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Abstract
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-
effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic
free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically
minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and
canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic
distributions around a charged surface. It is found that, for a low surface charge density, the
adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly
charged surface, both of the mean-field theory and MC simulations demonstrate that the
counterions bind tightly around the charged surface, resulting in a stratification of counterions of
different species. The competition between mixed entropy and electrostatic energetics leads to a
compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to
form the first layer of stratification. In particular, the MC simulations confirm the crucial role of
ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been
previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is
predicted by the MC simulations but not by the mean-field theory. This work provides a better
understanding of competitive adsorption of counterions to charged surfaces and calls for further
studies on the ionic size effect with application to large-scale biomolecular modeling.

1 Introduction
Electrostatic interactions play an important role in many complex systems, such as
biological processes, soft matter material, nanofluids, and electrochemical devices [1–8].
Accurate and efficient modeling and computations of such interactions have been
challenging due to the inhomogeneity, complicated geometry, multiple scales, and the nature
of many-body interaction of an underlying charged system.
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A common scenario of electrostatic interactions is a mixture of crowded mobile ions of
multiple species with different valences and sizes in an electrolyte surrounding an external
charged surface. Excluded-volume effects or size effects of such mobile ions, in particular
effects of different ionic sizes, contribute significantly to the electrostatic free energy and
forces, which in turn determine the structure and stability of an underlying system. For
instance, the size of monovalent cations can influence the stability of RNA tertiary
structures [9]; and differences in ionic sizes can also affect how mobile ions bind to nucleic
acids [10, 11]. Concentrations of ions in an ion channel can reach as high as dozens of mol/L
(about 30 mol/L in calcium and sodium channels), and the ionic sizes can affect the ion
transport and channel selectivity [12]. Detailed density-functional theory calculations,
Monte Carlo simulations, and integral equations calculations confirm some of these
experimentally observed properties due to the non-uniformity of ionic sizes [13–17].

Historically, many theoretical studies of electrostatic interactions have been based on the
classical, mean-field, Poisson–Boltzmann (PB) theory [18–21]. In particular, such a theory
has been successfully applied in biomolecular modeling and colloidal science; see [1, 3, 8,
22, 23] and the references therein. In the PB theory, electrolytes are treated as ideal ionic
gases, and the ionic concentrations are related to the electrostatic potential by the Boltzmann
distributions. This theory, often very efficient, thus works well for monovalent ions, low
surface charge densities, and high solvent dielectric coefficients. The mathematical form of
the PB theory is the PB equation which is Poisson’s equation for the electrostatic potential
with the equilibrium ionic concentrations given by the Boltzmann distributions via the
potential. In a variational setting, such distributions result from the equilibrium conditions
for a mean-field electrostatic free-energy functional of ionic concentrations where the
potential is determined by Poisson’s equation [24–28]. Despite its success in many
applications, the classical PB theory is known to fail in capturing the ion-ion correlations
and ionic size effects, particularly for highly charged systems at molecular scales [29,30].

For years, attempts have been made to include ionic size effects, particularly nonuniform
ionic size effects, into a PB-like efficient approach [26,31–37]. See also [38–45]. One of the
key ideas has been to introduce the local concentration of solvent molecules, in addition to
those of ions of multiple species, and to incorporate all the ionic and solvent molecular
volumes in the entropic part of a mean-field electrostatic free-energy functional. If all linear
sizes (including that of solvent molecules) are the same, such a free-energy functional can be
derived using a lattice-gas model [32,35,36]. Moreover, there are explicit formulas, the
generalized Boltzmann distributions, relating equilibrium ionic concentrations and the
corresponding electrostatic potential. These distributions, together with Poisson’s equation,
lead to the generalized PB equation for the case of a uniform ionic size [26, 27, 46]. For a
system of three ionic species with two different ionic sizes, Chu et al. [34] derived a
different size-modified PB equation from a similar lattice-gas model and applied this
equation to study the ionic size effect in the binding of ions to DNA. For a general system,
Tresset [36] derived an expression of the free energy with an effective volume fraction of
free space, under the assumption that the ionic excluded volumes are dispersed from each
other to a reasonable extent.

For the general case of multiple ionic species with different valences and sizes, Li [26]
proposed and analyzed a semi-phenomenological free-energy functional of ionic
concentrations with Poisson’s equation as a constraint for the electrostatic potential. This
functional is obtained simply by using different individual ionic sizes instead of a uniform
size in the previous functional derived from a lattice-gas model. Equilibrium conditions for
the new and general free-energy functional are nonlinear algebraic equations for the
equilibrium concentrations. It is shown that such conditions determine completely the
dependence of equilibrium ionic concentrations on the corresponding electrostatic potential
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[26]. Explicit formulas of such dependence and hence Boltzmann-like distributions for the
equilibrium concentrations, however, seem unavailable. Therefore, there is no explicit PB-
like equation of the electrostatic potential in the general case.

Nevertheless, Zhou et al. [37] developed a robust numerical method for minimizing such a
functional to obtain the equilibrium ionic concentrations and the corresponding electrostatic
potential. The starting point there is to reformulate the variational problem as a constrained
optimization problem [47, 48]. An augmented Lagrange multiplier method is then
constructed and implemented to solve this constrained optimization problem. Extensive
numerical results reported in [37] demonstrate that the new mean-field, size-effect included
model can describe many detailed properties of ionic concentrations, including the
stratification of concentrations, that have been predicted by other refined models but not by
the classical PB theory; cf. [33,36]. In particular, it is found that the ionic valence-to-volume
ratio is the key parameter in the stratification [37].

