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Abstract

Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human
milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell
surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a sub-
strate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and
some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in
size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase,
lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of
HMGPs that may contribute to the ability of human milk to protect neonates from disease.

Introduction

Human milk is widely accepted as containing an ideal
mixture of nutrients for infants, while also conveying

immunologic and other health benefits.1 Glycans in human
milk contain oligosaccharide moieties in their free and con-
jugated form, and many function as competitive inhibitors of
pathogen binding, thereby protecting infants against infec-
tion.2 The most plentiful and well-defined inhibitors of
pathogen binding are the human milk oligosaccharides, but
human milk glycoproteins (HMGPs) are also principal com-
ponents of human milk that, in aggregate, display inhibitory
activity against a broad spectrum of pathogens.

HMGPs vary in size, structure, and abundance. More than
400 proteins, most of which are glycosylated, have been identi-
fied in human milk by mass spectrometry.3 Some of these
HMGPs have shown activity that might protect infants against
pathogens. In many cases, glycoproteins with reported activities
were isolated from milk of other species, especially cows. Gly-
cosylation of human milk proteins differs from that of glyco-
proteins from other milks. Therefore, only published data
regarding HMGPs were selected in this review. Much of the
published evidence for biological activities is for those molecules
present in milk at relatively high concentrations. Of these, the
HMGPs whose activities are most widely recognized in the lit-
erature include mucins, secretory immunoglobulin A (sIgA),
xanthine dehydrogenase/oxidase, bile salt-stimulated lipase
(BSSL), lactoferrin, lactoperoxidase, butyrophilin, lactadherin,
adiponectin, b-casein, j-casein, leptin, lysozyme, and a-lactal-
bumin, and these are included in this review. The molecular

sizes and concentrations of these HMGPs are presented in Table
1. Major HMGPs protect against microbial infection4 and ex-
cessive inflammatory responses in vitro.5 This suggests that
HMGPs may be important for the nursing mother to protect her
immature infant against pathogen infection and other patholo-
gies. HMGPs that are known to modulate human pathophysi-
ology are described herein.

Mucins

Mucins are high-molecular-mass glycoproteins ranging
from about 200 kDa to 2,000 kDa in size. Mucins are major
components of the extracellular matrix and are involved in
diverse functions, including shielding the epithelium against
pathogenic infection, regulating cellular signaling, and tran-
scription.16 The mucin family of large, heavily glycosylated
proteins are characterized by a variable number of tandem
repeats termed the mucin domain, which makes up much of
the protein component of mucus. At least 16 mucins have
been identified in humans, and the expression profile of the
mucins varies among tissues, with the gastrointestinal tract
showing the highest and most diverse expression. The mucin
family can be divided into three subfamilies according to
their location relative to the cell surface: (a) gel-forming
(secreted) mucins, such as mucin 1, mucin 4, and mucin 16; (b)
cell surface (transmembrane, membrane-tethered) mucins,
such as mucin 2, mucin 5, and mucin 6; and (c) secreted
non–gel-forming mucins, such as mucin 7.17 The physical
characteristics of the mucins (i.e., their large size and hydro-
phobicity) can make them difficult to isolate and purify,
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especially from the complex matrix of milk. That notwith-
standing, the major human milk mucins have been identified,
initially as mucin 1 and a higher-molecular-weight electro-
phoresis band,18,19 designated mucin X.20,21 Recently our lab-
oratory purified mucin 4 from human milk and identified it
(Fig. 1)22; mucin 4 seems to be the band previously designated
mucin X. We observe another band that runs between mucin 1
and mucin 4 (Fig. 1), which is currently under investigation.
Other types of mucins have not been isolated from human milk
to date, but our research indicates that some others may be
present in minor amounts.

Mucin 1 and mucin 4 are dimers; each dimer is formed by
cleavage of an intact single peptide product of a single gene

(Fig. 2). The larger subunit is wholly extracellular, heavily
glycosylated, and almost entirely composed of a variable
number of tandem repeats.16 Mucin 1 and mucin 4 can in-
teract with microorganisms (Table 2). The most commonly
studied mechanism is a sialic acid moiety of mucin 1 inter-
acting with the pathogen, thereby inhibiting the ability of the
pathogen to bind to its infant host cell surface glycan receptor.
Thus, mucin 1 plays a role in innate immune defense of the
infant against invading microorganisms. However, other
human milk mucins, like mucin 4, have only begun to be
investigated for their role in interaction with microorganisms.
These data would help understand the full biological role of
human milk mucins in protecting infants.

sIgA

sIgA is the principal immunoglobulin in human milk. Ty-
pical sIgA consists of two monomeric IgA units and two ad-
ditional polypeptide chains: the J chain and the secretory
component (SC). The heavy and light chains in plasma cells
assemble into IgA, which on association with J chain become
polymerized; subsequently, SC is added during transport
across the epithelium.26 sIgA is present at quite high con-
centrations in colostrum and is consistently present at sub-
stantial concentrations throughout lactation. However, only
72% of sIgA activity survives pasteurization at 62.5�C for 30
minutes.27 When first detected in human milk, sIgA was
considered the first protective line of defense against patho-
gens because of its involvement in extracellular neutralization
of pathogen infectivity and its intracellular neutralization of
bacterial lipopolysaccharide and viruses within epithelial
cells. Human milk sIgA protects infants against human
pathogens (Table 3); when sIgA specifically binds to a path-
ogen antigen, it renders the pathogen less infective. In con-
trast, the sugar on sIgA plays more general structural and
functional roles.28 sIgAs are resistant to proteolytic digestion
in the gut, and this resistance is most often attributed to the
glycan sugar moieties attached to secretory antibodies. These
glycans also participate in intracellular trafficking of the an-
tibodies in the cell. As with some other glycoproteins, the
glycans of sIgA containing galactose, sialic acid, mannose, or
fucose can act as decoys to prevent binding by pathogenic
bacteria to their glycosylated targets on mucosal surfaces in
the gut.28 For example, the mannose-containing oligosaccha-
rides of sIgA can inhibit Vibrio cholerae biofilm formation.29

The glycosylation of sIgAs in general (irrespective of the
antigen specificity of the antibody) may provide a broad-
spectrum antipathogen activity that complements the very
specific antigen binding inhibition by the protein portion of
specific antibodies.

