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Abstract
We genotyped 326 “frequently medicated” individuals of European-descent in Vanderbilt’s
biorepository linked to de-identified electronic medical records, BioVU, on the ADME Core Panel
to assess quality and performance of the assay. We compared quality control metrics and
determined the extent of direct and indirect marker overlap between the ADME Core Panel and
the Illumina Omni1-Quad. We found the quality of the ADME Core Panel data to be high, with
exceptions in select copy number variants (CNVs) and markers in certain genes (notably
CYP2D6). Most of the common variants on the ADME panel are genotyped by the Omni1, but
absent rare variants and CNVs could not be accurately tagged by single markers. Finally, our
frequently medicated study population did not convincingly differ in allele frequency from
reference populations, suggesting that heterogeneous clinical samples (with respect to
medications) follow similar allele frequency distributions in pharmacogenetics genes as their
appropriate reference populations.
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Introduction
There is considerable inter-individual variation in the efficacy and risk of adverse events for
many commonly prescribed medications. The inter-individual variation can be explained, in
part, by genetic variation [1,2]. One vision of personalized or medicine is to use knowledge
of a patient’s genetic profile prior to prescribing to maximize the likelihood of a beneficial
outcome and minimize the risk of side effects. In response to this vision, patient genotypes
for variants known to affect the efficacy of certain drugs (such as warfarin, clopidogrel, and
tamoxifen) are being deposited into patients’ medical records in clinics to aid clinicians in
formulating treatment plans [3].

The interest in using genetic variation to inform clinical care is driving a demand for the
generation of high-quality genomic data in both research and clinical settings. However,
many relevant loci in pharmacogenes are located in regions that are difficult to assay with
conventional multiplexing methods used in arrays [4]. Moreover, unlike genome-wide
association studies (GWAS), pharmacogenomic studies cannot rely on linkage
disequilibrium to indirectly test or tag the relevant variation given the low coverage of
pharmacogenes in general on these fixed-content GWAS products [4]. As an example, the
cytochrome P450 (CYP) family of enzymes is responsible for 75% of phase I dependent
drug metabolism, and variants in these genes have been associated with the outcomes of
many drug responses [5]. Duplication events in the human genome have resulted in 57
functional genes in the CYP family and numerous pseudogenes [6]. However, many
clinically important CYP genes often have high sequence similarity with pseudogenes and/
or are located in repetitive gene clusters. Probes designed to genotype variants in these genes
have been known to suffer from cross-hybridization problems and therefore have often been
dropped during the development of genome-wide platforms [7]. Several pharmacogenetic
platforms have been introduced to the market that target these variants directly and avoid
cross-reactivity other homologous regions [7].

The first released multiplexed assay focused on pharmacogenomics was the Affymetrix
DMET Panel, which has been used in multiple pharmacogenetic studies [8,9]. Unlike the
DMET Panel, there are currently no published descriptions of the performance of two other
marketed pharmacogenetic panels, Illumina’s ADME Core Panel and Sequenom’s iPLEX®
ADME PGx. In contrast to the Affymetrix DMET, which covers 1,936 markers across 231
genes, the two newer panels specifically target the 184 markers in 32 genes that were
identified by the PharmaADME group as the most important predictors for pharmacokinetic
variability.

As part of an extensive institutional investment in personalized medicine, Vanderbilt
University Medical Center (VUMC) has begun both a large-scale research effort and
translational effort involving the Illumina ADME Core Panel. The research effort, known as
the Vanderbilt Electronic Systems for Pharmacogenomic Assessment (VESPA), is the
genotyping of almost 10,000 individuals for electronic medical record (EMR)-based
pharmacogenomics studies. The translational effort is known as the Pharmacogenomic
Resource for Enhanced Decisions in Care and Treatment (PREDICT) program, an effort to
pre-emptively genotype VUMC patients using the Illumina ADME Core Panel in a Clinical
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Laboratory Improvement Amendments (CLIA)-certified environment as part of routine
clinical care [3].

