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Abstract

Whole genome sequencing of 616 asymptomatically carried pneumococci was used to study the 

impact of the 7-valent pneumococcal conjugate vaccine. Comparison of closely related isolates 

revealed the role of transformation in facilitating capsule switching to non-vaccine serotypes and 

the emergence of drug resistance. However, such recombination was found to occur at 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
+To whom correspondence should be addressed: whanage@hsph.harvard.edu.
*These authors contributed equally

Accession codes
Sequence data have been deposited in the ENA under project ERP000809 as listed in Supplementary Table 1.

Author contributions
ML and WPH conceived the project. ML, WPH, SDB, JP and JF supervised the project. NJC and PKM analyzed the data. All authors 
contributed to writing the manuscript.

Potential competing financial interests
SIP has investigator-initiated grants from Merck and Pfizer, and has consulted for Glaxosmithkline, Merck, Pfizer and Novartis. WPH 
has consulted for Glaxosmithkline. ML has consulted for Pfizer and Novartis.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Nat Genet. 2013 June ; 45(6): 656–663. doi:10.1038/ng.2625.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly different rates across the species, and the evolution of the population was primarily 

driven by changes in the frequency of distinct genotypes extant pre-vaccine. These alterations 

resulted in little overall effect on accessory genome composition at the population level, 

contrasting with the fall in pneumococcal disease rates after the vaccine’s introduction.

Streptococcus pneumoniae is a human nasopharyngeal commensal and respiratory pathogen 

that represents a major cause of pneumonia, bacteraemia and meningitis. The bacterium’s 

best-characterised virulence factor is its polysaccharide capsule, of which there are more 

than ninety serologically distinct variants (serotypes) that are associated with markedly 

different characteristics1. These may be categorized into serogroups, defined as sets of 

serotypes that cross-react with common antisera: for instance, serogroup 23 comprises 

serotypes 23F, 23A and 23B. Such serology forms the basis of much pneumococcal 

epidemiology, and the capsule is also the target of all licensed vaccine formulations.

In 2000, the polysaccharide-protein conjugate vaccine (PCV7) was introduced for routine 

immunization of children in the USA. This contained antigens designed to protect against 

seven pneumococcal serotypes (vaccine types, VTs): 4, 6B, 9V, 14, 18C, 19F and 23F. It 

was anticipated that this would also provide some cross protection against the vaccine 

related serotypes (VRTs) within the same serogroups as these seven targets. Since PCV7’s 

introduction, invasive pneumococcal disease (IPD) caused by VTs has declined significantly 

across the USA2, accompanied by a smaller rise in disease caused by non-VT, including 

VRT, pneumococci3–6. Surveillance in Massachusetts has monitored the contemporaneous 

changes in the asymptomatically carried population. Surveys of over 600 children in each of 

the winters of 2000–2001, 2003–2004 and 2006–2007 found that between 23% and 30% of 

children carried pneumococci, with no evidence of a decline in carriage prevalence 

following the introduction of PCV77–9. This reflected an increase in the prevalence of non-

VT pneumococci as the VT strains were gradually eliminated. Nevertheless, by 2003 the 

rate of IPD in children under five in the state declined by 69% relative to the pre-vaccine 

incidence10, with VRT 19A and non-VT 7F emerging as the dominant IPD serotypes post-

PCV711,12. This reduction in disease incidence, while carriage remained nearly unchanged, 

suggests that the NVT that dominated carriage post-PCV7 were, on average, less invasive 

than those VT that they replaced11,12. Patterns of antibiotic resistance were also observed to 

change13,14; for instance, several of the epidemic multidrug-resistant clones identified by the 

Pneumococcal Molecular Epidemiology Network15 (PMEN) predominately express VT and 

have consequently declined in frequency since in the introduction of the vaccine.

These substantial alterations to the pneumococcal population resulting from the selective 

pressure of PCV7 might be expected to impact genetic diversity across the chromosome, 

akin to the ‘periodic selection’ expected in a genetically monomorphic bacterium16. 

However, the ability of the pneumococcus to recombine by natural transformation suggests 

successful lineages that were mainly VT before PCV7 may persist through variants that have 

acquired non-VT capsules, a process called serotype or capsule switching17 that has been 

observed throughout the history of the pneumococcus18,19. To better understand the 

interplay of clonal replacement and adaptation through recombination in the population’s 
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response to vaccination, whole genome sequencing was performed on carriage isolates 

obtained from Massachusetts children between 2000 and 2007.