In this work, we study the ionic size or excluded volume effect to the structure of electrical
double layer in the vicinity of a highly charged surface, using both the mean-field model and
Monte Carlo (MC) simulations. Our goal is two-fold. First, we would like to understand how
counterions with different valences and sizes compete in the adsorption to the charged
surface, and how the ionic valence-to-volume ratio affect the ordering of ion packing near
such a surface. Second, we would like to examine the validity of the mean-field theory with
nonuniform size effects by comparing it with the MC simulations.

The adsorption of counterions to a charged surface is determined by the competition
between the entropic and energetic contributions of an underlying system of electrolyte. The
ionic size effect is quite significant in such adsorption, since the excluded volume of
crowded ions reduces the mixed entropy, and thus increases the Helmholtz free energy of
the total system. Concentrations of counterions can reach maximal values at the charged
surface controlled by the ionic sizes. The competition of entropy and energy results in a
stratification of counterions of different species in the electrical double layer, as revealed in
both experimental investigations [49] and theoretical predictions [36,37,50,51]. For a low
surface charge density, the electrostatic interaction dominates and the ions with higher
valence are most likely to stay closest to the charged surface. For a highly charged surface,
smaller counterions are stronger in competition to form the first layer of the stratification
[16, 51]. Our mean-field numerical computations and MC simulations reproduce these
results. In particular, our MC simulations validate the prediction by the mean-field theory of
the role of ionic valence-to-volume ratios in the counterion stratification.

MC simulations treat an underlying system of electrolyte as a set of discrete particles and
provide equilibrium properties of the system with statistical averages [52, 53]. Such
simulations have been a standard tool in the study of structures of electrical double layer, if
the geometry of the charged surface is not too complicated [16,51,54,55]. In MC
simulations, ionic size and correlation effects are automatically included, and image charge
effects can also be included [56–60]. Therefore, the correlation-induced phenomena, such as
charge inversion and like-charge attraction, can be described by MC simulations [29,55].

Our simulation system consists of a spherical macroion immersed centrally in an electrolyte
system. There are counterions of multiple species in the electrolyte. The entire system is
assumed to be neutral in charge. The parameters of the system include the linear size of the
simulation box, the radius and constant surface charge density of the macroion, and the
valence, volume, and total number of each species of (micro) mobile ions. The same set of
parameters are used in our MC simulations and mean-field computations. We use
unrestrictive primitive models of ionic system, treating ions as hard spheres. Based on such
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a model, we use canonical ensemble MC simulations with Metropolis criterion. We plot the
radial particle density function for each species of mobile ions. Such functions are compared
with the corresponding equilibrium ionic concentrations predicted by our mean-field theory.

The rest of this paper is organized as follows: In Section 2, we introduce the mean-field
theory and numerical method for nonuniform ionic size effects. In Section 3, we describe
our method of Monte Carlo simulations. In Section 4, we present and discuss the results of
our MC simulations and mean-field computations. Finally, in Section 5, we draw
conclusions.

2 Mean-Field Theory and Method
We consider an electrolyte with M species of ions. For each i (1 ≤ i ≤ M), we denote by zi
the valence and vi the volume of an ion of the ith species. We also denote by Ni the total

number of ions of the ith species. The total number of all ions is . We assume
that there is a spherical colloidal particle—a charged macroion—of radius R inside the
electrolyte solution and that its charge effect is described effectively by a constant surface
charge density, denoted σ. We assume the system charge neutrality

(2.1)

where z = 4πR2σ/e is the valence of the macroion and e is the elementary charge.

We assume that the entire system occupies the cubical region (−L/2, L/2)3 with the linear
size L > 2R and that the macroion occupies the spherical region BR of radius R centered at
the origin. Therefore all the ions are in the region Ω = (−L/2, L/2)3\BR. We denote by Γ =
∂BR the boundary of the sphere BR, i.e., the spherical surface of the macroion.

2.1 A mean-field theory with nonuniform size effects
For each i (1 ≤ i ≤ M), we denote by ci(r) the local concentration at a spatial point r ∈ Ω of

ions of the ith species. The charge density of solution is then given by .
All the concentrations ci(r) are constrained by

(2.2)

We also denote by v0 the volume of a solvent molecule. The local concentration c0 = c0(r)
of the solvent molecules is defined by

For a given set of ionic concentrations c = (c1, …, cM ), a mean-field approximation of the
electrostatic free energy is given by
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(2.3)

The first part Fpot[c] is the electrostatic potential energy, defined by

(2.4)

where Φ is the electrostatic potential. It is determined by Poisson’s equation

(2.5)

together with the boundary condition

(2.6)

where ε0 is the vacuum permittivity, ε is the relative permittivity or dielectric coefficient of
the solution, and n is the exterior unit normal at the boundary of Ω that consists of the
spherical surface Γ and the boundary, Γbox, of the box (−L/2, L/2)3. We shall assume that ε
is a constant in the entire solution region Ω. Notice that Φ is not an independent variable of
the functional F[c].