We present here an assessment of the performance of the ADME Core Panel in a sample of
individuals with multiple prescribed medications identified in BioVU, the Vanderbilt
biorepository linked to de-identified electronic medical records [10]. Our primary goal was
to assess the ADME Core Panel’s content and quality with respect to pharmacogenomic
research in clinical populations. We also considered the ADME Core Panel’s coverage of
variants in comparison with other available pharmacogenetic genotyping methods. As a
secondary analysis, while we expect a European-descent polypharmacy population to have
similar allele frequencies to European-descent reference populations, we tested if our
polypharmacy population within BioVU was enriched for pharmacokinetic functional
variants compared with reference populations. Our data demonstrate that, as expected, the
polypharmacy sample did not differ from reference frequencies and most of the data quality
was high. However, the quality and utility of the variant content can vary dramatically,
indicating that fixed-content panels are likely to be useful in only specific pharmacogenomic
research or clinical settings.

Methods
Study Population

Our study population consisted of de-identified medical records from 326 “frequently
medicated” individuals, which was defined as being prescribed warfarin or clopidogrel in
addition to more than five drugs from the following classes: heparin, statins,
immunosuppressives (sirolimus, tacrolimus, cyclosporine, and mycophenolate mofetil),
tamoxifen, codeine, selective serotonin reuptake inhibitors (SSRIs), and anti-psychotics.
These medications were chosen because at least one medication within the class has known
pharmacogenomic interactions. All study samples were retrieved from BioVU, the
Vanderbilt University biorepository linked to de-identified electronic medical records.
BioVU as a resource, including its ethical, privacy, and other protections, has been described
in detail elsewhere [10]. In brief, BioVU is composed of DNA is extracted and stored from
blood collected from routine clinical testing that is scheduled to be discarded after a three-
day waiting period. DNA samples are linked to a de-identified version of the individual’s
electronic medical record, known as the Synthetic Derivative (SD), and can be accessed by
investigators for research purposes after approval by the local internal review board and
BioVU Review Committee. Records eligible for possible inclusion into BioVU include
those with a laboratory blood draw, where the individual has signed the consent to treatment
form, and has not indicated that they wish to opt-out. All records used in this study were
coded as European American by administrative staff, which has been shown to be highly
correlated in BioVU with genetic ancestry as determined by ancestry informative markers
[11]. De-identified records in the SD that fit our “frequently medicated” definition were
selected using the natural language processing system, MedEX. MedEX extracts
medications from EMRs with at least one mention of a dose, route, frequency, or strength. A
more detailed description of the software has been published elsewhere [12].

Genotyping
Illumina’s pharmacogenetic-targeted ADME Core panel is designed for the genotyping of
184 markers in 34 genes. The panel’s genotyping assay is a specific application of the
Golden Gate assay technology [101]. The ADME Core Panel utilizes an additional primer
extension step to avoid cross-reactivity with other homologous genes or regions that could
interfere with probe hybridization. This initialization step is then followed by allele-specific
primer extension and a ligation step.
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Two-thirds of the 184 variants on the ADME Core Panel encode synonymous and non-
synonymous amino acid changes whereas only 24 markers on the panel encode of non-
coding variation (Table 1). Frameshift and splicing defects are encoded by 16 and 10
markers on the panel, respectively. A total of ten CNVs are targeted by the panel for the
following genes: SULT1A1 (5 CNVs), CYP2A6, CYP2D6, GSTM1, GSTT1, and
UGT2B17. Compared to the Pharmacogenetics Research Network’s (PGRN) Very
Important Pharmacogenes (VIP) marker list of 135 variants in 46 genes, which includes
variants that have been identified as having either in vitro or in vivo evidence of functional
effects on drug response [13] the ADME Core Panel directly assays 25 of the 41 CYP
variants (61%) and 18 of the 36 variants in other important pharmacogenes (50%).

Genotyping for this study was conducted at the Vanderbilt University DNA Resources Core.
ADME Core Panel genotype calling was performed with ADME Module Version 1.0.0.3. In
addition to genotype calls by variant, the ADME Module software outputs star nomenclature
gene results for each gene. Ninety-eight individuals were also genotyped on Illumina’s
Human Omni1-Quad as part of other genotyping efforts. The Illumina HumanOmni1-Quad
is a genome-wide BeadChip that targets over one million SNPs selected from all three
HapMap phases, the 1000 Genomes Project, and previously confirmed genetic associations
from the NHGRI GWAS catalog [14]. Genotype calling for the HumanOmni1-Quad was
performed using Illumina’s Genome Studio Version 1.7.4. Genotyping runs of individual
samples in the laboratory that did not produce data are referred to in this study as sample
failures. We defined failed markers as those with a genotyping efficiency below 90%.