Results

Population structure of isolates

A total of 616 isolates were used in this analysis: 133 from 2001, 203 from 2004 and 280 

from 2007 (Supplementary Table 1). In terms of their serotype distribution, these 

populations represent the pneumococcal community at the point at which PCV7 was 

introduced, a community with increased diversity following the introduction of the vaccine, 

and a return to equilibrium, respectively20. De novo genome assembly produced sequences 

ranging in length from 1.98 Mb to 2.19 Mb (Supplementary Figure 1). The 1,231,516 

putative protein coding sequences (CDSs) extracted from these assemblies were grouped 

into 5,442 clusters of orthologous genes (COGs). The prevalence of these COGs within the 

population followed a U-shaped distribution (Supplementary Figure 2), similar to that 

calculated using a smaller set of pneumococcal genomes generated using older 

technologies19.

A total of 1,194 COGs were present in a single copy in all genomes, and therefore defined as 

‘core’. These were used to generate a 1.14 Mb codon alignment, containing 106,196 

polymorphic sites, upon which phylogenetic and population clustering analyses were based 

(Figure 1). This approach identified fifteen sequence clusters (SCs) corresponding to clades 

within the tree, ranging in size from 10 to 98 isolates, with a sixteenth group constituting a 

polyphyletic cluster of the remaining low frequency genotypes. All of the monophyletic 

sequence clusters showed a high level of consistency with previous genotyping (multilocus 

sequence typing, MLST; Supplementary Figure 3)14,21. The tree was rooted on the longest 

branch, separating a diverse lineage of unencapsulated strains (SC12) from the rest of the 

population. The genotypes in this outgroup, previously associated with outbreaks of 

conjunctivitis using MLST data22, are clearly distinct from both the other sequence clusters 

and S. pseudopneumoniae when placed in the context of other mitis group streptococci 

(Supplementary Figure 4). In contrast, other unencapsulated strains in the collection appear 

to reflect sporadic loss of capsule (Supplementary Table 2).

Diversification within sequence clusters

To reconstruct the recent evolutionary history of the population, whole genome alignments 

were generated for each sequence cluster through mapping sequence reads for each isolate 

against a common reference assembly. Horizontally acquired variation was then identified 

using previously described methods23 (Supplementary Figure 5–Supplementary Figure 19). 

This approach allows the calculation of the net rate at which polymorphisms are 

accumulated through import of sequence from other lineages via transformation relative to 

the mutation rate (r/m) for each SC. The estimates for this r/m parameter range from 0.06 

(SC7, comprising serotype 7F isolates) to 34.06 (SC15, the multidrug-resistant PMEN14 

lineage15). When representing the behavior of each sequence cluster by the distribution of 

statistics derived from each branch of the relevant phylogeny, the differences between 

sequence clusters are found to be significant whether comparing per site r/m (Kruskal-
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Wallis test, χ2 = 45.71, df = 14, p = 3.97×10−5) or the ratio of homologous recombination 

events relative to point mutations (χ2 = 54.6, p = 9.96 × 10−7). Correspondingly, the 

distributions of detected transformation event lengths are consistent between sequence 

clusters (Supplementary Figure 20).

The range of isolation dates was used to establish a molecular clock. Fitting an evolutionary 

model to four sequence clusters that showed evidence of genetic divergence over time 

(Supplementary Figure 21) yielded independent estimates of the point mutation rate 

(Supplementary Figure 22). The consensus rate of 1.0×10−6–1.5×10−6 mutations per base 

per year is similar to that calculated using a global collection of strains23. This indicates 

there is little variation in the substitution rate across the species, with isolates accumulating 

two or three polymorphisms each year. Given the number of observed transformation events 

and point mutations within each SC, this implies a variable net rate of sequence import into 

the sequence clusters: around one transformation event every six to nine years for SC2 

isolates, compared with every one to two years for SC15 isolates.

Serotype switching and replacement

Transformation plays an important role in facilitating the process of serotype switching 

(Figure 2). SC15 provides a simple example of switching leading to vaccine escape, 

previously inferred from MLST24, with a single transformation event at the capsule 

biosynthesis (cps) locus leading to the emergence of 19A variants (Supplementary Figure 

19). These are absent in the 2001 sample, but comprise 80% of the SC15 isolates in 2007. 

The most recent common ancestor of these 19A strains is predicted to have existed in 1997 

(95% credibility interval 1984–2001). As the acquisition of a 19A capsule by SC15 must 

have preceded this most recent common ancestor, it seems likely the emergence of SC15-

serotype 19A represents an increase in frequency of a variant already extant pre-PCV7.

