells and chemoresistance [36,46–49]. For
example, the lung cancer cell line, A549, contains a mutation in the Nrf2-binding domain in
Keap1 (Kelch domain) that abolishes Keap1-mediated regulation of Nrf2. As a result, A549
cells have constitutively active Nrf2 and are resistant to a variety of chemotherapeutic
agents, such as cisplatin, doxorubicin, and etoposide [36, 40]. A549 cells, as well as other
cancer cells, can be sensitized to chemotherapeutic-induced apoptosis through knockdown
or inhibition of Nrf2 [36,50].

In addition to somatic mutations of Keap1, epigenetic mechanisms and loss of
heterozygosity of Keap1 have also been found to upregulate Nrf2 in different types of
cancers due to reduced levels of Keap1 [37, 47, 51]. A comprehensive genetic and
epigenetic analysis of the Keap1 gene in 47 nonsmall cell lung cancer tissues and specimens
was performed. Interestingly, 22 of 47 of the tumor tissue were found to be methylated at
the Keap1 promoter region, which was not observed in any of the normal samples and 10 of
47 had loss of heterozygosity [51].
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Nrf2: THE CULPRIT IN ARSENIC TOXICITY?
Uncovering the dual roles of Nrf2 in cancer has raised safety concerns with respect to the
strategy of using natural compounds to activate Nrf2 for chemoprevention. Several studies,
however, have shown that some Nrf2 chemopreventive compounds have short biological
half-lives and that their ability to induce Nrf2 downstream genes ranges from hours to days
[52]. In addition, although the activation of the Nrf2 pathway by these compounds is
pronounced, it is transient and, therefore, intermittent dosing is suggested for
chemopreventive use [53,54]. On the other hand, there is evidence suggesting that arsenic-
mediated activation of Nrf2 is similar to genetic disruptions found in cancer cells, causing
elevated and prolonged activation of the pathway. Human liver hepatocellular carcinoma
(HepG2) cells exposed to 10 μM inorganic arsenic not only caused persistent induction of
HO-1 but also prolonged Nrf2 activation for up to 60 h [55]. When keratinocytes were
exposed to 100 nM arsenic for 28 weeks, Nrf2 basal activity was higher than control cells
[56]. However, there is some controversy as to whether Nrf2 protein levels elevate as a
protective mechanism in response to arsenic-induced ROS, or persistent activation of Nrf2 is
promoting the transformation of cells.

CHEMOPREVENTIVE Nrf2 ACTIVATORS PROTECT AGAINST ARSENIC
TOXICITY

Our laboratory has demonstrated the importance of Nrf2 against arsenic toxicity both in
vitro and in vivo. Mouse embryonic fibroblasts (MEF) from Nrf2 wild-type mice were
shown to be less susceptible to arsenic-induced toxicity compared to MEF cells from Nrf2
null mice [28]. In vivo, Nrf2 knockout mice exposed to drinking water containing 1, 10, or
100 ppm sodium arsenite for 6 weeks displayed more severe pathological changes in the
bladder, liver, and lung compared to Nrf2 wild-type mice [57]. Furthermore, activation of
Nrf2 by SF or tBHQ was shown to protect human bladder UROtsa cells from both arsenite
and monomethylarsonous acid (MMAIII) toxicity [28]. Recently, we demonstrated that SF-
mediated activation of Nrf2 protects against arsenic-mediated inflammation using a whole
body arsenic-inhalation model in Nrf2 wild-type mice [58]. The SF effects, however, were
abrogated in Nrf2 knockout mice [58]. The concentrations of arsenic used in these studies
are environmentally and biologically relevant. Our laboratory has also shown that Nrf2 is
activated by tBHQ, as well as natural compounds, such as oridonin and cinnamaldehyde in
several different cell lines. These compounds also protect against arsenic-induced toxicity
[28, 59–62]. Lipoic acid, a thiol-compound that is a strong antioxidant, for example, induces
Nrf2 in cells and protects against ATO-induced autophagic cell death in human glioma cells
[63] and protects HepG2 cells from arsenic exposure [59]. Interestingly, a study done by
Shinkai et al. showed that pretreatment of mouse hepatocytes with SF not only decreases
arsenic toxicity but also inhibits accumulation of arsenic in the cells due to upregulation of γ
-GCS, GST isoforms, and MRP1, all of which are important for the excretion of arsenic into
the extracellular space [60]. These findings may suggest a possible mechanism by which the
effects of SF could predominate over those of arsenic.

There are a few important differences to note among these studies. First, the concentrations
of arsenic and/or chemopreventive compounds varied from the nanomolar to micromolar
range and, second, the duration of the exposure to arsenic and/or chemopreventive
compounds also varied, ranging from 2 to 48 h. Further studies are needed to determine
whether dose and time of exposure by arsenic and/or chemopreventive compounds are
determinants of Nrf2 activation being beneficial or detrimental to cell health and survival.
Aside from the aforementioned differences, these studies seem to support the notion that
activation of Nrf2 by the so-called beneficial compounds, such as tBHQ and SF, is through a
Keap1-C151-dependent mechanism and is distinct from the p62-dependent mechanism that
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has been identified for arsenic. These studies suggest that activation through the Keap1-
C151-dependent mechanism may elicit a positive chemopreventive Nrf2 response, whereas
the p62-dependent mechanism may mimic the constitutive activation observed in certain
cancers, deemed the dark side of Nrf2.