Statistical Methods
To assess coverage, linkage disequilibrium (LD) calculations for tagging ADME Core
markers with HumanOmni1-Quad markers were performed with PLINK’s function for
tagging with a specified marker list (v1.07) [15]. We restricted our search to a 250kb
window around each marker. Concordance for overlapping samples genotyped with the
ADME Core Panel and the HumanOmni1-Quad was calculated using PLATO [16].

Quality control measures for diallelic ADME SNPs and 70 SNPs from the HumanOmni1-
Quad including genotyping efficiency, Hardy-Weinberg Equilibrium (HWE), minor allele
frequency were calculated using PLINK. Tests of HWE for triallelic SNPs were calculated
manually using Pearson’s chi-squared test. ADME Core Panel marker allele frequencies for
comparison with the present study were abstracted from the primary literature, The
International HapMap Project, 1000 Genomes Project, dbSNP, PharmGKB, the
Environmental Genome Project, and SNP500Cancer [17-22]. All frequencies were selected
from populations of European-descent, similar to the study population described here. Tests
of association were calculated with the chi-squared test, and in the case of cell counts < 5,
Fisher’s exact was used. All statistical analyses were performed with the statistical software
package STATA 11.

Results
Demographics

Table 2 presents the clinical characteristics of the study population. Three hundred and
twenty six samples were genotyped on the ADME Core Panel for this assessment of the
panel’s performance. Overall, there were more males than females in this cohort of
frequently medicated individuals (55% versus 45%), and the average individual was
overweight (body mass index or BMI >25 kg/m2; Table 2). The mean age of individuals at
the time of their first prescription and final prescriptions was 57.0 ±12.9 and 64.8 ±12.6
years, respectively. The frequencies of drug classes prescribed are shown in Figure 1.
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Coverage
There are several options available for genotyping pharmacogenetic variants, ranging from
single variant assays to genome-wide arrays, and each approach has its strengths and
weaknesses with respect to assay performance and cost effectiveness (Table 3). Given that
most datasets submitted to dbGaP have genome-wide SNP data [14,23], we assessed in our
study sample whether these existing data adequately assess known pharmacogenetic
variants. To do this, we characterized the linkage disequilibrium patterns in the immediate
genomic regions of the ADME Core Panel variants and identified HumanOmni1-Quad SNPs
that tag ADME Core Panel markers at three different linkage disequilibrium thresholds (r2):
1.0, 0.8, and 0.5. We found one SNP (CYP2A6 rs28399468) that can be indirectly tested or
tagged at an r2 of 1.0 with a single marker (rs3212976) in populations of European-descent
genotyped on the HumanOmni1-Quad. When the LD threshold was relaxed to 0.5, NAT2
rs1208 and SCLO1B3 rs7311358 could also be tagged by single markers (rs1802380 and
rs4149117, respectively) targeted by the HumanOmni1-Quad.

We also compared the marker content on the ADME Core Panel to Affymetrix’s
pharmacogenetic platform, the Drug Metabolizing Enzymes and Transporters (DMET) Plus,
to identify overlapping and unique markers to the ADME Core Panel [24]. The DMET Plus
interrogates 1,936 markers across 231 genes, with an emphasis on pharmacogenes. Of the
184 markers targeted by the ADME Core Panel, 159 overlap with DMET Plus. A total of 25
markers are unique to the ADME Core Panel. The ADME specific markers are 18 SNPs
with rsIDs, five SULT1A1 CNVs, one multi SNP assay designed to probe the SLC22A1
M420del, and CYP2A6*1B.