The second part Fent[c] is the entropic contribution. It is given by [26,37]

(2.7)

where kB is the Boltzmann constant and T is the absolute temperature. Notice that the
summation index starts from i = 0. Notice also that in the variational approach to the

classical PB equation, the solvent entropy is not included and all the ionic linear sizes 
are replaced by the de Broglie wave length [24,25,27].

The set of equilibrium ionic concentrations c = (c1, …, cM ) is defined to minimize the free-
energy functional (2.3), subject to the constraint (2.2). The equilibrium electrostatic potential
is determined by the corresponding equilibrium ionic concentrations through Poisson’s
equation (2.5) and the boundary condition (2.6).

Alternatively, we can introduce for each i the chemical potential μi for ions of the ith
species, and add the following term

(2.8)

to the free energy F[c] in (2.3). The chemical potentials μi (i = 1, …, M ) can be regarded as
Lagrange multipliers accounting for the constraint (2.2). With these chemical potentials, one
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minimizes the new, total electrostatic free-energy functional that now consists of all the
integral terms in (2.4), (2.7), and (2.8), without the constraint (2.2).

Taking the variational derivative with respect to each concentration field ci(r) of the new,
total free energy and setting it to 0, we obtain with suitable boundary conditions for
Poisson’s equation (2.5) the conditions for equilibrium concentrations c1, …, cM [26]

(2.9)

In the special case that v0 = v1 = · · · = vM, one can solve this system of nonlinear algebraic
equations to obtain explicit formulas of ci(r) = ci(Φ(r)) (i = 1, …, M). These are the
generalized Boltzmann distributions. For the general case, it is known that the conditions
(2.9) determine uniquely ci(r) = ci(Φ(r)) (i = 1, …, M ); but explicit formulas for such
dependence seem unavailable. See [26,27].

2.2 A constrained optimization method
By integration by parts, Poisson’s equation (2.5), and the boundary conditions (2.6), we can
rewrite the free-energy functional (2.3), which is the sum of Fpot[c] given in (2.4) and Fent[c]
given in (2.7), as

where Φ solves the boundary-value problem of Poisson’s equation (2.5) and (2.6). Notice
that the dependence of F on Φ is now explicitly indicated. One can verify mathematically
that the minimization of F[c] defined in (2.3) over all c subject to (2.2) is equivalent to that
of F[Φ, c] over all (Φ, c) subject to (2.2), (2.5), and (2.6).

Introduce the Bjerrum length lB = e2/(4πεε0kBT). Define Φ′ = eΦ/(kBT), and

, σ′ = 4πlBσ/e, and ω′ = (4πlB)−1/3ω for ω
= Γ, Γbox, or Ω. Then F [Φ, c] = εε0(kBT/e)2F′[Φ′, c′], where

(2.10)

and  is defined similarly using the primed quantities. The constraint (2.2), Poisson’s
equation (2.5), and the boundary condition (2.6) become now

(2.11)

(2.12)
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(2.13)

respectively, where n′ is the unit exterior normal at the boundary of Ω′.

For simplicity, we will drop all the primes in what follows.

We apply an augmented Lagrange multiplier method [61, 62] to numerically minimize the
functional F[Φ, c] defined in (2.10) subject to (2.11)–(2.13) (with all the primes dropped).
Our method is an improved version of that developed in our previous work [37] for
minimizing numerically a similar functional formulated using (E, c) instead of (Φ, c), where
E = −∇Φ is the electric field. In the augmented Lagrange multiplier formulation, we solve
the corresponding saddle-point problem

(2.14)

where Λ = (λ1, …, λM ) ∈ ℝM, s = (s1, …, sM ) ∈ ℝM with each si ≥ 0, and

The function Ψ is the Lagrange multiplier for Poisson’s equation (2.5). It satisfies the same
boundary conditions as for Φ, cf. (2.13) (no primes). The numbers λ1, …, λM are the
Lagrange multipliers for the constraint (2.11) (no primes). The last summation term is a
penalty term. It is added to stabilize and accelerate our numerical iterations.

The solution (Φ, c, Ψ, Λ, s) to the saddle-point problem (2.14) is determined by the
following equations:

(2.15)

(2.16)

(2.17)

(2.18)
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Since both Φ and Ψ satisfy the same boundary conditions, Eq. (2.15) implies that they differ
by an additive constant. We may choose this constant to be 0 and assume that Ψ = Φ in Ω.
Notice that Eq. (2.16) is Poisson’s equation (2.12) (no primes) and Eq. (2.18) is the
constraint (2.11) (no primes). As pointed out before, the nonlinear system of algebraic
equations (2.17) has a unique solution c = (c1, …, cM ) but its explicit solution formulas
seem unavailable [26].

The entire system of equations is equivalent now to the three sets of equations (2.16)–(2.18)
with Ψ in (2.17) replaced by Φ. We solve these equations by the following algorithm:

Algorithm
Step 0 . Distribute the total surface charge 4πR2σ uniformly on the spherical surface

by interpolation onto the nearest grids [37, 47]. Initialize Φ(0),

, and . Choose a
parameter γ > 1. Set l = 0.