The emergence of 19A variants within SC15 represents the smallest genetic distance 

between isolates with different capsule types within a monophyletic sequence cluster; all 

other cases of ‘switching’ involve more distinct genotypes that, by implication of the 

observed molecular clock, share a common ancestor more distantly in the past. Hence there 

is no evidence for serotype switching events occurring post-PCV7. Instead, selection from 

variation in the pre-vaccine population by PCV7 appears to be more common: a clear 

example can be observed within SC9 (Figure 3). Two-thirds of the group expressed the VT 

23F capsule in 2001, declining to an undetectable level in 2007. Instead, all representatives 

of the sequence cluster were VRT serotypes 23A and 23B, which have lower odds ratios for 

causing IPD than 23F in Massachusetts11, thereby likely contributing to the fall in IPD rates. 

However, the original serotype of SC9 is reconstructed as being 23A; in the pre-PCV7 era 

the 23F variants, generated through three independent transformations, appear to have been 

the most successful. PCV7 reverses this trend as the 23A isolates, in parallel with the 23B 

strains formed by a further three separate switches within the phylogeny, appear to fill the 

niche vacated by the eliminated 23F isolates. Hence the vaccine caused no change in the 

prevalence of SC9, nor did it reduce the diversity of the SC. Apparent serotype switching 

that actually reflects the emergence of deep-branching sister taxa is also observed in SC1 

and SC6 (Figure 1). By contrast, in the multidrug-resistant SC5 (Supplementary Figure 9) 
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and SC15 (Supplementary Figure 19) genotypes, the emergence of serotype 19A variants 

involves a recent bottleneck constraining post-PCV7 diversity, mirroring what was observed 

in PMEN123.

Notwithstanding the substantial turnover of lineages within the population, the effect of 

vaccination on the frequencies of individual COGs was modest (Figure 4; Supplementary 

Figure 23). The composition of the accessory genome is generally stable throughout the 

sampling period. The exceptions are four COGs involved in the synthesis of serogroup 6 

capsules: one represents the wciN gene characteristic of serotypes 6A and 6B, both affected 

by immunity induced by PCV725. The other three are COGs found in serotype 6C, as well as 

type 6A and 6B, and therefore do not drop in frequency to the same extent. As the 

biosynthetic genes for the VT capsules 14, 19F and 23F all fall into COGs also required for 

the production of the non-VT capsules 15B/C, 19A and 23B, respectively (with the 

exception of lrp, unique to the capsule locus of serotype 1426, of which only six 

representatives were assembled), PCV7 has little impact even on the prevalence of COGs 

involved in capsule synthesis. However, an effect can be detected by quantifying the 

diversity within each COG: four COGs found in both the serotype 14 and serogroup 15 

biosynthetic loci drop in diversity in 2007, as serotype 14 is eliminated (Supplementary 

Figure 24). By contrast, three COGs shared between serogroups 15 and 23 increase in 

diversity as 23F is replaced by 23A and 23B, and 15A rises in prevalence post-PCV7. Once 

more, the impact of the vaccine on most other COGs is small.

Alterations in antibiotic resistance

Another set of COGs persisting at an intermediate frequency are antibiotic resistance 

determinants. Levels of susceptibility to many antibiotics remained stable in Massachusetts 

after the introduction of PCV77,9, despite VT serotypes being strongly associated with 

multidrug resistance in the USA pre-PCV727,28 and a decline in the dispensing of antibiotics 

to children in Massachusetts over the sampled period29. For instance, tetracycline resistance 

is typically caused by the tetM gene carried on the Tn916 transposon30 in S. pneumoniae 

(Figure 5A). The persistence of this gene can be partially attributed to its association with 

SC15, which changes little in frequency over time. Additionally, the loss of the tetracycline-

resistant PMEN1 and PMEN15 lineages by 2007 is offset by the emergence of SC3, which 

also carries this transposon, from 2004 onwards.

Macrolide resistance is similarly stable, although the causative mechanisms shift over time. 

The two resistance determinants common in pneumococci are the ermB rRNA methylase 

gene and the mel/mef efflux pump. The former is carried either by Tn917 or Omega 

resistance cassettes23,31, both of which are only found inserted into Tn916 in this 

population. This means the population of ermB-carrying isolates are a subset of those that 

are tetracycline resistant (with the exception of isolate R34–3037, in which the tetM gene is 

disrupted by a frameshift mutation); this mechanism also causes cross-resistance to 

streptogramin and lincosamide antibiotics. By contrast, the macrolide-specific mel/mef pump 

is carried by the Mega element that can insert into Tn916, or be acquired elsewhere in the 

chromosome through transformation32. As a consequence of the distribution of Tn916, ermB 

shows a more stable association with clades, rising in prevalence as it is carried by SC3 and 
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the serotype 19A isolates of SC15 (Figure 5B; Supplementary Figure 25). The Mega 

cassette falls in prevalence owing to its stable association with SC13 and SC14, which drop 

in frequency post-PCV, and SC15 (Figure 5C). However, it also appears in other 

monophyletic sequence clusters: five acquisitions are detected within SC11 and seven within 

SC8. Such a dispersed distribution ensures it will be difficult to eliminate such a resistance 

element using partial coverage vaccines targeting the capsule.