Quality and Performance
We assessed basic quality control metrics on the 326 samples genotyped on the ADME Core
panel. The vast majority of the samples (92%) were genotyped successfully using the
ADME Core panel. A total of 27 samples failed and were not considered further in this
analysis. Of the 184 markers targeted for genotyping on the ADME panel, four SNPs and
three CNVs failed. The four failed SNPs include GSTM1 rs1065411, CYP2A6 rs28399447,
CYP2A6*B1 and SLCO1B3 rs7311358. The three failed CNVs were in the following genes
GSTM1, GSTT1, and UGT2B17. The total number of markers (excluding CNVs) with
100% and >99% genotyping efficiency were 84 and 114, respectively (Table 4). There were
four CNVs with 100% (SULT1A1) genotyping efficiency and three between 90% and 99%
(CYP2D6, CYP2A6, and SULT1A1).

Four SNPs significantly departed from Hardy-Weinberg Equilibrium (HWE; p<0.001, Table
4): CYP2B6 rs8192709, GSTM1 rs1065411, CYP2D6 rs3892097, and the triallelic marker
ABCB1 rs2032582. One of these HWE deviating markers, rs1065411, also had very low
genotyping efficiency (49%). More than one-third of the 173 diallelic markers were
monomorphic in our sample population (67; Table 1), and one-third (57) of the markers
were rare (MAF ≤ 0.05; Table 1). The remaining markers (49; 28%) were common (MAF ≥
0.05) in this study population. Table 5 displays the frequency of Clinical Pharmacogenetics
Implementation Consortium (CPIC) “likely phenotypes” and star genotypes, as opposed to
frequencies by individual rs number, in this sample population.

Within this frequently medicated de-identified population genotyped on the ADME Core
Panel, a subset of 98 individuals were genotyped on Illumina’s HumanOmni1-Quad
platform for previous genetic association studies conducted in BioVU. More than one-third
of markers (41%) of 70 diallelic ADME Core Panel markers overlap with the
HumanOmni1-Quad. Out of the set of overlapping markers, the majority (59/70) had 100%
concordance, and eight SNPs were >99% concordant.
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As an supplemental step in our assessment of panel performance in this study, we compared
the allele frequencies observed here with reference allele frequencies abstracted from
multiple sources including the primary literature, The International HapMap Project, 1000
Genomes Project (Pilot 1 Low Coverage Panel), dbSNP, PharmGKB, the Environmental
Genome Project, and SNP500Cancer [17-22]. Of the 173 diallelic, non-CNV markers
targeted by the panel, we were able to abstract allele frequencies from European-descent
populations for 109 (63%). Of the subset of markers that were without a reference frequency
in the literature or public databases, all but two, SLC22A1 M420del and CYP2D6
rs35742686, were rare (MAF<0.01) or monomorphic in our sample population. These data
suggest there is little population data on low frequency but functional pharmacogenetic
variants. As might expected, the vast majority of marker allele frequencies in this frequently
medicated sample from BioVU did not differ from allele frequencies previously reported for
European-descent populations (Supplementary Table 1). In fact, after accounting for
multiple testing, only one marker (CYP2D6 rs1080985) had a significantly different allele
frequency in this BioVU sample compared with the 1000 Genomes Project CEU data: 0.11
versus 0.24, respectively (p=2.74 × 10−5; Supplementary Table 1).

Results of comparisons between this study sample and CPIC “likely phenotypes”
frequencies [25-29](Table 5) were similar to that observed at the single variant level. The
difference observed in frequency of CYP2D6 genotypes between CPIC and this study
sample is likely due to the large proportion of individuals with missing calls for various
markers, which in such cases were assigned “no call.” This underscores the difficulty in
accurately assigning CYP2D6 genotypes even with the targeted ADME Panel. Overall, the
small sample size and subsequent low power may have impacted our ability to detect small
differences in frequencies of other alleles tested.

Discussion
We sought to assess the performance of the ADME Core Panel, a fixed content panel for
pharmacogenomic research and clinical use, in a “frequently medicated” sample of
individuals from BioVU, a biorepository of DNA samples linked to de-identified electronic
medical records. These samples did not display any convincing evidence of having a
different genomic profile of rare variants in pharmacogenetic genes compared with reference
populations. The one significant SNP (CYP2D6 rs1080985) that differed between this study
population and 1000 Genomes CEU samples may represent a true difference in frequency or
may represent a sequencing error in the 1000 Genomes Pilot study due to the repetitive
region of CYP2D6.

