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given dataset and the idea of using the estimated power as 
the criterion for test selection. We also propose a fast simula-
tion-based method to calculate p values for the test selec-
tion procedure and for any method of combining p values. 
Our numerical results indicated that the proposed test selec-
tion procedure always yielded power close to the most pow-
erful test among the candidate tests at any given situation, 
and in particular, our proposed test selection performed ei-
ther better than or as well as the popular combining method 
of taking the minimum p value of the candidate tests. 

 Copyright © 2009 S. Karger AG, Basel 

 1. Introduction 

 We consider the problem of testing for association be-
tween a phenotype and multiple single nucleotide poly-
morphisms (SNPs) within a gene or region, though our 
focus is on a binary phenotype, e.g. disease status, as aris-
ing from a genome-wide association study (GWAS) with 
the case-control design. Because the association between 
the phenotype and causal SNPs is often quite weak, it is 
compelling to find and use a statistical test with high 
power. Although there does not appear to exist any single 
uniformly most powerful test for multiple SNPs, some 
may tend to be more powerful than others in some situ-
ations. For example, Chapman and Whittaker [2008] 
found that either a Bayesian test of Goeman et al. [2005] 
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 Abstract 

 We consider the motivating problem of testing for associa-
tion between a phenotype and multiple single nucleotide 
polymorphisms (SNPs) within a candidate gene or region. 
Various statistical approaches have been proposed, includ-
ing those based on either (combining univariate) single-lo-
cus analyses or (multivariate) multilocus analyses. However, 
it is known in theory that there is no single uniformly most 
powerful test to detect association with multiple SNPs. On 
the other hand, several tests have been shown to be among 
frequent winners across a range of practical situations, but 
the identity of the most powerful one changes with the situ-
ation in an unknown way. Here we propose a novel test se-
lection procedure to select from five such tests: a so-called 
UminP test that combines multiple univariate/single-locus 
score tests by taking the minimum of their p values as its test 
statistic, a multivariate score test and its two modifications, 
and a so-called sum test. We also illustrate its application to 
selecting genotype codings for the sum test since the per-
formance of the sum test depends on its genotype coding 
in an unknown way. Our major contributions include the 
methodology of estimating the power of a given test with a 
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or the UminP test that takes the minimum p value of uni-
variate single-locus tests is often most powerful among 
some popular methods under some practical situations. 
Pan [2009] proposed two tests that are asymptotically 
equivalent to Goeman’s test when permutation is used to 
calculate the p value for the latter; unlike Goeman’s test, 
the asymptotic distributions of the former can be derived 
and used. On the other hand, a popular and standard 
genotype-based multivariate test is the score test based 
on joint logistic regression, and it is closely related to the 
generalized Hotelling’s  T  2  test [Fan and Knapp 2003; 
Xiong et al., 2002]. Zhong and Pan [2008] used the GAW16 
Rheumatoid Arthritis data [Plenge et al., 2007] to em-
pirically show that, depending on chromosome regions 
under study, each of the Goeman’s test (or its variations 
as to be considered here), UminP test and the multivari-
ate score test could be more powerful than the others, as 
to be shown subsequently.

  Because there is no uniformly most powerful (unbi-
ased) test for multiple parameters [Cox and Hinkley, 
1974], as expected, several competitive tests (as discussed 
above) exist, and the answer to the question of which one 
is most powerful and thus to be used depends on the sit-
uation and is in general unknown. Hence, a practical ap-
proach is to apply multiple tests, and assess whether the 
smallest p value is significant after multiple-test adjust-
ment. This strategy of choosing the minimum p value 
from multiple (dependent) tests, called the MinP meth-
od, is only one of several existing methods to combine p 
values from multiple tests. In this article, we will con-
sider two other popular ones, Fisher’s [1932] method and 
the truncated product method (TPM) [Zaykin et al., 
2002]. Note that, although combining p values from mul-
tiple independent tests has been well studied [e.g. Lough-
in, 2004], this is not the case with multiple dependent 
tests as in the current context.

  As an alternative to combining multiple tests, we pro-
pose selecting a most powerful test from a group of the 
candidate tests by estimating their power based on any 
given data. Although there is a huge literature on model 
selection, to our knowledge, there is no previous work on 
test selection, which we propose studying here. The two 
topics of test selection and test combination are closely 
related to each other. First, a test selection criterion as de-
veloped here may be incorporated into a more powerful 
methodology for combining tests, though we do not pur-
sue it here. Second, in some situations, e.g. when it is 
known most of the tests may have low power, it may be a 
better idea to conduct test selection than test combina-
tion. For example, the performance of sum test is known 

to depend on the genotype coding in an unknown way, 
while most of the coding schemes may have low power 
[Chapman and Whittaker, 2008; Pan, 2009], it makes 
more sense to select a coding scheme giving high power 
than to combine many highly correlated and low pow-
ered sum tests. We will illustrate an application of our 
proposed methodology to select genotype coding schemes 
for the sum test, in addition to selecting from different 
types of tests. In general, it may be interesting to establish 
some analogy to model selection versus model combina-
tion [Shen and Huang, 2006; Yang, 2003] so that some 
insights into test selection and test combination can be 
provided.

  An interesting observation as the premise for the ap-
plication of our methodology is that quite a few tests, in-
cluding all the five candidate tests to be considered here, 
are based on a component of or the whole score vector 
from a logistic regression model. Based on the asymp-
totic distribution of the score vector, we propose a fast 
simulation-based method to compute a p value for our 
test selection procedure and for any method to combine 
the p values from multiple tests. As an application, we 
also demonstrate the usefulness of the proposed method 
to select genotype coding schemes for the sum test, which 
has been shown to perform well in some situations but 
not in others due to its dependence on the genotype cod-
ing in an unknown way [Pan, 2009].