The sequences determining beta lactam resistance also alter post-PCV7. In S. pneumoniae, 

beta lactam susceptibility is determined by the sequences of three penicillin binding protein 

genes: pbp2x and pbp1a, found either side of the cps locus, and pbp2b, at an unlinked 

position in the genome33. Based on pre-2008 resistance breakpoints34, post-PCV7 penicillin 

non-susceptibility in Massachusetts was found to be stable, while ceftriaxone resistance fell 

significantly8,9. MICs to both drugs are correlated across the sample, with a strain’s 

ceftriaxone MIC typically lower than that for benzylpenicillin (Supplementary Figure 26). 

Hence this apparent differential response to these antibiotics reflects an underlying trend in 

which the most nonsusceptible strains are replaced by those displaying a lower level of 

resistance, and therefore meet the threshold MIC for penicillin, but not ceftriaxone, 

resistance. To understand these changes, COGs corresponding to pbp1a, pbp2x and pbp2b 

were extracted from all taxa and the sequences clustered into alleles, some of which appear 

to be mosaic (Figure 6).

Across the sampling period, the dominant allele for each pbp gene was the ancestral, 

sensitive form, which altered little in frequency. However, changes in the types of resistant 

allele were evident, with the forms of both pbp2b and pbp2x associated with highly beta 

lactam resistant isolates falling in frequency (Supplementary Figure 25). Allele 3 of pbp2b, 

strongly associated with the multidrug-resistant lineages PMEN1, PMEN3 and PMEN1515, 

was partially displaced by alleles 2 and 4, rising due to the increase in prevalence of SC11 

and a shift towards resistant isolates within SC6, respectively. Allele 2 of pbp2x, again 

associated with the PMEN lineages, was replaced by allele 3, largely as a consequence of 

the emergence of SC3 alongside the change within SC6. The analogous analysis of the genes 

encoding dihydrofolate reductase and dihydropteroate synthase, certain alleles of which can 

cause resistance to sulfa drugs, found a decline in the prevalence of resistant alleles 

(Supplementary Figure 27), in line with the observed fall in levels of resistance9. This is 

largely the consequence of a shift in the composition of SC1 and the replacement of the 

PMEN lineages with SC3 and SC11, which are predominantly sensitive to sulfa drugs.

Although the major changes in beta lactam resistance are associated with shifts in the 

frequency of different clades of isolates, the emergence of resistant genotypes through 

recombinations affecting penicillin-binding protein genes is also observed. This can be 

rapid, as demonstrated when transformation events affecting pbp1a, pbp2x and pbp2b occur 

on the same branch of the tree (e.g. starred isolates in Figure 3). One example, albeit on a 

long branch, is associated with the emergence of ST3280 isolates within SC6 

(Supplementary Figure 10), which are also distinguished from their sister taxa through the 

acquisition of a Tn916 element carrying a Mega cassette. However, a frameshift mutation 

disrupts the mel gene, which appears to be reflected in an intermediate level of resistance to 

erythromycin (between 0.25 and 0.5 μg ml−1; Supplementary Table 1). This phenotype is 
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also observed in an SC8 isolate with a Mega element in which the mef gene is disrupted by a 

frameshift mutation. The persistence of these distinctive genetic traits in the five closely 

related ST3280 isolates was of particular interest as they were all isolated from a single 

location in 2007, implying there may be evidence of transmission chains within the dataset.

Population substructuring

To test whether this represented a general phenomenon, and transmission within locations 

could be detected from the genomic data, the pairwise distances (in point mutations; 

Supplementary Figure 5–Supplementary Figure 19) between all of the taxa within 

monophyletic sequence clusters were compared with the locations from which the bacteria 

were recovered (listed in Supplementary Table 1). More closely related isolates were much 

more likely to have been recovered from the same location than expected by chance (Figure 

7). The probability that the members of the pair would come from the same location 

decreased approximately exponentially with the point mutation distance between them. The 

rate constant calculated from these data implied once two isolates were distinguished by 

approximately 18 point mutations, it would be equally likely they would be isolated from the 

same, or different, communities in the dataset. Given the mutation rate of 2–3 mutations per 

year, this represents around four years of divergence between two strains. Such evidence of 

transmission chains indicates that the spread of bacteria within communities is significantly 

faster than dissemination of bacteria between them, which occurs sufficiently slowly to be 

detectable via point mutations.