Our assessment of performance was based upon two major criteria: coverage and quality.
Overall, the ADME Core Panel targets approximately one-third of the PGRN VIP marker
list. Of the 184 markers targeted by the panel, the majority is coding or considered
functional. Data from DNA samples extracted from frequently medicated individuals in
BioVU suggest that the ADME Core Panel produced high quality and reproducible
genotypes for the majority of variants targeted by the panel. CNVs targeted by the ADME
Core Panel proportionally performed worse than SNPs in genotyping efficiency.

Overall, the quality of the data produced by the ADME Core Panel was high; however, there
were variants with low quality data. In this study, several variants were out of HWE or had
low quality of genotyping. Of note are two markers (rs1080985 and rs928286) in the highly
polymorphic and difficult genotype gene CYP2D6. These two markers had lower than
average call rates of 93.1% and 93.8%, respectively, suggesting that the panel’s assays are
not completely optimized.
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Limitations
A limitation of this study is the sample size. With only 299 individuals, a large proportion of
markers targeted by the ADME Core Panel were monomorphic in this sample. However,
this limitation also reflects a limitation of the ADME Core Panel. That is, more than one-
third of the panel targets relatively rare variation based on European-descent populations.
For a variant with a minor allele frequency of 1%, fewer than six heterozygotes would be
expected in this study sample. Thirty-five of the 184 variants (~19%) targeted by the ADME
Core Panel have a minor allele frequency <1% in European-descent populations (Table 1),
and these will require thousands of samples genotyped to detect heterozygotes at an
appreciable frequency for single SNP tests of association. Therefore, depending on the study
design and study population, the panel’s content may decrease as the number of
monomorphic markers increases.

ADME Core Panel for Genetics Research
Despite the potential decrease in content based on sample size and population, it is important
to note that the ADME Core Panel targets important pharmacogenomic variants that are not
tagged well or in LD with variants directly assayed by fixed-content GWAS arrays. While
70 non-CNVs were directly assayed by the Illumina HumanOmni1-Quad, only three of the
remaining SNPs not directly assayed were in LD or tagged with a SNP genotyped directly
on the array. Since the panel targets specifically markers that influence the inter-individual
pharmacokinetics of drug metabolism, 84 of the 184 variants are functional variants in the
CYP450 family of genes because of their ubiquitous role in the oxidation step of numerous
medications. The remaining genes are Phase II enzymes and transporters, which catalyze
addition modifications to drugs by catalyzing conjugation reactions and facilitate differential
tissue distribution, respectively [30]. Many pharmacogenetic genes are redundant or lack
endogenous substrates and consequently are presumed to be under less evolutionary
pressure. This relaxed selection over human history has produced hypermorphic and highly
deleterious alleles at relatively common frequencies. For instance, 7% of individuals of
European-descent do not have a fully functional copy of the CYP2D6 gene, i.e. they are
homozygotes or compound heterozygotes for loss of function alleles [31]. Thus, the variants
that the panel targets are common functional variants encoding splicing mutations, non-
synonymous SNPs, and more dramatic structural changes such as indels and CNVs.
Compared with GWAS fixed-content arrays where the variants are mostly non-coding and
functionality of significant markers can be difficult to interpret, markers from the ADME
Core Panel in a pharmacogenetic association study have moderate to extensive biological
data on their function.

Comment on Array-Based Pharmacogenomics
Perhaps the biggest limitation of the array-based approach for pharmacogenomics research
and clinical implementation is the fact that only specific variants are being targeted in any
one experiment or diagnostic order. As already mentioned, advances in sequencing
technology now make it possible to generate complete variation data on an individual or
patient for the whole genome, whole exome, and targeted regions in a cost-effective manner
(Table 3). In recognition of this genomic evolution of technologies, Illumina recently
announced that it will no longer be accepting orders for the Illumina BeadXpress, effectively
discontinuing sales of mid-throughput genotyping instrumentation that process custom and
fixed-content panels such as the ADME Core Panel. In its place will likely be targeted
sequencing of individuals for research and patients for clinical diagnostics for genes and
genomic regions important in drug therapy. While the generation of the data may be
different compared with the arrays, the challenges of data quality and interpretation or
implementation will be the same and will continue to be an active area of research and
clinical oversight.
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Future Perspective
We demonstrate that most of the data produced by the ADME Core Panel is high quality
based on conventional quality control metrics. However, this as well as other fixed content
panels have limitations on the number of types of variants targeted for pharmacogenomic
research and clinical diagnostics. Targeted or whole genome/exome sequencing will likely
remedy the content issue typical of genotyping panels and accelerate the understanding of
the underlying genetic architecture that impacts responses to drug therapy in the clinic.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Executive Summary