  2. Methods 

 Although the methods may be extended to other study de-
signs, we focus on the case-control study design with a binary 
phenotype, such as a disease indicator. We have m independent 
observations ( Y  i ,  X  i ), in which subject  i  has a binary phenotype 
(e.g. disease status)  Y  i  and genotype  X  i  = ( X  i  1 , ...,  X  ik ). In this ar-
ticle, we consider only the dosage coding of  X  ij  for the additive 
mode of inheritance:  X  ij  = 0.1 or 2, representing the copy number 
of one of the two alleles present in SNP  j  of subject  i , though oth-
er coding schemes, including a binary coding of  X  ij  = 0 or 1 for a 
dominant or recessive genetic model, can be equally used. Given 
the data, we would like to test whether there is any association 
between the phenotype and genotype.

  2.1 Power Estimation 
 We assume that all the tests to be selected are based on a com-

mon multivariate statistic, such as the multivariate score statistic 
from logistic regression, which is true for the five candidate tests 
studied here (see Appendix A.1). In this way, we can take advan-
tage of the nice property of the score statistic, whose asymptotic 
null distribution is multivariate normal with mean 0 and covari-
ance matrix that can be consistently estimated. Specifically, we 
assume that based on a given dataset and a logistic regression 
model, we have a multivariate score statistic  U , whose asymptotic 
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null distribution is  N (0,  V ); see Appendix A.1 for closed forms of 
 U  and  V . Now our goal is to estimate the power of any test with 
test statistic that is a function of  U , say  T ( U ).

  Since the null distribution of  U  is  N (0,  V ), in theory, the null 
distribution of  T ( U ), a function of U, is also known, though it may 
not have a simple or closed form. Similar to Conneely and Boehn-
ke [2007], numerical method scan be used to calculate the rejec-
tion region  R ( T ,  � ) for  T ( U ) at significance level  �  by solving the 
equation: 

,
Size ; 0, ,

u R T
T u V du

�
� �

 where  � (.;  u  1 ,  V ) is the density function of a multivariate normal 
distribution  N ( u  1 ,  V ). If we know the true mean of  U  under the 
alternative hypothesis, say  E ( U   �   H  1 ) =  u  1 , then we can calculate 
the power of  T ( U ) simply as 

1 1,
Power , , ; , .

u R T
T u u u V du

�
� �

   However, of course, we do not know  u  1 , which is the target of our 
hypothesis testing. An unbiased (and consistent) estimate of  u  1  is 
 U  itself! Hence, we propose an estimator 

Power , , ; , ,
u R T ,

T U u U V du
�

� �

   which, unfortunately, is biased. To see why, consider the case 
when  H  0  holds. Then we have  u  1  = 0 and thus Power( T ,  � ) =  � . On 
the other hand, for any finite sample,  U   0  0 with probability 1, 
implying that 

Power , .T � �

   The bias and its corresponding estimate based on Monte Carlo 
simulations are respectively 

Bias Power , , 0,T E T U |U N V� �* * ,

   and 
0

0
1

Bias Power , , /
B

b

b
T T U B� �,

   where  U  (1) , …,  U  (B  0  )  are iid samples drawn from  N (0,  V ), the null 
distribution of the score statistics. The larger the replication num-
ber  B  0 , the more precise the resulting estimate, but also more 
time-consuming. We used  B  0  = 10 throughout. 

 Finally, the estimated power of the test  T  is 

Power , , Power , , max Bias , 0 .T U T U T� �

 Note that the bias correction step is technically necessary: the bias 
of  

Power , ,T U�

 may depend on the test  T ; that is, without a bias correction, it may 
always favor one of the candidate tests. For example, among the 
tests based on the multivariate score statistic, say the score test 
versus one of its modifications called SSU test, if no bias correc-
tion is conducted, then we will always choose the score test, be-
cause it is known that the score test is the (estimated) most pow-
erful test under the assumption of  u  1  =  U  as being used in our 
proposed test selection procedure [Cox and Hinkley, 1974; Pan 
2009], though of course the score test may be less powerful than 
other tests.

  2.2 Test Selection 
 2.2.1 Selecting from Candidate Tests 
 For a given dataset and a given list of candidate tests, say 

 T  1 , ...,  T  t , we would like to select the test with the highest power. 
To do so, we only need to estimate the power of each test by cal-
culating 

Power , ,iT U�

 for each  i  = 1, ...,  t , and choose the test  T  i  0  with 

0 1argmax Power , , ,t
i ii T U�

 such that  T  i  0  has the maximum estimated power among the can-
didate tests with the given data. 

 We use the p value of the test  T  i  0 , say  p  i  0 , as the test statistic for 
the test selection procedure. Such a chosen p value, as in choosing 
the minimum p value from multiple tests, is no longer a valid p 
value; a multiple test adjustment has to be made. We propose us-
ing a simulation based approach [Seaman and Muller-Myhsok, 
2005; Chapman and Whittaker, 2008] to make an adjustment, 
which is faster than a permutation-based approach. Specifically, 
(i) we simulate some null score statistics  U0  (  b  )    iid from  N (0,  V ) for 
 b  = 1, ...,  B ; (ii) treating each  U0  (  b  )    as the observed score statistic, we 
apply the above test selection procedure to obtain its selected sta-
tistic  p  0(  b  )    (i.e. the p value from the estimated most powerful test 
among the candidates as applied to  U0 (  b  )    ); (iii) the final p value for 
the test selection procedure is the sample proportion of  p  i  0   !   p0 (  b  )       . 
We used  B  = 100 throughout.