Population substructuring may also be produced by the immune status of the host, which 

changes with age following successive carriage episodes. Previous work found strains 

carrying the type 1 (rlr) pneumococcal pilus, hypothesized to be involved in adhesion to the 

nasopharyngeal surface35, were most prevalent in children under five years of age36. This 

was attributed to the development of an adaptive immune response to this surface structure, 

which precludes bacteria with this antigen from colonizing older children while still 

providing a functional benefit in naïve hosts. The resulting niche differentiation will result in 

strains adapted to transmission between hosts of different ages. In order to identify antigens 

generating a similar signal, a logistic regression against host age (excluding those aged 

under 6 months that may be influenced by maternal immunity) was performed for COGs 

present at a range of intermediate frequencies. Aside from three rare short COGs, the 

function of which is difficult to interpret, the rlr pilus was found to have one of the strongest 

relationships with host age, confirming this previous finding (Figure 8). Showing an 

association of a similar magnitude is the pclAR gene cluster37, encoding a large protein 

antigen present in about half of the sampled bacterial population, and two linked alleles of 

the immunoglobulin A protease zmpA and paralogous zinc metalloprotease zmpD, both of 

which are large surface-displayed proteins; by contrast, two alternative alleles of zmpAD 

show an association with older children. As these antigen COGs are stably associated with 

particular genotypes, sequence clusters show varying patterns of association with different 

host ages (Supplementary Figure 28). The effect of antigens frequently affected by 

recombinations, such as pspA and pspC (Supplementary Figure 5–Supplementary Figure 

19), is unclear, as these genes are difficult to assemble and fall into multiple COGs owing to 

their extensive sequence diversity. The apparently weaker age-association of the mel/mef 
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efflux pump is, in fact, most pronounced in infants younger than six months, in agreement 

with an independent sample38 (Supplementary Figure 29).

Discussion

The pneumococcal population was significantly disrupted by PCV7, with the almost 

complete loss of the seven vaccine serotypes and their rapid replacement with non-VT 

strains. Whole genome sequencing provides a more detailed view of this process, both 

revealing distant relationships between VT and non-VT pneumococci that are difficult to 

establish using MLST in many cases, while also indicating ‘capsule switching’ events 

between closely related taxa are likely to be old relative to PCV7’s introduction. Hence, 

aside from the rise of lineages such as SC3 and SC7, examples of novel genotypes distantly 

related to previously observed isolates, the population dynamics are largely the consequence 

of VT isolates being replaced by non-VT relatives present at a low frequency before the 

vaccine. The clearest example is SC9, where the serotype 23F isolates predominate pre-

PCV7 and are replaced post-vaccination by 23A and 23B isolates. Nevertheless, the 

sequence cluster does not fall in prevalence, suggesting its average fitness has not declined, 

especially in the context of stable pneumococcal carriage rates. As it seems unlikely the pre-

PCV7 distribution resulted from drift, the data indicate this sequence cluster may occupy a 

specific niche that was vacated by 23F post-PCV7. This might be defined by cross-

immunity against serogroup 23 acting as the major constraint on the prevalence of strains 

within this group, or by the functional implications of other components of the accessory 

genome. Relating the such considerations to the pneumococcus’ population structure will be 

important for understanding the impact of partial coverage vaccines.

Replacement of VT strains with non-VT relatives partially explains the stable prevalence of 

most accessory loci. Comparison of the pooled data from 2001 and 2007 indicates a

detectable vaccine effect on only a few genes associated with one of the vaccine serotypes 

(Figure 4), demonstrating the importance of assigning genomic data to specific taxa rather 

than using pooled shotgun reads for studying strain dynamics. That both populations are 

composed of distinct strains, themselves representing different combinations of similar loci, 

while the IPD rate falls indicates subtle differences within COGs, or consequences of 

interactions between them, are crucial in determining the rate at which pneumococci cause 

disease within a carrier. As the detectable alterations generally concern the cps locus, 

changes in serotype are implicated as the most important factor underlying the decline in 

IPD in Massachusetts.