Background

• The Illumina ADME Core Panel targets 184 functional and clinically interesting
markers for pharmacogenomic studies.

• Little is known about the quality or research utility of the panel compared with
other fixed content assays.

• Also, few data exist on the allele frequency of many of the variants targeted by
the Illumina ADME Core Panel.

Methods

• We used BioVU, the Vanderbilt University Medical Center biorepository linked
to de-identified electronic medical records, to identify 326 individuals of
European-descent that were prescribed warfarin or clopidogrel in addition to
more than five drugs from the following classes: heparin, statins,
immunosuppressives (sirolimus, tacrolimus, cyclosporine, and mycophenolate
mofetil), tamoxifen, codeine, selective serotonin reuptake inhibitors (SSRIs),
and anti-psychotics.

• Individuals were genotyped using the Illumina ADME Core Panel. A subset of
these individuals also was genotyped on the Illumina Human Omni1-Quad for
previous genetic association studies.

• Basic quality control metrics (call rates and Hardy-Weinberg Equilibrium) as
well as concordance between the two arrays were calculated to assess
genotyping quality of the Illumina ADME Core Panel.

• Allele frequencies from public reference datasets and the literature were used to
compare to this study sample of “frequently medicated” European-descent
individuals.

Results

• A proportion of the genetic variants targeted by the Illumina ADME Core Panel
were neither targeted nor tagged by the fixed-content genome-wide association
study (GWAS) assays such as the Illumina Human Omni1-Quad.

• As expected, the Illumina ADME Core Panel performed well for diallelic
variants in this modest sample of polypharmacy individuals.

• A proportion of the Illumina ADME Core Panel variants were rare or
monomorphic in this modest sample of European Americans, and no reference
allele frequencies wre available in public databases or the literature.

• All but one variant assayed by the Illumina ADME Core Panel was observed as
a higher allele frequency in this polypharmacy sample compared with a
reference population.

Discussion

• The Illumina ADME Core panel produces high quality diallelic genotypes
suitable for studies of pharmacogenomics, many of which are not available or
tagged by fixed-content genome-wide association study arrays.
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Figure 1. Prescribed medications among the heavily medicated clinical population
On the x-axis are the 12 classes of medications selected for our heavily medicated cohort
definition. The y-axis is the proportion of our clinical population prescribed at least one
medication of the given drug class.

Oetjens et al. Page 12

Pharmacogenomics. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Oetjens et al. Page 13

Table 1

Functional Distribution of ADME Core Panel Markers

Category Number of
SNPs

Coding 123

Frameshift 16

CNVs 10

Non-Coding 24

Duplications 1

Splicing Defects 10

Monomorphic 67

0.00 < MAF < 0.01 35

0.01 < MAF < 0.05 22

0.05 < MAF < 0.25 26

0.25 < MAF < 0.5 23

Abbreviations: copy number variants (CNVs) and minor allele frequency (MAF). MAFs are of non-CNV diallelic markers.
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Table 2

Study population characteristics (n=326)

Variable Mean / % Standard Deviation
(Min., Max.)

% European American 100 -

% Female 45 -

Age at First Drug, in years 56.99 12.86
(24.33,84.94)

Age at Last Drug, in years 63.73 12.64
(32.77,93.04)

BMI (kg/m2) 29.67 6.18
(15.4,65.7)

Abbreviations: body mass index (BMI).
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Table 3

Comparison of pharmacogenetic genotyping methods

Method Description Cost per sample Optimal Study
Design

Drawbacks

TaqMan Accurately assays
the genotype of a
single nucleotide
variant

Low Ideal for projects
testing a small
number of SNPs in
a large population.