THE ROLE OF Nrf2 WHEN ARSENIC IS USED AS A CANCER
THERAPEUTIC

Not only is arsenic present in the environment, but the metalloid, in the form of ATO, is also
used in the treatment of several human malignancies (for a full review refer to [64]). ATO
has also been shown to induce Nrf2 and its downstream cytoprotective genes, NQO1 and
HO-1, in human oral squamous cell lines, multiple myeloma cell lines, rat cardiac myocytes,
and liver epithelial cells [27, 65, 66]. cDNA microarray analysis revealed that Nrf2, along
with HO-1, GCLM, NQO1, epoxide hydrolase 1, and thioredoxin reductase, were elevated
in an ATO-resistant ovarian cancer cell line when compared to parental cells, which have
low Nrf2 protein levels and are not resistant to ATO [67]. The cells resistant to ATO had
continuous cancer cell growth, cell survival, tumor metastasis, and aggressiveness and were
also resistant to cisplatin and paclitaxel [67]. In another study, microarray analysis of 59 cell
lines from the NCI-60 tumor cell line panel that were resistant to ATO also revealed an
enrichment of Nrf2 mRNA [68]. Supporting a role for Nrf2 in chemoresistance, knockdown
of Nrf2 by shRNA was shown to sensitize A549 cells to ATO [68]. In addition, Nrf2
knockdown in glioma cells potentiated ATO-induced oxidative damage and cell death [69].
Morales et al. also demonstrated that ATO induces Nrf2 in multiple myeloma cell lines [70].
In the same study, inhibition of ATO-induced ROS with butylated hydroxyanisole did not
affect Nrf2 activation or cell death, demonstrating that ATO-mediated induction of Nrf2 or
cell death is not mediated through ROS [70]. More work is needed to determine the specific
mechanisms of how ATO activates Nrf2 and how cancer cells become resistant to ATO.
However, the results of these studies on ATO highly suggest that Nrf2 protects cells from
the cytotoxic effects of chemotherapeutic arsenic. Therefore, inhibition of Nrf2 may
sensitize cancer cells to chemotherapeutics, including ATO, and induce cell death. Taken
together, the evidence supports the notion that arsenic-mediated activation of Nrf2 not only
may cause toxicity and promote carcinogenicity but also contribute to chemoresistance.

THE FUTURE OF ARSENIC AND Nrf2-Keap1 RESEARCH
Although much progress has been made in elucidating the role of Nrf2 in arsenic exposure
within the past decade, a great deal still remains unknown. It is clear that arsenicals at
environmentally relevant doses induce the Nrf2-Keap1 pathway as supported by much of the
current literature. However, whether arsenic-mediated activation of Nrf2 protects or
contributes to arsenic toxicity and carcinogenicity has not yet been clarified. Both long-term
in vitro and in vivo arsenic studies are needed to determine whether arsenic-mediated
autophagy and/or prolonged Nrf2 activation contributes to arsenic toxicity and
carcinogenicity.

Our studies demonstrate that arsenic activates the Nrf2-Keap1 antioxidant pathway by a
distinct mechanism from that of natural compounds such as SF or tBHQ. As shown in
Figure 1, SF and tBHQ attenuate the deleterious effects of arsenic by activating the
canonical Keap1-C151 Nrf2 pathway. This mechanism is dynamically regulated and
provides intermittent increases in Nrf2. On the other hand, the mechanism by which arsenic
activates Nrf2 is Keap1-C151 independent; instead, arsenic may activate Nrf2 through a
p62-dependent mechanism. Unlike the Keap1-C151 dependent mechanism, this pathway
results in prolonged activation of Nrf2.
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Further investigation is required to determine whether p62 is indeed the dominant arsenic-
mediated mechanism and whether this arsenic activation in fact mimics the dark side of
Nrf2, as found in chemoresistant human cancer cell lines and tumors. Furthermore, there is a
lack of sufficient evidence to suggest that the differentiation between the protective and the
dark side effects of Nrf2 activators are determined by the mechanism of activation.
Additional research may also reveal whether activation by different Nrf2 inducers may
result in upregulation of differential downstream genes. If the two differentiated modes of
Nrf2 activation determine whether or not Nrf2 is protective or harmful, then canonical Nrf2
activators (Keap1-C151 dependent) have the opportunity to be developed into therapeutics
for the prevention or intervention of arsenic toxicity.
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FIGURE 1.
The chemopreventive and dark side of Nrf2. (A) Nrf2 activation through the Keap1-C151
canonical pathway by chemopreventive compounds, such as sulforaphane (SF), is
intermittent. (B) Somatic mutations in pro-carNrf2 or Keap1 found in human cancers and
tumors have constitutive Nrf2 activation. (C) Arsenic-mediated Nrf2 activation is prolonged
due to p62-Keap1 sequestration in autophagosomes.
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