  As the permutation-based method, the above simulation-
based method takes account of the dependency among the candi-
date tests’ being applied to the same data. Although the simula-
tion-based method is in general faster than the permutation-
based method, both methods are computationally demanding: 
their permutation or simulation number B, and thus their com-
putational time, is inversely proportional to the largest p value to 
be significant after some multiple test adjustment. For example, 
if we would like to test disease association in 1,000 unlinked can-
didate regions, then, to achieve the statistical significance at 0.05 
level, we need a p value for a significant association in a region to 
be no greater than 0.05/1,000, and hence at least  B  = 10 5  is needed. 
To save computing time, we may also use the Bonferroni adjust-
ment, which, however, is known to be conservative. Specifically, 
with the estimated most powerful test  T  i  0  with p value  p  i  0 , the p 
value for the test selection procedure is min (1,  t   *  p  i  0 ).

  2.2.2 Selecting Genotype Coding for the Sum Test 
 As an illustration to a wide range of possible applications of 

the test selection procedure, we apply it to select the coding scheme 
for the sum test. A perceived drawback of the sum test is the de-
pendence of its power on the genotype coding as clearly shown by 
its score statistic ([Chapman and Whittaker, 2008]; see Appendix 
A.4). For any given genotype coding  X , we consider a different 
coding  X  * : suppose that we partition the loci into two subsets,  S  1  
and its complement; for any  i ,  X  *  ij  =  X  ij  if  j   D   S  1 , and X *  ij    = 2 –  X  ij  
otherwise. If we replace  X  ij  by new  X *  ij   in the logistic regression 
model (3), the corresponding score statistic for testing  H  0 :  �  c  = 0 
is 

1 1 1
1 1 ,  

m k k

c i ij j j
i j j

U Y Y X U U* * * *�                                 (1)
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 where 

1
1 1

m k

j i i
i j

U U , ,U Y Y X�

 is the score vector based on the original genotype coding  X , and 
1 *  = (1 *  1 , ..., 1 *  k   ) �  with 1 *  j   = 1 if  j   D   S  1  and 1 *  j     = –1 otherwise. In sum-
mary, the new score statistic  U *   c  is just a known function of the 
score vector  U  for the original genotype coding. Furthermore, we 
have 

  V  a  r ( U *  c   ) = 1 *  �   Cov ( U )1 * ,

  where  Cov ( U ) =  V  is given in Appendix A.1. Hence, we can simu-
late  U ’s from  N (0,  V ) to obtain the null statistics  U *  c     / � V a  r ( U  * )    for 
any new genotype coding  X  * , from which its p value can be esti-
mated. In this way, our proposed methods can be all equally ap-
plied to multiple sum tests with various genotype coding schemes 
for test selection and test combination (see Appendix B). 

 3. Results 

 3.1 Simulated Linkage Disequilibrium (LD) Patterns 
 We performed a simulation study following the set-

ups given in Wang and Elston [2007] with  k  = 10 marker 
SNPs and sample size  n  = 500 or  n  = 1,000. The disease-
causing SNP was assumed to be in the center of the mark-
er SNPs, but was removed from the data. First, we gener-
ated a latent vector from a multivariate normal distribu-
tion with one of three covariance structures: a compound 
symmetry (CS) with an equal pairwise correlation  �  = 
0.4, an AR-1 with the correlation  �  ij  = 0.8  �   i  –  j  

 
�   between 

components  i  and  j , and a correlation matrix with ele-
ments  �  ij  randomly between 0.3 and 0.7. Second, the la-
tent vector was dichotomized to yield a haplotype with 
allele frequencies randomly chosen between 0.2 and 0.8 
while the minor allele frequency (MAF) for the disease-
causing SNP was fixed at 0.2, 0.3 or 0.4. Third, we com-
bined two haplotypes and obtained marker genotype 
data  X  i  = ( X  i  1 , ...,  X  ik ) �  (and  X  0  i  for disease-causing SNP) 
for subject  i . Fourth, the disease status  Y  i  of subject  i  was 
generated from a logistic regression model:

  Logit Pr( Y  i  = 1) =  �  0  + log( OR ) X  i  0 , (2)

  where we chose  �  0  = –log 4 to give a background (i.e. not 
caused by the casual SNP) disease probability of 0.2, and 
the odds ratio (OR) ranged from 1 (i.e. no association) to 
2. Finally, following the case-control design, we sampled 
 n  cases (with  Y  i  = 1) and  n  controls (with  Y  i  = 0). We ex-
cluded the disease-causing SNP, supplying {( Y  i ,  X  i ):  i  = 1, 
2, ..., 2 n } as a dataset to various statistical tests. For each 
set-up, we simulated 1,000 datasets, from which we ob-
tained an empirical size or power for each test as its pro-

portion of correctly or incorrectly rejecting its  H  0 ; in par-
ticular, the Monte Carlo standard error of an empirical 
size/power  p̂  is � p ̂   (1 –   p̂  )/1,000  ̂   0.016. 

 Because a matrix with non-diagonal elements ran-
domly between 0.3 and 0.7 may not be a proper correla-
tion matrix that is positive definite, we generated the la-
tent variables with a random correlation matrix in the 
following way. First, we generated iid random variates  b  i , 
 e  0  and  e  ij  for  i  = 1, ..., 10 and  j  = 1, ..., 10 from  N (0, 1/10). 
Second, for each  j  = 1, ..., 10, we generated a random inte-
ger  j  0  uniformly from  U (3, 7). Suppose that the latent vari-
ables for the causal SNP and marker SNPs are  Z  0  and 
 Z  1 , ...,  Z  10 . Then  Z  0  =  �  9  i   = 1   b  i  +  e  0  and  Z  j  =  �i  

j  0     = 1   b  i  +  
� 1  i  0  =   j  0   + 1   e  ij  for  j  = 1, ..., 10. It is easy to verify that the cor-
relation between any two latent variables was between 0.3 
and 0.7, inclusively.

  The simulation results are summarized in  tables 1  and 
 2 . Across all three correlation structures, the following 
conclusions can be drawn. First, among the five individ-
ual tests, SSU and SSUw had similar performance and 
were winners along with the sum test, followed by the 
UminP and then the (multivariate) score test. Second, 
among the three combining methods, the MinP method 
was the least powerful, while TPM seemed to have a slight 
edge over Fisher’s method. Note that the power difference 
between the MinP and TPM could be often as large as 
10% in absolute power. Third, in any case, the proposed 
test selection procedure always yielded power close to the 
highest one.