Step 1 Solve Eq. (2.16) with ci replaced by , together with the boundary condition
(2.13), to obtain the solution Φ(l+1).

Step 2 Use Newton’s method to solve Eq. (2.17) (where Ψ is replaced by Φ) with Φ,
Λ, and s replaced by Φ(l+1), Λ (l), and s(l), respectively, to obtain the solution
c(l+1).

Step 0 Step 3. Update the Lagrange multipliers

Update the penalty parameters .

Step 4 Test convergence. If not, set l ← l + 1 and go to Step 1.

The parameter γ > 1 is used only for updating si (i = 1, …, M ). Various kinds of
approximations can be used to solve the boundary-value problem of Poisson’s equation. For
instance, we can use the periodic boundary condition instead, and apply the fast Fourier
transform. In this case, we have the linear complexity in terms of the number of unknowns
of resulting system of linear equations. We note that the matrix-vector multiplication can be
avoided in Newton’s iteration scheme for solving the system (2.17) (with Ψ replaced by Φ),
since the exact formula of the inverse of related Jacobian matrix can be obtained. See [37]
for more details.

3 Monte Carlo Simulations
We consider the same system described in the previous section: A macroion occupying the
sphere BR of radius R centered at the origin, with a constant surface charge density σ, is
immersed in an electrolyte in the box (−L/2, L/2)3. There are M species of (micro) ions in
the region Ω = (−L/2, L/2)3\BR. For each i (1 ≤ i ≤ M ), an ion of the ith species has valence
zi and volume vi. The number of ions of the ith species is Ni; and the total number of all

(micro) ions is . We use an unrestricted primitive model for our underlying
electrolyte system; and apply the canonical ensemble Monte Carlo (MC) simulations with
the Metropolis criterion [50,52,63–66].
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In a primitive model of electrolytes, the mobile ions are represented by charged hard spheres
and the solvent is modeled through its dielectric permittivity ε. We label all the (micro) ions
by k = 1, …, N. We denote by ẑk and R̂k the valence and radius of the kth ion. If the kth ion

is of the ith type (1 ≤ i ≤ M), then its valence is ẑk = zi and its volume is . For
convenience, we label the spherical macroion by 0 and denote R̂0 = R, the radius of the
macroion. We also denote its valence by ẑ0 = z = 4πR2σ/e.

For a given configuration of the system, the Hamiltonian is defined to be the work needed to
bring all the ions from infinity to their current positions. It is the sum of all pairwise
interaction energies between all the ions, including the macroion. We only consider the
hard-sphere contribution and the Coulomb interaction. Therefore, we define the total
potential energy of the system to be

where

(3.1)

Here, β = (kBT)−1, lB = e2β/(4πεε0) is the Bjerrum length, and rjk is the center-center
distance between the jth and kth ions. Notice that, in the case rjk ≥ R̂j + R̂k, ujk is just the
Coulomb interaction energy between the jth and kth ions in the solvent with the relative
dielectric permittivity ε. We shall consider the water solvent at room-temperature and thus
take lB = 7 Å.

Our MC simulations consist of a sequence of single-particle moves with the periodical
boundary condition. In each move, we randomly select an individual particle (i.e., mobile
ion). Let us assume that the selected particle is centered at p. We then randomly generate a
positive number, denoted a, from the interval [0, Δmax] for some parameter Δmax > 0. We
finally place the (center of) selected particle randomly on the sphere of radius a centered at
p. We use the L-periodical boundary condition in each direction, so that all the ions remain
in the region Ω of electrolyte. The parameter Δmax can change during the MC moves. The
acceptance or rejection of the move is determined by the Metropolis criterion. We calculate
the difference ΔU = Unew − Uold of the energies of the previous (old) and current (new)
configurations. If ΔU ≤ 0, the move is accepted. Otherwise, it is accepted if exp (−βΔU) is
greater than a randomly generated number in [0, 1].

The entire sequence of our MC moves are divided into three parts: acceleration,
equilibration, and statistics. Typically, our simulation system consists of M = 3 or 4 ionic
species; and the number of ions in each of these species can vary from 25 to 50 and to 200.
With these parameters, we usually perform 12 × 105N MC moves in total, with the first
105N moves for acceleration, the next 105N moves for equilibrating the system, and the last
106N moves for statistics, where N is the total number of mobile ions.

We introduce a parameter l̃B to replace lB in the definition of interaction (3.1), and
dynamically change l̃B in the first part of moves, a total of 105N of them, to speed up the
thermal equilibration of the crowded system of particles. We generate a geometrical
sequence of 105N terms with the first and last terms being 1 and lB = 7 Å, respectively. In
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the mth MC move with m ≤ 105N, the parameter l̃B is taken to be the mth term in the
geometrical sequence. After the first 105N moves, we fix l̃B = lB for all of the rest MC
moves. We run another 105N moves so that the system can reach an equilibrium.

Throughout the entire simulation, we keep the percentage of acceptance of MC moves
between 20% and 50% by adaptively adjusting the value of the maximum length Δmax.
Initially, we set Δmax = 2 Å. We then change it after every 100 moves. If the acceptance rate
is larger than 50% in current 100 moves, we increase Δmax by multiplying it by 1.05 but
always keep the new value of Δmax to be less than or equal to l̃B. If the acceptance rate is
smaller than 20% in current 100 moves, we decease Δmax by multiplying it by 0.95, and we
keep the new Δmax to be greater than 0.001 l̃B.