The details of bacterial population restructuring following the introduction of PCV7 may 

well differ in locations where the initial bacterial populations, or host characteristics, are 

dissimilar from those in this study. Nor are the observed dynamics necessarily representative 

of the response over all timescales. While levels of resistance to some antibiotics appear to 

have been stable in the samples of this study, based on the surveillance of IPD isolates from 

young children across the USA it seems levels of resistance fell immediately after PCV7’s 

introduction before rebounding by 200439. This delayed response may be a consequence of 

how quickly non-VT resistant pneumococcal lineages could rise in prevalence or, based on 

the geographic structuring observed in this study, the speed at which they could spread from 
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sources where they were present pre-PCV7. Whether the 2007 sample represents a final

equilibrium is unclear. There is little evidence of beneficial post-PCV7 transformation 

events in this sample, which may partially relate to the slow rate at which recombinations 

are observed to accumulate in lineages. Therefore it seems likely that the bacterial 

population’s response to vaccine introduction will continue through adaptation to the post-

PCV7 environment via horizontal sequence exchange. On this point, it may be instructive to 

note that SC15, associated with the highest r/m, recently appears to have been successful 

through rapidly adapting to the post-PCV7 environment13. Hence, while the serotype 

distribution may have reached equilibrium by 200717, the response of the pneumococcal 

population to the conjugate vaccines is likely to continue.

Methods

DNA sequencing

Samples were sequenced as multiplexed libraries on the Illumina HiSeq platform to produce 

paired end reads either 75 nt (for samples from 2001 or 2004) or 100 nt (for samples from 

2007) in length. Samples were only used where more than 60 Mb of data (equating to 

approximately thirty fold coverage of a pneumococcal genome) were available. Serotypes 

and sequence types were extracted as described previously23 and compared to those 

recorded in earlier studies to check the integrity of sample handling.

Genome assembly and annotation

Genomes were assembled de novo using Velvet40 through optimizing the kmer and expected 

coverage values as described previously23. Short contigs less than twice the length of the 

kmer value used in the final assembly were discarded. Both Glimmer341 and Prodigal42 

were trained on the complete reference sequence of S. pneumoniae ATCC 70066943, and 

these models applied to each draft assembly, modified through the addition of a three frame 

stop codon sequence to each end of the genome. A consensus of these two methods was then 

derived through only using putative protein coding sequences (CDSs) where the central 

halves of the Glimmer3 and Prodigal gene models overlapped on the same strand of the 

assembly. Finally, CDSs were trimmed wherever they overlapped breaks in the assembly, 

such that they did not span multiple contigs.

Clustering and analysis of orthologous proteins

All putative CDSs were translated and an all-against-all comparison performed using 

BLAT44 with default settings. An initial clustering based on these alignments was then 

produced using COGtriangles45. COGnitor46 was then used to extract a unique best hit 

cluster for each CDS. As COGtriangles requires the presence of at least three orthologues in 

the dataset to produce a cluster of orthologues (COG), this left simple sequences, singletons 

and pairs of orthologues unclustered. To resolve this, a BLAT E value threshold 

corresponding to a p value of 0.05 Bonferroni corrected for the number of reported BLAT 

comparisons was established. Unclustered proteins with reciprocal best BLAT hits 

surpassing this threshold were paired into COGs with two members. Remaining proteins 

were either deemed insufficiently complex to cluster, if their self-BLAT E value was greater 

than the threshold, or assigned as singleton COGs.
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Each COG was characterized through alignment of the protein sequences with MUSCLE47, 

followed by backtranslation into a codon alignment using the DNA sequences. Based on this 

alignment, diversity was quantified as the mean pairwise Kimura distance between 

members. The codon alignments of the COGs associated with beta lactam and sulfa drug 

resistance were analyzed using nextgenBRAT48 with a window size of 100 bp. Recombinant 

segments were identified using a p value of 0.05, as calculated through 100 replicates of ten 

iterations. Where minimum inhibitory concentrations were specified as ‘less than’ a given 

value, the value was halved for the purposes of associating alleles with different levels of 

resistance; correspondingly, where ‘greater than’ a specified value was used, the value was 

doubled.

Analysis of population structure

The codon alignments of each ‘core’ COG (i.e. those with a single representative in each 

genome assembly) were concatenated to give a single ‘core’ alignment. A maximum 

likelihood phylogeny was then produced with RAxML49 using a general time reversible 

model with four gamma categories for rate heterogeneity. This alignment was also analysed 

using BAPS50. Three runs, starting from a maximum cluster number of 20, 40 or 60, each 

converged on the 15 monophyletic sequence clusters described, with the exception that one 

run added serotype 3 strains to SC7.