  Note that, though some Type I error rates of the test 
selection procedure were slightly larger than the nominal 
level of 0.05, 0.05 fell within the 95% confidence intervals 
of the Type I error rates. Because the method depends on 
the asymptotic normality of the score statistic, the meth-
od could perform better with a larger sample size: the 
Type I error rates for  n  = 1,000 seemed to be closer to the 
nominal level than were those for  n  = 500. Other sources 
of approximation errors could be due to relatively small 
values of  B  0  and  B  in the simulation-based method to cal-
culate the p values. When we increased  B  0  and  B  to 1,000 
and 200 respectively, the Type I error rate estimates for 
the three correlation structures in  table 1  decreased from 
0.059, 0.063 and 0.065 to 0.049, 0.053 and 0.056, respec-
tively. Furthermore, if we increase the number of simula-
tions, we expect to have more accurate Type I error esti-
mates.

  3.2 HapMap Data for Gene IL21R 
 As in Chapman and Whittaker [2008], we also consid-

ered the region of gene IL21R, in which LD was low. We 
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Table 1. Empirical sizes and powers of various tests with nominal significance level � = 0.05 for simulated data with three correlation 
structures (compound symmetry (CS), AR-1 and random (Rand)) and 10 SNPs; n = 500

Corr OR Sco SSU SSUw UminP Sum Test combination Test
selectionMinP Fisher TPM

CS 1.0 0.045 0.043 0.044 0.046 0.051 0.043 0.045 0.045 0.059
1.2 0.057 0.080 0.077 0.077 0.098 0.079 0.084 0.080 0.100
1.4 0.085 0.193 0.199 0.149 0.235 0.153 0.193 0.198 0.201
1.6 0.139 0.356 0.358 0.237 0.393 0.255 0.353 0.357 0.372
1.8 0.245 0.519 0.518 0.365 0.577 0.405 0.504 0.520 0.540
2.0 0.346 0.662 0.661 0.489 0.711 0.546 0.644 0.663 0.665

AR-1 1.0 0.051 0.048 0.048 0.040 0.055 0.043 0.046 0.050 0.063
1.2 0.077 0.125 0.124 0.109 0.132 0.111 0.129 0.131 0.145
1.4 0.182 0.352 0.354 0.296 0.350 0.298 0.356 0.354 0.361
1.6 0.356 0.577 0.585 0.512 0.599 0.516 0.582 0.585 0.584
1.8 0.543 0.785 0.783 0.712 0.797 0.720 0.784 0.781 0.774
2.0 0.719 0.901 0.896 0.849 0.894 0.848 0.898 0.901 0.899

Rand 1.0 0.047 0.046 0.044 0.052 0.044 0.052 0.053 0.049 0.065
1.2 0.076 0.114 0.116 0.086 0.134 0.086 0.116 0.121 0.137
1.4 0.141 0.284 0.281 0.207 0.319 0.216 0.273 0.284 0.312
1.6 0.238 0.500 0.505 0.357 0.546 0.392 0.495 0.507 0.508
1.8 0.378 0.721 0.718 0.531 0.753 0.585 0.708 0.720 0.717
2.0 0.517 0.836 0.837 0.687 0.863 0.742 0.830 0.836 0.837

Table 2. Empirical sizes and powers of various tests with nominal significance level � = 0.05 for simulated data with three correlation 
structures and 10 SNPs; n = 1,000

Corr OR Sco SSU SSUw UminP Sum Test combination Test
selectionMinP Fisher TPM

CS 1.0 0.033 0.033 0.032 0.032 0.040 0.029 0.033 0.035 0.043
1.2 0.053 0.119 0.116 0.082 0.139 0.090 0.113 0.119 0.133
1.4 0.145 0.349 0.344 0.237 0.386 0.253 0.341 0.345 0.361
1.6 0.310 0.641 0.641 0.450 0.673 0.506 0.610 0.639 0.633
1.8 0.499 0.836 0.835 0.655 0.872 0.716 0.821 0.841 0.841
2.0 0.691 0.935 0.933 0.820 0.965 0.870 0.930 0.933 0.943

AR-1 1.0 0.053 0.029 0.030 0.045 0.036 0.043 0.036 0.034 0.053
1.2 0.102 0.210 0.206 0.176 0.209 0.181 0.210 0.207 0.205
1.4 0.370 0.593 0.604 0.511 0.606 0.535 0.606 0.601 0.606
1.6 0.660 0.877 0.871 0.802 0.877 0.815 0.872 0.877 0.866
1.8 0.869 0.978 0.978 0.959 0.976 0.962 0.981 0.980 0.978
2.0 0.961 0.997 0.996 0.989 0.996 0.991 0.996 0.996 0.996

Rand 1.0 0.056 0.047 0.046 0.053 0.052 0.056 0.053 0.053 0.065
1.2 0.106 0.194 0.196 0.144 0.200 0.150 0.186 0.196 0.205
1.4 0.270 0.517 0.521 0.356 0.568 0.391 0.495 0.515 0.522
1.6 0.495 0.801 0.804 0.636 0.843 0.701 0.785 0.799 0.806
1.8 0.739 0.944 0.942 0.836 0.953 0.883 0.932 0.944 0.938
2.0 0.895 0.988 0.988 0.942 0.991 0.968 0.983 0.987 0.986
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followed exactly the same steps except that as in Chap-
man and Whittaker [2008], the disease-causing SNP was 
selected  randomly  and then excluded from the data in 
each simulation run. At the end, we had 28 SNPs. As 
shown in  table 3 , first, among the five individual tests, 
the UminP test was the winner, followed by SSU and 
SSUw, then by the sum test and finally by the score test. 
Second, among the three combining methods, the MinP 
and Fisher’s methods appeared to be the winners, closely 
followed by TPM. Third, the test selection procedure had 
power close to the UminP, the winner among the indi-
vidual candidate tests, and higher than any of the three 
combining methods for small ORs.