In the last part of MC moves, a total of 106N of them, we derive the production statistics and
calculate the local radial particle density (RPD) for each ionic species. The RPD of the ith
ionic species is defined by

(3.2)

where Ni(r, r + Δr) is the number of ions of the ith species whose centers are in the spherical
shell between r and r + Δr, and the bracket 〈·〉 represents an ensemble average over the shell.
Notice that the denominator in the definition (3.2) is the volume of the shell. We choose Δr
to be 1 Å. In our implementation, we approximate 〈Ni(r, r + Δr)〉 in (3.2) by the total
number of ions of the ith species that move (in the last part of moves for statistics) into the
shell between r and r + Δr, multiplied by the total number Ni of ions of ith species, divided
by the total number of moves (in the last part of moves) in which an ion of ith species is
displaced.

We remark that the use of periodic boundary condition effectively introduces a spatial cut-
off of the underlying system region. In principle this can affect the accuracy of the
calculation of electrostatic interactions. However, we have tried simulations on boxes with
different linear sizes and found almost no differences in the results. In fact, we find that
averagely only in one out of 10, 000 moves an ion has to “leave” through one side of the box
and “come back” to the box through the opposite side. The reason for this is that most of the
ions are crowded around the charged sphere, away from the boundary of simulation box.

In Figure 1, we display our typical MC simulations results for two systems: one without salt
and one with salt. Notice that the counterions with smaller valence-to-volume ratios have
less possibility to be adsorbed to the charged surface.

4 Results and Discussions
We set the linear size of our computational box (−L/2, L/2)3 to be L = 150 Å, and the radius
of the spherical colloidal particle (the macroion) to be R = 15 Å. The Bjerrum length is set to
be lB = 7 Å. The surface charge density σ ranges from −0.05 to −0.21 e/Å2. In our
simulations, we investigate mixed solutions of three types of counterions, with their
valences (z1, z2, z3) = (+1, +2, +3). We choose their radii to range from 1 Å to 4 Å. These
are within the interval of physical interest. For example, the hydrated radii of monovalent
hydrogen, sodium and potassium, divalent magnesium and calcium, and trivalent aluminum
ions are 4.5, 2.25, 1.5, 4.0, 3.0, and 4.5 Å, respectively [67]. For salt electrolytes, we choose
monovalent or divalent coions with radius 2 Å.
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One of the main objectives of our study is to understand the competitive adsorption of
counterions with different valences and sizes. Such property has been already investigated
previously; see [16, 17, 50, 51, 63, 64, 68] and the references therein. Most of these studies
found that the valence of counterion determines the competition in adsorption to a charged
surface with a low surface charge density and that smaller ions are stronger in such
competition for a high surface charge density. These conclusions result naturally from the
competition between electrostatic attraction and entropic repulsion expressed in the free-
energy functional (2.3), where the electrostatics dominates the free energy for the low
surface charge density, and the entropy dominates otherwise. It has been recently found in
our previous work [37] using the mean-field model described in the last section that the
competition between different ions in adsorption to a charged surface can be in fact
characterized by the ionic valence-to-volume ratios. Here, we use MC simulations to further
explore this characterization and compare our results with those from mean-field
calculations. In particular, we study a system with a crowded ionic population near a highly
charged surface, as shown in Figure 1.

In what follows, for an ion of the ith species (1 ≤ i ≤ M), we denote by Ri its radius and by

its valence-to-volume ratio.

4.1 Crucial factors in the competition between counterions
We first study salt-free systems with monovalent, divalent and trivalent counterions: z1 =
+1, z2 = +2, and z3 = +3. We investigate three different groups of such counterions with the
following order of valence-to-volume ratios: α+2 > α+3 > α+1; α+3 > α+1 > α+2; and α+1 >
α+2 > α+3. Here and below, we use α+i to denote the valence-to-volume ratio of the
counterion with valence +i. We use the parameters:

Group 1: (R1, R2, R3) = (3.0, 2.5, 3.5) in Å, α+1 : α+2 : α+3 = 1 : 3.5 : 1.9;

Group 2: (R1, R2, R3) = (2.5, 3.5, 3.0) in Å, α+1 : α+2 : α+3 = 1.4 : 1 : 2.4;

Group 3: (R1, R2, R3) = (2.0, 3.0, 4.0) in Å, α+1 : α+2 : α+3 = 2.7 : 1.6 : 1.

For each group, we choose the same number of ions for each of the three different species:
N1 = N2 = N3. Moreover, we select three different surface charge densities by setting N1 =
N2 = N3 = 100, 50, and 25, respectively, and by using the charge neutrality (2.1). The
corresponding surface charge densities of the macroions are −0.212, −0.106, and −0.053e/
Å2, all in the regime of strong surface charge.