Analysis of individual lineages

Fifteen BAPS clusters were monophyletic within the maximum likelihood tree, and 

therefore appeared to constitute groups of isolates where not all phylogenetic information 

had been abrogated by recombination (i.e. a ‘clonal frame’ remained). One isolate within 

each of these groups was selected for reassembly with both SGA51 and Velvet40; these 

contigs were merged using Zorro52, then arranged into scaffolds using SSPACE53. These 

reference assemblies were then manually curated using ACT54. Illumina read pairs from all 

members of the clade were then mapped against this reference using SMALT (http://

www.sanger.ac.uk/resources/software/smalt/), the output of which was processed as 

described previously55,56 to produce a whole genome alignment. This was analysed using an 

algorithm that iteratively generates a maximum likelihood phylogeny based on point 

mutations while identifying recombination events23. When comparing r/m values for 

sequence clusters, and comparing the level of recombination observed in each one, branches 

on which a total of 5,000 substitutions or more occurred were excluded from the dataset, as 

the accuracy of recombination detection was liable to drop on these branches. The difference 

in r/m values was still significant, as calculcated by a Kruskal-Walis test, when all branches 

were included, as well as at all length cutoff values between 1,000 and 10,000 SNPs at 500 

SNP intervals. Recombinations occurring in regions annotated as MGEs in Supplementary 

Figure 5–Supplementary Figure 19 were also excluded, as these may represent the transfer 

of autonomously mobile elements rather than homologous recombinations. Exponential 

distributions were fitted to the lengths of homologous recombinations as described 

previously56.
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Identification of spatiotemporal signals

Path-O-Gen (http://tree.bio.ed.ac.uk/software/pathogen) was used to examine these lineage 

phylogenies for signs of a temporal signal. Where there was a significant positive correlation 

between the dates of isolation and root-to-tip distance, the alignment of polymorphisms 

caused by point mutations was analysed using BEAST57. The tree topology was fixed, to 

maintain consistency with the prediction of recombinations, while a general time reversible 

substitution model was allowed to occur with a relaxed lognormal mutation rate58. A skyline 

plot was used as the population size prior59.

When analyzing the geographical distribution of isolates, pairwise distances were extracted 

from the phylogenies displayed in Supplementary Figure 5–Supplementary Figure 19 using 

Bioperl60. When plotted as displayed in Figure 7, an exponential relationship was fitted of 

the form:

Where y represents the proportion of strain pairs originating from the same location and x is 

the threshold maximum genetic distance, in terms of point mutations, between a pair. C 

represents the probability of two strains originating from the same location by chance 

(estimated as 0.083, 95% confidence interval 0.083–0.084). The sum of A and C represents 

the probability that two identical strains come from the same location; A was estimated as 

0.86 (95% confidence interval 0.86–0.87). B is the rate at which pairs become discordant for 

location per point mutation; this was estimated as 0.038 per mutation (95% confidence 

interval 0.038–0.039 per mutation).

Logistic regressions

Logistic regressions were performed using R61. When identifying COGs associated with 

different ages, the binary-encoded presence/absence pattern for each COG was regressed 

against the age of the host child, in months, and the year of isolation, as categories. These 

latter confounding variables were included to guard against different structures to the age 

population of sampled children in different years. Children under six months of age were 

excluded from the analysis to avoid the confounding effects of maternal immunity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structure of the pneumococcal population. The maximum likelihood phylogeny was 

generated using 106,196 polymorphic sites within a 1.14 Mb codon alignment of 1,194 

‘core’ COGs. The coloring of this phylogeny represents the sequence clusters (SCs) defined 

using the same alignment: fifteen monophyletic sequence clusters are labeled, with the 

terminal branches of the tree colored black indicating taxa that constitute a sixteenth 

polyphyletic group. Within the monophyletic sequence clusters, light background shading 
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indicates one particular serotype, with darker shading and dashed lines used to indicate 

groups of isolates of alternative serotypes.
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Figure 2. 
Dynamics of the carried pneumococcal population. The proportion of the population 

constituted by each of the sequence clusters in the three collection periods is plotted as 

adjacent bars. Each bar is split according to the serotype composition of the sequence cluster 

in each year; VT capsule types are represented by solid fill, VRT are represented by solid fill 

(of the color of the VT of the same serogroup) overlaid with black hatching and non-VT are 

represented by colored hatched patterns on a white background. Underneath the chart, the 

per site r/m statistic for the fifteen monophyletic clades is displayed, as calculated from the 

analyses displayed in Supplementary Figure 5–Supplementary Figure 19.
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Figure 3. 
Serotype dynamics of SC9. (a) Maximum likelihood phylogeny of SC9 based on point 

mutations, excluding polymorphisms introduced through the horizontal import of sequence. 