  3.3 HapMap Data for a Region on Chromosome 9 
 Zhong and Pan [2008] found a region on chromosome 

9 with the GAW16 RA data for which the power of the 
SSU or SSUw was low. The region of about 15 Kb con-
tained eight SNPs: rs10985997, rs1891641, rs2491352, 
rs872863, rs4838057, rs12348586, rs4466467 and 
rs7865976. For the HapMap CEU samples, after random-
ly imputing for missing genotypes, we found that the ge-
notype codings of rs1891641, rs12348586 and rs7865976 
were perfectly correlated (with pairwise correlation coef-
ficient 1); so were another three SNPs: rs872863, rs4838057 
and rs4466467. For each simulated dataset, we randomly 
selected one of the eight SNPs as disease-causing and re-
moved it from the subsequent analysis. First, among the 
five individual tests, the score test was the most powerful, 
followed by the UminP, SSUw and SSU tests sequentially, 

while the sum test had by far the lowest power ( table 4 ). 
Second, among the three combining methods, the MinP 
method was the winner, closely followed by the TPM and 
Fisher’s method. Third, the test selection procedure had 
either slightly higher or comparable power than or as the 
MinP method.

  3.4 HapMap Data for Gene CHI3L2 
 We conducted a simulation study based on real LD 

patterns within the CHI3L2 gene for the 90 CEU samples. 
As in Wang and Elston [2007], first, we excluded SNPs 
with MAF  ̂  0.2, leaving 23 SNPs. Second, we did a single 
imputation for each of the missing genotypes by random-
ly drawing an observed genotype of the same SNP. Third, 
we used the dosage coding for the SNPs and tried to min-
imize the number of negative correlations among them. 
Fourth, we deleted redundant SNPs that were perfectly 
correlated with other SNPs, leading to 17 SNPs remain-
ing. Fifth, we repeatedly sampled (with replacement) sub-
jects from the 90 CEU individuals. Finally, as Wang and 
Elston [2007], we chose the SNP rs2182114 as disease-
causing. As shown in  table 5 , first, among the five indi-
vidual tests, the SSU and SSUw tests were the winners, 
followed by the sum and UminP tests, and finally by the 
score test. Second, among the three combining methods, 
the TPM and Fisher’s methods appeared to be the win-
ners, followed by MinP. Third, the test selection proce-
dure had power that was comparable to that of the most 
powerful individual test, but slightly higher than any 
combining method for small ORs.

Table 3. Empirical sizes and powers of various tests with nominal significance level � = 0.05 for simulated data based on the LD pat-
terns in gene IL21R with 27 SNPs

n OR Sco SSU SSUw UminP Sum Test combination Test
selectionMinP Fisher TPM

500 1.0 0.039 0.042 0.044 0.055 0.050 0.053 0.040 0.041 0.068
1.2 0.123 0.202 0.208 0.182 0.164 0.180 0.197 0.208 0.233
1.3 0.205 0.402 0.402 0.417 0.304 0.413 0.432 0.419 0.453
1.4 0.369 0.594 0.589 0.652 0.432 0.650 0.644 0.618 0.682
1.5 0.526 0.737 0.740 0.829 0.527 0.829 0.800 0.779 0.831
1.6 0.691 0.828 0.836 0.909 0.607 0.911 0.904 0.875 0.918

1,000 1.0 0.042 0.044 0.043 0.049 0.034 0.046 0.047 0.049 0.066
1.2 0.214 0.390 0.391 0.411 0.286 0.404 0.403 0.397 0.445
1.3 0.441 0.679 0.670 0.730 0.499 0.729 0.734 0.708 0.760
1.4 0.726 0.826 0.826 0.917 0.604 0.919 0.892 0.873 0.922
1.5 0.905 0.912 0.920 0.974 0.699 0.976 0.970 0.971 0.975
1.6 0.973 0.960 0.966 0.991 0.767 0.993 0.993 0.991 0.989
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  3.5 Selecting Genotype Coding for the Sum Test 
 We applied the sum tests with various genotype coding 

schemes to the HapMap data for gene IL21R as before. For 
each locus, there are two possible coding schemes by 
counting the number of either alleles. Thus, there are 2 27  
possible genotype coding schemes for gene IL21R with 27 
SNPs. Because it was not feasible to consider all possible 
coding schemes, we randomly chose 256 possible coding 

schemes, estimated their powers by simulations, and thus 
chose the ones with power at the maximum, first quartile 
(Q1), median (Q2), third quartile (Q3) and minimum, re-
spectively, plus the original coding scheme (Ori) obtained 
from the heuristic algorithm of Pan [2009] that aims to 
minimize the number of SNP pairs with negative Pearson 
correlations. We then treated these six sum tests (with the 
six coding schemes) as the candidate tests and did a simu-

Table 4. Empirical sizes and powers of various tests with nominal significance level � = 0.05 for simulated data based on the LD pat-
terns in a chromosome 9 region with 7 SNPs

n OR Sco SSU SSUw UminP Sum Test combination Test
selectionMinP Fisher TPM

500 1.0 0.055 0.051 0.047 0.052 0.046 0.055 0.056 0.059 0.069
1.2 0.205 0.163 0.156 0.177 0.102 0.182 0.168 0.171 0.208
1.4 0.615 0.443 0.459 0.522 0.261 0.569 0.514 0.535 0.602
1.6 0.869 0.703 0.747 0.805 0.424 0.837 0.791 0.820 0.855
1.7 0.933 0.784 0.810 0.882 0.495 0.915 0.879 0.898 0.913
1.8 0.965 0.856 0.861 0.926 0.539 0.955 0.938 0.942 0.958
2.0 0.992 0.955 0.924 0.978 0.626 0.988 0.981 0.984 0.988