To report our MC simulations, we use bar plots, with each bar representing the radial density
ρi(r) for the ith ionic species (1 ≤ i ≤ M ) as defined in (3.2). We choose the thickness of the
spherical shell to be Δr = 1 Å. We also convert the unites number/volume to mol/L which is
abbreviated M. To show our results of mean-field computations, we plot smooth curves of
radial densities ci(r) for the ith ionic species (1 ≤ i ≤ M ) that are just the ionic concentrations
in the radial direction. For each i the two quantities ρi(r) and ci(r) should be close to each
other, in particular, if the shell size Δr is very small. However, since the solvent molecules
are not explicitly included in our MC simulations but the concentration of solvent molecules
is included in our mean-field model, the two quantities ρi(r) and ci(r) are not exactly the
same.
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The quantitative results of our MC simulations are illustrated in Figures 2–4, where in
Figure 2 we also show our results of mean-field computations for comparison. Results in
Figure 2 are obtained using Group 1 parameters, while those in Figure 3 and Figure 4 are
obtained using Group 2 and Group 3 parameters, respectively. We observe clearly that
counterions are adsorbed tightly to the highly charged surface, and near the surface layers of
counterions of different species form, leading to the remarkable structure of stratification.
Moreover, we find that the order of layering depends on the valence-to-volume ratio, instead
of the valence or the size independently. Counterions with the largest valence-to-volume
ratio forms the first layer closest to the charged surface, those with the second largest such
ratio forms the second layer, and so on. When the surface charge density σ becomes smaller,
the role of valence is more important in determining which ionic species form a layer closest
to the surface. These results demonstrate that the selective adsorption and layer ordering in
the stratification depend on the competition between energetics and entropy, and that the
valence-to-volume ratio is an important parameter in such adsorption and layering for a
highly charged surface.

In Figure 2, we find a qualitative agreement of our size-effect included mean-field theory
with the MC simulations. We note that the peaks of ionic densities close to the surface
predicted by the MC simulations have a larger magnitude and are closer to the surface than
those predicted by the mean-field theory.

We now investigate the sensitivity of the ionic sizes with respect to the ionic structure in the
vicinity of charged surface. We fix the surface charge density to be σ = −0.22e/Å2. We
consider three species of counterions with valences zi = +i (i = 1, 2, 3) and number of ions
N1 = N2 = N3 = 100. In Figure 5, we plot the ionic densities for various combinations of the
ionic radii R1, R2, and R3. The radius of the trivalent counterion is decreased from 4 Å in
Figure 5 (a) to 3.5 Å in Figure 5 (b) so that the divalent and trivalent species have almost the
same valence-to-volume ratio. The radius of the monovalent ion is decreased from 2 Å in
Figure 5 (b) to 1.5 Å in Figure 5 (c). In both cases, the species with the highest valence-to-
volume ratio, i.e. the monovalent ionic species, remains the strongest in the competition to
form the first layer closest to the charged surface. This indicates that the ionic competitive
ability in adsorption is greatly improved by a slight decrease of its radius, which weakens
the ionic entropic repulsion. From Figure 5 (b), we also find that when two species of
counterions have close values of valence-to-volume ratios, the species with a higher valence
will have a stronger ability of adsorption.

Figure 5 (c) also illustrates an interesting phenomenon. With the decrease of the radius of
monovalent ions, the concentration of the divalent ions, which have the second largest of the
three valence-to-volume ratios, is increased. The trivalent ions which have the smallest
valence-to-volume ratio are depleted in the vicinity of the surface. This can be interpreted
that the more tightly binding of the monovalent ions to the surface decreases more the
electrostatic energy contributed by divalent and trivalent ions. The effect of the valence-to-
volume ratio is strengthened in the competition between the latter two species. This result
demonstrates that the nonuniform ionic size effect plays a very important role in determining
the properties of electrolyte solutions.

We now fix the numbers of ions N1 = N2 = N3 = 100, the surface charge density σ = −0.21e/
Å2, the ratios of radii R1 : R2 : R3 = 2 : 3 : 4, and the order of valence-to-volume ratios α+1
> α+2 > α+3. We vary simultaneously the ionic radii of the three species of counterions by
changing a common multiplier. We use three different sets with the radii of monovalent ions
being 1.2, 2.0, and 2.4 Å, respectively. We study how the different ionic sizes affect the
layering structure of counterions and how the competition in ionic adsorption is changed
with the change of entropy. The corresponding results are plotted in Figure 6. It can be
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found that, with the increase of the ionic radii, the entropic contribution to the electrostatic
free energy is increased, leading to the enhancement of the counterion repulsion. Moreover,
the particle numbers of all the three ionic species in the layers closest to the surface are
diminished. In the meantime, when ionic sizes are increased from small to large, the entropic
contribution to the free energy becomes more significant. Hence, the valence-to-volume
ratios give a clear characterization of stratification. In fact, the monovalent counterions,
which has the smallest value of valence but largest valence-to-volume ratio, always forms
the first layer closest to the surface. It is a further evidence that the competition between
electrostatic energetics and entropy leads to the following limits: at the limit of the
electrostatics domination the valence is the main indicator of the ordering of layers, while at
the limit of the entropy domination the valence-to-volume ratio is the main indicator of layer
ordering.