Taxa are labeled with their serotype: all have a serogroup 23 capsule, with the exception of a 

single serotype 18C isolate. The taxa are colored according to their year of isolation: red 

taxa are from 2001, orange taxa were isolated in 2004, and blue indicates isolates from 

2007. Two taxa that developed high-level beta lactam resistance are marked with stars. The 

right side of the figure shows the putative recombination events detected acrss the genome 

alignment. (b) A simplified annotation of the SC9 reference genome. (c) A heatmap showing 

the density of recombination events across the genome, with blue indicating regions 

undergoing few, or no, recombinations, while red indicates loci undergoing high rates of 

recombination. The highest levels are observed at a putative mobile genetic element (MGE), 

in the regions encoding the protein antigens PspA and PspC, and at the capsule biosynthesis 

cluster (cps). (d) This panel displays the position of the putative recombination events 

relative to the genome annotation, with a row for each taxon in the tree. Each detected 

recombination event is indicated by a red block, if reconstructed as occurring on an internal 

branch and therefore shared by multiple taxa through common descent, or blue block, if 

occurring on a terminal branch and therefore unique to a single taxon.
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Figure 4. 
Alteration in COG frequency between 2001 and 2007. The logarithm of the odds ratio 

indicating the proportion of isolates carrying each COG in 2007 relative to 2001 is displayed 

relative to the prevalence of the COG in 2001. Points are colored according to the mean 

length of the member proteins, ranging from red (for longer sequences) to blue (for shorter 

sequences). The four contours of green shading indicate the positions of the critical values 

for significance at confidence intervals of 99.999%, 99.99%, 99.9% and 99% with 

increasing intensity. The two labelled points lying outside all these confidence intervals are 

involved in synthesis of the serogroup 6 capsules; the other, blue, point is a false positive 

that appears to have been introduced through differences in the assembly of data from 2001 

(75 nt reads) and 2007 (100 nt reads).
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Figure 5. 
Distribution of antibiotic resistance genes. The maximum likelihood phylogeny, annotated 

as displayed in Figure 1, is emboldened where resistance genes are present and lightly 

shaded where they are absent. Taxa containing the resistance genes are linked to a colored 

point at the edge of the tree by a radiating line that is red for isolates from 2001, orange for 

isolates from 2004, and blue for isolates from 2007. In addition to the sequence clusters, the 

multidrug-resistant PMEN1 and PMEN15 lineages are labeled. (a) shows the distribution of 

the tetM tetracycline resistance gene. (b) shows the distribution of the ermB macrolide 

resistance gene. (c) shows the distribution of the mef gene.
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Figure 6. 
Changes in beta lactam resistance. (a) Resistance to benzylpenicillin. Each of the three 

penicillin binding protein genes involved in resistance was independently clustered on the 

basis of sequence similarity using nextgenBRAT; this identified three alleles for pbp1a and 

pbp2x and four alleles for pbp2b. Box and whisker plots display the distribution of 

benzylpenicillin MICs associated with strains possessing each of these alleles. (b) Box and 

whisker plot equivalent to panel (a), but showing MICs to the cephalosporin cefotaxime. (c) 

Distribution of pbp alleles throughout the pneumococcal population. The phylogeny 
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displayed in Figure 1 is shown on the left, with the multidrug-resistant lineages PMEN1 

(***), PMEN3 (**) and PMEN15 (*) labeled with asterisks. The three columns on the right 

represent the independent analyses for the three pbp genes involved in beta lactam 

resistance. These are comprised of one row for each taxon in the tree, with the width of the 

column representing the length of the gene. Blocks are colored according to the group to 

which the sequence belongs, as indicated by the key at the top of the column; changes of 

color indicate recombination breakpoints characteristic of mosaic genes. The ‘O’ group 

represents sequence that comes from an ‘outgroup’; that is, from a strain or species not 

represented within the collection.
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Figure 7. 
Geographic structure within the population. The pairwise genetic distance, equating to a 

separation in terms of point mutations, between all strains within the same monophyletic 

sequence cluster were calculated and combined into a single dataset. For a series of 

maximum genetic distance thresholds, the proportion of all pairwise comparisons meeting 

the condition that both isolates originated within the same location was calculated. These are 

plotted as the black points, which appear to fit an approximately exponential decay, 

indicated by the blue line. The red points represent the outcome of one hundred 

permutations whereby the same statistic was calculated when the locations of the isolates 

were randomized.
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Figure 8. 
Effect of host age on pneumococcal genotype. A logistic regression coefficient of each COG 

against the host child’s age, in months, was calculated. Terms relating to year of isolation 

were included in the regression to account for differences in age distributions between 

samples, and children under six months of age were excluded to avoid the confounding 

effects of maternal immunity. The coefficient relating to host age is plotted against the 

prevalence of the COG within the bacterial population; only those present in between 10% 

and 90% of the population, suggesting they may be under balancing selection, are displayed. 

Points are colored according to the mean length of the member proteins, ranging from red 

(for longer sequences) to blue (for shorter sequences).
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