1,000 1.0 0.061 0.053 0.049 0.053 0.065 0.059 0.060 0.056 0.068
1.1 0.121 0.098 0.093 0.106 0.083 0.098 0.102 0.102 0.133
1.2 0.394 0.277 0.286 0.318 0.179 0.343 0.302 0.324 0.378
1.3 0.672 0.520 0.539 0.599 0.314 0.632 0.603 0.599 0.662
1.4 0.862 0.711 0.742 0.794 0.440 0.839 0.798 0.805 0.860
1.5 0.952 0.836 0.857 0.907 0.532 0.941 0.925 0.929 0.948
1.6 0.984 0.925 0.914 0.963 0.606 0.977 0.973 0.978 0.981
1.7 0.993 0.965 0.952 0.982 0.647 0.990 0.989 0.991 0.991

Table 5. Empirical sizes and powers of various tests with nominal significance level � = 0.05 for simulated data based on the LD pat-
terns in gene CHI3L2 with 17 SNPs

n OR Sco SSU SSUw UminP Sum Test combination Test
selectionMinP Fisher TPM

500 1.0 0.050 0.050 0.049 0.050 0.050 0.049 0.056 0.056 0.056
1.1 0.068 0.125 0.123 0.107 0.129 0.102 0.119 0.121 0.133
1.2 0.144 0.363 0.358 0.288 0.346 0.291 0.334 0.343 0.373
1.3 0.293 0.671 0.672 0.589 0.633 0.577 0.654 0.641 0.645
1.4 0.470 0.891 0.894 0.852 0.839 0.827 0.882 0.872 0.878
1.5 0.718 0.974 0.972 0.950 0.952 0.949 0.967 0.968 0.965
1.6 0.883 0.995 0.996 0.990 0.989 0.987 0.992 0.993 0.992

1,000 1.0 0.049 0.042 0.045 0.052 0.045 0.048 0.046 0.053 0.056
1.1 0.079 0.204 0.199 0.170 0.190 0.153 0.197 0.199 0.212
1.2 0.271 0.644 0.636 0.569 0.608 0.545 0.613 0.618 0.642
1.3 0.571 0.928 0.930 0.896 0.898 0.886 0.920 0.915 0.921
1.4 0.871 0.993 0.992 0.989 0.985 0.986 0.992 0.991 0.992
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lation study as before. The simulation results are shown 
in  table 6 , from which we observe the following. First, 
among the six candidate sum tests, the power difference 
could be large and, as explained by Pan [2009], the coding 
given by the heuristic algorithm yielded good power, but 
not necessarily the highest. Second, among the three 
combining methods, the MinP method was the consistent 
winner with substantial power improvement over the 
other two methods. Third, the test selection procedure 
was always as powerful as the most powerful sum test, 
and in this case also as powerful as the MinP method.

  4. Discussion 

 As discussed in Pan [2009], among the five candidate 
association tests considered here, the SSU and SSUw per-
form well across a wide range of scenarios, but under 
some situations the UminP test (e.g. for gene IL21R as 
shown in  table 3 ) and the multivariate score test (e.g. for 
a region in chromosome 9 as shown in  table 4 ) can be 
more powerful. The sum test could be powerful if a suit-
able but unknown coding scheme is used. Hence, in gen-
eral, the identity of the most powerful test for any given 
data is unknown, depending on the given situation, e.g. 
disease-genotype association patterns and LD patterns 
among the SNPs. The main motivation of this work is 
to develop a data-adaptive procedure to select the most 
powerful test from a set of candidate tests for any given 

data. The concept of the data-adaptivity adopted here is 
different from a criterion called ‘efficiency robustness’ 
(e.g. Freidlin et al., 2002; Zheng and Ng, 2008, and refer-
ences therein): among a given set of candidate tests, the 
latter would select a test that has a high  minimum  power 
across various situations, whereas ours selects a test with 
the highest (estimated) power for a given situation.

  For test combination, either the MinP or TPM meth-
od, but not both, seemed to work well with the power 
close to the most powerful candidate test across many 
situations considered here. However, when one of the two 
combining methods worked well, there might be a sub-
stantial power loss associated with the other. Because 
there is no uniformly most powerful test for multiple 
SNPs, as expected, no single combining method is uni-
formly most powerful either. The situation is similar to 
that for the individual association tests: which combin-
ing method or individual test is most powerful depends 
on the  unknown  data distribution. For example, the com-
monly used MinP method that selects the smallest p val-
ue, albeit powerful under many situations, might be less 
powerful than Fisher’s method, and vice versa. Our pro-
posed test selection procedure not only provides a means 
to estimate the power of a given test, but also to select the 
most powerful one and yield a valid p value. As shown in 
our numerical examples, even though the identity of the 
most powerful individual test or combining method 
changes with the situation in an unknown way, our pro-
posed test selection procedure performed consistently 

Table 6. Empirical sizes and powers of the sum tests with various genotype codings with nominal significance level � = 0.05 for sim-
ulated data based on the LD patterns in gene IL21R with 27 SNPs

n OR Ori Max Q3 Q2 Q1 Min Test combination Test
selectionMinP Fisher TPM

500 1.0 0.050 0.051 0.051 0.044 0.058 0.051 0.051 0.028 0.033 0.051
1.2 0.164 0.159 0.173 0.167 0.112 0.062 0.136 0.111 0.121 0.141
1.3 0.304 0.295 0.286 0.307 0.176 0.079 0.280 0.234 0.242 0.280
1.4 0.432 0.438 0.424 0.417 0.246 0.097 0.427 0.358 0.378 0.422
1.5 0.527 0.547 0.504 0.501 0.317 0.117 0.547 0.467 0.480 0.549
1.6 0.607 0.633 0.596 0.564 0.378 0.139 0.643 0.553 0.572 0.645