4.2 Systems with the presence of coions
We now add coions in the system and study the effect of coions to the competitive
adsorption and order of packing of counterions, in comparison with the salt-free systems.
We consider two cases. In the first case, we add monovalent coions to the system. We
assume that the radius of such a coion is R4 = 2 Å and that the total number of coions is N4
= 204. In the second case, we add divalent coions to the system. We assume that the radius
of such a divalent coion is R4 = 2 Å and that the total number of such coions is N4 = 102. In
both cases, we still have the monovalent, divalent, and trivalent counterions, with now their
radii 2, 3, and 4 Å, respectively, and their total numbers N1 = N2 = N3 = 134. We also
assume a high surface charge density σ = −0.21 e/Å2. The charge neutrality (2.1) is now
satisfied with M = 4 species of counterions and coions. The system will have an averaged
100 mM concentration of monovalent coions in the first case and 50 mM concentration of
divalent coions in the second case.

For these two systems with coions, we plot the radial densities of counterions and coions
obtained by our MC simulations in Figure 7 and those obtained by our mean-field numerical
computations in Figure 8. In comparison with those salt free systems, we find that the
addition of coions slightly enhances the layering effect. The densities of all three
counterions are increased. This has a minor influence to their layering order. It is clear that a
qualitative agreement between mean-field calculations and MC simulations is reached on the
competition of counterion adsorption.

We observe from Figure 7 (b) and (d) that the coion density predicted by MC simulations is
non-monotonic, while from Figure 8 (b) and (d) that the coion density predicted by the
mean-field theory is monotonic. In Figure 9, we plot the total ionic charge density for each
of the two systems obtained by our MC simulations. We find the over-charging of the
system, i.e., the total charge density is above zero that corresponds to the charge neutrality
[29, 69]. Interestingly, the over-charging of the monovalent-coion system is stronger than
that in the divalent-coion system: the inverted charges of the monovalent-coion system and
divalent-coion system are 1.86 e and 0.15 e, respectively. This is mainly due to the fact that
it is easier to form anion-cation binding pairs in the divalent-coion system than in the
monovalent-coion system. Thus the density of free counterions is decreased. In contrast, the
mean-field theory can only produce a monotonic profile of the total charge density as proved
mathematically in [26]. Therefore, the mean-field theory with the nonuniform size effect
still fails in predicting the charge inversion.

5 Conclusions
In this work, we study the competition of multiple counterions of different valences and
different sizes in binding to the surface of a spherical colloidal particle by both a mean-field
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theory and Monte Carlo (MC) simulations. The parameters of the underlying system of
electrolyte include: the valences zi, radii Ri (or volumes vi), and numbers Ni of ions of ith
species with i = 1, …, M, the radius R0 of a solvent molecule, the constant dielectric
coefficient ε of the electrolyte, and the surface charge density σ. The entire system is
assumed to be in charge neutrality. In the mean-field approach, we minimize a semi-
phenomenological electrostatic free-energy functional of ionic concentrations constrained by
Poisson’s equation. The electrostatic potential is not an independent variable of the
functional. The different ionic sizes are described through the entropic contributions of ions
and solvent molecules. The constrained free-energy minimization is realized numerically by
an augmented Lagrange multiplier method. We also use an unrestricted primitive model and
canonical ensemble Monte Carlo (MC) simulations with the Metropolis criterion to predict
the ionic distributions around the charged surface.

Through our extensive MC simulations and mean-field computations, we have found the
following:

1. For a low surface charge density, the adsorption of counterions with a higher
valence is preferable. This agrees with previous studies in existing literature. For a
highly charged surface, both of the mean-field theory and MC simulations show
that the counterions bind tightly around the charged surface, forming stratification
or layering of counterions of different species.

2. The ionic valence-to-volume ratios, instead of ionic valences alone, are the key
parameters that determine the binding of counterions to the charged surface. Due to
the ionic size effect, counterions with the largest valence-to-volume ratio form the
first layer of stratification, while those with the second largest valence-to-volume
ratio form the second layer, and so on. We shall call this the “criterion of valence-
to-volume rations” in ionic stratification. Our MC simulations confirm the validity
of this criterion that was discovered in our previous mean-field calculations [37].

3. Our MC simulations predict the charge inversion for ionic systems with salt.
Moreover, we find that the over-charging is more significant for a system with
monovalent coions than for a system with divalent coions. The mean-field theory,
however, fails in predicting the charge inversion, since it does not include the ion-
ion correlation.

In our mean-field computations, we have never found a case where our criterion of valence-
to-volume ratios fails for the prediction of stratification of multiple counterions for highly
charged surfaces. For MC simulations, we sometimes find the criterion does not work, when
those ratios are too close and the surface charge is too low. In fact, the MC simulation
reported in Figure 6 (b) of [51] for a low surface charge density contradicts our criterion.

While our mean-field theory and Monte Carlo simulations have both predicted the
stratification of counterions near a highly charged surface and the crucial role of the ionic
valence-to-volume ratios in such stratification, we have neglected several effects in our
theory and methods.

First, in our MC simulations, we treat ions as hard spheres to describe the short-range
repulsion in the van der Waals interactions between different kinds of ions of multiple
valences and different sizes, and between the ions and the charged macroion. We have
neglected the long-range attraction in such interactions that can contribute largely to the ion-
ion correlations. For a highly charged surfaces, counterions are crowded near the surface;
and the van der Waals attraction may not be as strong as the corresponding repulsion. While
we have taken a rather common approach in MC simulations, we understand that including
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the attraction part of the van der Waals interactions is practically quite possible. We shall
include such interaction in our subsequence works.