Cost approaches
that of GWAs
platform for more

than ~330 ‡ of
SNPs.

Genome-Wide
Fixed Content
Platforms

Current platforms
range from 1-5
million common (MAF >1%)
variants across the
genome

Mid Holistic approach
that targets most of
the genome. Best
candidate for
pharmacodynamic
studies, especially
if the HLA*
complex is a

candidate†

Overall highly
accurate but drops
in quality in
repetitive genomic
regions found
around many CYP
variants.

ADME Core andother PGX*
Panels

Accurately targets

184-1,936§
variants in PGX
genes

Mid-High Selective coverage
of functional
variants in VIPs*.
Results of PGX
studies have so far
converged around
pharmacokinetic
genes covered here
(with the exception
of HLA).

Large proportions
of variants are too
rare and lack
statistical power in
small to mid-range
sized study
designs.

Targeted, Exome,
and Whole
Genome
Sequencing

Selective
sequencing of
targeted
genes/regions, all
coding regions, or
the whole genome

High Holistic approach
to genome limited
to coding regions.
Most suitable for
identifying the
effect of burden of
rare variants on
drug response.

Massive data
storage
requirements and
unfamiliar analysis
tools available
may be prohibitive
for some
investigators.
Little information
in the literature on
performance in
VIP variants.

†
Daly AK: Drug-induced liver injury: past, present and future. Pharmacogenomics. 11(5), 607-611 (2010)

‡
Estimated prices for one sample as follows: $0.72 per SNP assayed with TaqMan assay and $240.00 per genome-wide genotyping platform.

§
1,936 variants captured with the Affymetrix DMET (drug metabolism enzymes and transporters)

Abbreviations: Pharmacogenetics/Pharmacogenomics (PGX), Very Important Pharmacogene (VIP), and Human Leukocyte Antigen (HLA)
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Table 4
ADME Core Panel genotyping quality control statistics

Genotyping efficiency (GE) was calculated for each of the 174 SNPs and 10 copy number variants (CNVs)
targeted by the ADME custom assay in 299 samples that were successfully genotyped. Tests of Hardy
Weinberg Equilibrium (HWE) were only performed for each of the SNPs.

Category SNPs
(%)

CNVs
(%)

Monomorphic 67
(38.50)

7
(70.00)

GE < 90% 4
(2.22)

3
(30.00)

GE < 95% 13
(7.47)

4
(40.00)

GE > 99% 115
(66.09)

4
(40.00)

GE = 100% 88
(50.57)

4
(40.00)

HWE, p < 0.001 4
(2.29)

-

Pharmacogenomics. Author manuscript; available in PMC 2013 July 29.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Oetjens et al. Page 17

Table 5

Frequency of CPIC “likely phenotypes” and star genotypes with published guidelines for drug dosing

ADME Core Gene CPIC* Categories Frequency

CYP2D6 Poor Metabolizer (PM) 0.07

Intermediate Metabolizer (IM) 0.02

Extensive Metabolizer (EM) 0.60

Ultrarapid Metbolizer (UM) 0

No Call

Undetermined ¶
0.21
0.10

CYP2C9 *1/*1 0.61

*1/*2 0.20

*2/*2 0.02

*2/*3 0.03

*1/*3 0.12

No Call 0.03

CYP2C19 PM 0.01

IM 0.20

EM 0.42

UM 0.28

*2/*17 0.07

No Call 0.02

CYP3A5 ∥ *1/*1 0.01

*1/*3 0.11

*3/*3 0.88

TPMT No/Low Activity 0.00

Intermediate Activity 0.04

Normal Activity 0.89

No Call 0.06

SLCO1B1 *5 0.26

WT/*5 0.73

*5/*5 0.01

VKORC1 (−1639G>A) GA 0.36

AA 0.13

GG 0.51

Clinical Pharmacogenetics Implementation Consortium (CPIC)

∥
Dutch Working Group CYP3A5 categories

¶
Samples called *4 HET *10 HET by ADME Module. The module uses the genotype of rs1065852 for calling the *10 haplotype. However this

genotype does not distinguish *4 and *10 and these patients could either be *1/*4 (EM) or *4/*10 (IM).
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