1,000 1.0 0.034 0.035 0.042 0.040 0.068 0.058 0.058 0.026 0.028 0.055
1.1 0.112 0.115 0.110 0.116 0.093 0.050 0.097 0.069 0.080 0.094
1.2 0.286 0.285 0.286 0.287 0.177 0.077 0.256 0.211 0.229 0.258
1.3 0.499 0.503 0.474 0.496 0.284 0.115 0.497 0.413 0.437 0.491
1.4 0.604 0.633 0.608 0.572 0.388 0.152 0.672 0.584 0.594 0.670
1.5 0.699 0.725 0.679 0.635 0.472 0.177 0.772 0.671 0.683 0.771
1.6 0.767 0.788 0.749 0.686 0.531 0.214 0.834 0.756 0.752 0.834
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well with its power always close to the most powerful in-
dividual test or combining method.

  We have proposed and studied a simulation-based 
method to calculate the p value for the proposed test se-
lection procedure, as for the UminP test and various test 
combination procedures. The goal is to account for mul-
tiple tests after test selection. Although the proposed sim-
ulation-based method, without refitting a model and re-
calculating test statistics, is much faster than a permuta-
tion-based method, both methods are computationally 
intensive: the required simulation or permutation num-
ber  B  has to be large if a highly significant p value is 
aimed, e.g. after a multiple test adjustment for a GWAS. 
For our simulations reported in  tables 1  and  2 , with  B  = 
100, it took about half a minute for a dataset with either 
sample size  n  = 500 or  n  = 1,000 as implemented in R on 
a Linux PC.   However, to achieve a p value in the order of 
10 –6 , we need  B  = 10 6 , requiring several days for each da-
taset. Hence, our current implementation can only be ap-
plied to candidate genes or regions, not GWASs. If a more 
efficient implementation (e.g. in C or Fortran) is available 
with parallel computers, or the Bonferroni adjustment is 
adopted, it may be applied to GWASs.

  We comment on some differences between test selec-
tion and model selection. Although there may be a cor-
respondence between a candidate test and a candidate 
model, it is possible to have multiple tests based on the 
same model. For example, the multivariate score test, 
SSU and SSUw tests are all based on the same multiple 
logistic regression model (model (3) in Appendix A.1), 
but differing in how their test statistics are constructed. 
We have also showed how to select various versions of the 
sum test with different coding schemes on genotypes, all 
based on the same single logistic regression model (mod-
el (5) in Appendix A.4).

  Although our proposed methodology is applicable to 
a large family of score-based tests, independent of the 
type of the phenotype or study design, extensions to oth-
er scenarios are warranted. First, in general, as long as the 
candidate tests are based on some statistics with known 
asymptotic distributions and the dependency of these 
statistics can be modeled or simulated, our methodology 
may be applicable. Second, even some existing tests are 
not score-based, a unified formulation of various tests in 
a general frame work, e.g. as some score-based tests in an 
expanded logistic regression model [Pan, 2009b], will 
largely facilitate the application of our proposed method-
ology. Further studies to extend the proposed test selec-
tion procedure to haplotype-based tests [e.g. Chapman et 
al., 2003; Schaid et al., 2002; Stephens et al., 2001; Zhao et 

al., 2003a, b, and references therein] and other tests, are 
needed.

  R code will be posted on http://www.biostat.umn.edu/
 � weip, and available upon request.

  Appendix A: Candidate Association Tests 

 A.1 A Global Test: The Multivariate Score Test 
 To test any possible association between the binary phenotype 

and any of the SNPs, we use a joint logistic regression model 

0
1

Logit Pr 1 ,  
k

i ij j
j

Y X� �                                                (3)

 where  Y  i  = 0 or 1 indicates whether subject  i  is a control (i.e. with-
out disease) or a case (i.e. with disease). A global test of any pos-
sible association between the phenotype and SNPs can be formu-
lated as jointly testing on the multiple parameters  �  j ’s with the 
null hypothesis  H  0 :  �  = ( �  1 , ...,  �  k ) = 0 by the likelihood ratio test 
(LRT), Wald test or score test in the context of logistic regression 
(or more generally, of generalized linear models for other types of 
responses); the three tests are asymptotically equivalent. In this 
paper, we will focus on the score test. As shown by Chapman et 
al. [2003], the score test statistics 

 
   T  score  =  U  �  V  –1  U, 

  with the score vector as 
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   and its covariance matrix as 
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   Under  H  0 , the score test statistic has an asymptotic chi-squared 
distribution  �  2  r  with degrees of freedom DF = rank ( V ). A poten-
tial problem with the test is that, for a large  k , the test can be low-
powered because of the large DF. 

 A.2 UminP Test: Combining Marginal or Univariate Tests 
 In contrast to the global or joint test, an other extreme is to conduct 
SNP-by-SNP single-locus tests: rather than including all the  k  SNPs 
in a joint model, we include only one SNP in a logistic model 

   Logit Pr( Y  i  = 1) =  �  M  ,0  j  +  X  ij  �  M  ,  j , (4)

  where we explicitly distinguish  �  M  = ( �  M  ,1 , ...,  �  M  ,  k ) �  in marginal 
models (4) from  �  in joint model (3). Then we test  H  0 , j :  �  M  ,  j  = 0 
for each  j  = 1, ...,  k  sequentially. It turns out that the univariate 
score test statistic for H 0,  j  is 

    T  score,   j   =  U   2  j  /  v  j ,

  where  U  j  is the  j -th component of the score vector  U , and  v  j  the 
 j -th diagonal element of  V . Under  H  0,  j ,  T  score  , j   has an asymptotic 
distribution  �  2  1 , from which we obtain a p value, say  p  M  ,  j . As usu-
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al, to test  H  0 , we can combine the  k  individual p values by taking 
 p  U  = min { p  M  ,1 , ...,  p  M  ,  k }, resulting in the so-called UminP test. 
 Although other combining methods may be equally applied 
 [Roeder et al., 2005], due to its simplicity and often good perfor-
mance, we only consider the UminP test here. 