Second, in both of our mean-field treatment and MC simulations, we use a uniform
dielectric coefficient for the ionic solution. This is only an approximation in the description
of the dielectric properties of solvent, as the water in the proximity of a highly charged
surface is not expected to behave like bulk solvent. In fact, the dielectric coefficient can
depend on the ionic concentrations [13, 70, 71]. Such dependence is experimentally known
to be continuous and linear; cf. Eq. (1) and Table 1 in [72]. Near the charged surface the
dielectric coefficient is locally close to a constant; and the ion-ion interactions in such a
region can be still modeled well by our interaction energy (3.1) but with a dielectric
coefficient different from that in the bulk. We thus do not expect that this will significantly
affect the competition of different counterions in the stratification. To further explore the
detailed consequences of the concentration dependent dielectrics, we are currently extending
our work to such dielectric systems.

Third, the size effect of solvent molecules is not directly included in our MC simulations.
This makes our comparison between the mean-field theory and MC simulations only
qualitative. There is clearly a need to develop models and algorithms to include the solvent
molecular size effect in MC simulations of electrolyte systems.

We are currently working on to improve our theory and methods to include some of these
effects. In the future, it is desirable to apply our efficient theory and methods to large-scale
modeling of biomolecular systems in which nonuniform ionic size effects can be sometimes
very important. On the theoretical development, it is also necessary to derive from statistical
mechanics theory our mean-field, electrostatic free-energy functional that includes the
nonuniform ionic size effect.
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Figure 1.
(Color online) Typical MC simulations of ions surrounding a highly charged macroion. (a)
A salt free system composed of monovalent (black), divalent (red, or dark gray in print
version), and trivalent (green, or light gray in print version) counterions, with radii 3 Å, 2.5
Å, and 3.5 Å, respectively. (b) A system of salt solvent with coions (blue, or dark in print
version), and counterions of valences and radii +1 and 2 Å (black), +2 and 3 Å (red, or dark
gray in print version), and +3 and 4 Å (green, or light gray in print version), respectively.
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Figure 2.
(Color online) The radial densities by MC simulations (a), (b), and (c), and by mean-field
computations (d), (e), and (f) of the three species of counterions in Group 1: (z1, z2, z3) =
(+1, +2, +3), (R1, R2, R3) = (3.0, 2.5, 3.5) in Å, and α+1 : α+2 : α+3 = 1 : 3.5 : 1.9. All three
species have the same number of ions. This number is 100 in (a) and (d), 50 in (b) and (e),
and 25 in (c) and (f), respectively. Hence the constant surface charge density decreases from
(a) and (d), to (b) and (e), and to (c) and (f).
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Figure 3.
(Color online) The radial densities obtained by MC simulations of the three species of
counterions in Group 2: (z1, z2, z3) = (+1, +2, +3), (R1, R2, R3) = (2.5, 3.5, 3.0) in Å, and
α+1 : α+2 : α+3 = 1.4 : 1 : 2.4. All three species have the same number of ions. This number
is 100 (a), 50 (b), and 25 (c), respectively. Hence the constant surface charge density
decreases from (a) to (b) and to (c).

Wen et al. Page 21

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
(Color online) The radial densities obtained by MC simulations of the three species of
counterions in Group 3: (z1, z2, z3) = (+1, +2, +3), (R1, R2, R3) = (2.0, 3.0, 4.0) in Å, and
α+1 : α+2 : α+3 = 2.7 : 1.6 : 1. All three species have the same number of ions. This number
is 100 in (a), 50 in (b), and 25 in (c), respectively. Hence the constant surface charge density
decreases from (a) to (b) and to (c).
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Figure 5.
(Color online) MC simulations of the layering structure of ionic radial densities of three
counterion species with the valences z1 = 1, z2 = 2, and z3 = 3, and numbers of ions in each
species N1 = N2 = N3 = 100. The set of radii (R1, R2, R3) are different in the three plots. The
corresponding valence-to-volume ratios are: (a) α+1 : α+2 : α+3 = 2.7 : 1.6 : 1; (b) α+1 :
α+2 : α+3 = 1.8 : 1.1 : 1; (c) α+1 : α+2 : α+3 = 6.3 : 1.6 : 1.

Wen et al. Page 23

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
(Color online) MC simulations of radial densities of three species of counterions with the
valences z1 = 1, z2 = 2, and z3 = 3, and numbers of ions in each species N1 = N2 = N3 = 100.
The radii R1, R2, R3 in the three plots differ by a common factor. (a) Small ionic radii. (b)
Medium ionic radii. (c) Large ionic radii.
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Figure 7.
(Color online) MC simulations of counterion and coion radial densities. (a) and (b): systems
with monovalent coions. (c) and (d): systems with divalent coions.
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Figure 8.
(Color online) Counterion and coion radial densities from numerical computations based on
the mean-field theory with the ionic size effect. (a) Radial densities of counterions for the
system with monovalent coions. (b) Radial density of coions for the system with monovalent
coions. (c) Radial densities of counterions for the system with divalent coions. (d) Radial
density of coions for the system with divalent coions.
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Figure 9.
(Color online) MC simulations of the total charge density for the system with monovalent
coions (marked −1) and that with divalent coions (marked −2).

Wen et al. Page 27

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