 Although each individual univariate test has DF = 1, a multiple 
test adjustment for  p  U  has to be made, often based on either per-
mutation or Bonferroni adjustment. Because the Bonferroni ad-
justment is known to be conservative, permutation is more wide-
ly used, though it is computationally demanding. The multiple 
test adjustment may reduce the power of the test, as shown by 
Wang and Elston [2007]. Here we use simulations to approximate 
the asymptotic distribution of  p  U , as to be discussed in Appen-
dix B.

  A.3 Modified Score Tests: SSU and SSUw 
 In contrast to the usual multivariate score test with statistic 

 T  score  =  U  �  V  –1  U , an alternative is to simply use

   SSU  =  U  �  U ,

  ignoring the covariance matrix of the score vector  U . This test is 
related to the test of Goeman et al. [2005]; in fact, the above SSU 
is equivalent to the permutation-based version of Goeman’s test. 
Although Goeman’s test was derived under an empirical Bayes 
framework to test on a large number of parameters, as arising in 
microarray gene expression data, Chapman and Whittaker [2008] 
found that Goeman’s test worked impressively well across a wide 
range of scenarios, as also confirmed by Pan [2009]. 

 A weighted form of the above test is the SSUw

   SSUw  =  U  �  V  d–  1    U ,

  with  V  d  = Diag( V ) as a diagonal matrix. SSU can be interpreted 
as an  estimated  most powerful test [Pan, 2009], which also par-
tially explains the good performance of SSU. Often, SSU and 
SSUw perform similarly, but for some situations, SSUw can be 
more powerful [Zhong and Pan, 2008]. 

 Asymptotically, each of the two test statistics is a quadratic 
form of normal variates,  Q  =  U  �  W  –1  U , with  W  =  I  or  W  = Diag( V ) 
respectively. It is well known [e.g. Johnson and Kotz, 1970, p. 150] 
that the distribution of  Q  is a weighted sum of  k  independent chi-
squared variates with DF = 1,  �  k  j   = 1   c  j   �  2  1 , where  c  j ’s are the eigen-
values of  VW  –1 . Furthermore, by the results of Zhang [2005], 
  �  k  j   = 1    c  j   �  2  1  can be well approximated by  a  �   2  d  +  b  with 
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 Note that the above approximation is independent of the sample 
size. To calculate a p value, for example for the SSU test, 

 
  Pr( SSU   1   s   �   H  0 )  ;  Pr( �  2  d      1  ( s  –  b ) /  a  ). 

  A.4 The Sum Test 
 To reduce the DF of the global test in model (3), Pan [2009] 

proposed a so-called sum test as a compromise. Under the pos-
sibly mis-specified working assumption of a common association 
strength with  �  1  = ... =  �  k  =  �  c , model (3) reduces to 

0
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k

i ij c
j

Y X� �                                                 (5)

 then we can test  H  0,  c :  �  c  = 0 with a minimum DF = 1. Similar to 
the weighted score test (WST) proposed by Wang and Elston 
[2007], the sum test can have high power if  �  M  ,  j ’s close; on the 
other hand, if  �  M  ,  j ’s have different signs, the power can be low. 
Exactly for the latter reason, Chapman and Whittaker [2008] did 
not recommend the use of the sum test (or WST). The sum test 
can be also expressed in terms of the score statistic  U , thus facili-
tating combining its use with other tests. It is easy to see that the 
univariate score statistic for (5) is 

 

1 1 1
1 ,

m k k

c i ij j
i j j

U Y Y X U U�                                        (6)

  where 1 is a vector with all elements equal to 1. By the asymptotic 
normality of  U , the asymptotic null distribution of  U  c  is normal 
 N (0, 1 �  V 1). 

 Appendix B: Combining Multiple Tests 

 Given  L  p values,  p  1 , ...,  p  L , obtained from  L  (possibly dependent) 
tests on  H  0 , we can combine the p values in several ways: 
 • The MinP method:  T  Min  = min( p  1 , ...,  p  L ). 
 • The Fisher method:  T  F  =  	  L  j   = 1   p  j  .  
 • The truncated product method (TPM):  T  TPM  =  	  L  j   = 1   p  j  I ( p  j   !  

 
 ), where  
  is some cutoff; as in Zaykin et al. [2002], we used  
  
=  �  = 0.05 throughout. 
 To obtain a p value for each combining function, say 

 C ( p  1 , ...,  p  k ), we can use a permutation method by permuting  Y , 
which however is computationally demanding for its requirement 
of fitting models many times. Here we propose using a simula-
tion-based approach [Seaman and Muller-Myhsok, 2005; Chap-
man and Whittaker, 2008]. First, we note that each individual test 
is based on a component of or the whole score vector  U . Second, 
because of the asymptotic null distribution of  U  is known as  U   �  
 N (0,  V ), we can simulate  B  iid copies of  U  b ’s from  N (0,  V ) with 
 b  = 1, 2...,  B . Based on each  U  b , we can calculate individual p values 
as  p  b  1 , ...,  p  b  k , and thus  C ( p  b  1 , ...,  p  b  k ).

  Third, the p value for  C ( p  1 , ...,  p  k ) is simply  �  B  b   = 1   I  [ C ( p  1 , ...,  p  k ) 
 !   C ( p  b  1 , ...,  p  b  k )] /  B . We used  B  = 1,000 throughout. An alternative 
method of Lin [2005] can be equally easily implemented.

  We consider combining the p values from five tests: the UminP 
test, the multivariate score test, the SSU and SSUw tests, and the 
sum test. A combining function  C  combines the p values from the 
above five tests. We also consider combining multiple versions of 
the sum test with various genotype coding schemes.
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