BSSL

BSSL, a major glycoprotein in human milk, functions in
milk lipid digestion.48 BSSL is present in human milk at a
concentration of between 100 and 200 lg/mL.49 Human milk
BSSL migrates as a heterogeneous protein with an apparent
molecular size of 120–140 kDa on sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (conditions that disag-
gregate proteins).50 BSSL contains 722 amino acids and an
N-glycosylation site at asparagine-187. The catalytically
active site of BSSL is located at serine-194.51 BSSL exhibits a
triglyceridase activity that may aid in the fat digestion in

FIG. 1. Sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis analysis of human milk mucins from a pool of 20
human milk donors. The 4–12% gradient sodium dodecyl
sulfate–polyacrylamide gel–electrophoresed gel was stained
with periodic acid–Schiff reagent. Mucin 1 and mucin 4 were
identified by western blot. The arrows indicate mucin 1,
mucin 4, and an unknown band.

Table 1. Molecular Size and Concentration

of Major Human Milk Glycoproteins

Glycoprotein
Molecular size

(kDa)
Concentration

(mg/L)

Mucins 200–2,000 729 – 756

sIgA 160 200–6,2007

Xanthine dehydrogenase/
oxidase

146 Not reported

BSSL 120–140 100–2008

Lactoferrin 80 1,000–7,0009

Lactoperoxidase 77.5 0.77 – 0.3810

Butyrophilin 66 41 – 36

Lactadherin 46 93 – 106

Adiponectin 30 4–8811

b-Casein 24 4,670 – 89012

j-Casein 19 100–4,6007

Leptin 16 0.00313

Lysozyme 14.4 21 – 1314

a-Lactalbumin 14.2 2,440 – 64015

BSSL, bile salt-stimulated lipase; sIgA, secretory immunoglobulin A.
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newborns, particularly in preterm infants who have low li-
pase activity and poor lipid utilization.52 Heating human milk
to 40–55�C for 39 minutes (typical pasteurization conditions
for donor human milk is 65�C for 30 minutes) destroys the
activity of BSSL and results in decreased lipid absorption in
premature infants.53 BSSL may have essential functions in li-
pid digestion in term infants, as this enzyme has uniquely
wide substrate specificity. It hydrolyzes mono-, di-, and tria-
cylglycerols, cholesterol esters, and diacylpho-
sphatidylglycerols and can hydrolyze these lipids in both
micellar and water-soluble forms.52 Human milk BSSL has
other nonenzymatic functions: it binds dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin and
inhibits human immunodeficiency virus type 1 transfer to
CD4 + T cells.54 Human milk BSSL inhibits the binding of
Norwalk virus capsids to their carbohydrate ligands; the
tandem repeat O-glycosylated sequences of BSSL may act as
decoy receptors for the Norwalk virus.55 Thus, human milk
BSSL is an example of an HMGP with multiple functions: it
degrades a large spectrum of lipids, which is an essential role
in nutrition, and also inhibits virus invasion.

Lactoferrin

Lactoferrin, an 80-kDa iron-binding glycoprotein, was first
isolated from bovine milk and subsequently from human
milk.56,57 It is abundant in colostrum at up to 7 g/L, and its
concentration declines sevenfold as lactation progresses.58–60

After pasteurization at 62.5�C for 30 minutes, only 39% of the
original lactoferrin remains in the milk.27 This major protein of
human milk chelates free iron, which may assist in iron ab-
sorption by the infant, and iron chelation also inhibits bacte-
rial growth. Thus, its biological functions range from
antimicrobial activities against a large panel of microorgan-

isms, including bacteria, viruses, fungi, and parasites, to
regulation of cellular proliferation and differentiation, as well
as anti-inflammatory and anticancer activities.61

Lactoferrin is a polypeptide chain of about 700 amino acids
and forms two homologous globular domains: the N-and C-
lobes. The N-lobe corresponds to amino acid residues 1–333,
and the C-lobe corresponds to positions 345–692; the ends of
those domains are connected by a short a-helix.62 Each lobe
can reversibly bind one ferric ion. Lactoferrin exhibits bacte-
riostatic activity against a wide range of bacteria because of its
ability to chelate iron, which is essential for microbial growth.
Lactoferrin also displays innate antibacterial, antivirus, anti-
fungal, and antiprotozoan activity that may be independent
of iron chelation, for example, through disruption of the
bacterial cell membranes or blocking of cell–virus interac-
tions63,64 (Table 4).

Moreover, lactoferrin is a key modulator of inflammatory
and immune responses,88 revealing host-protective effects not
only against microbial infections but also in inflammatory
disorders such as cancer, allergies, and arthritis.89 These ac-
tivities may be mediated through modulation of the immune

FIG. 2. Structural motifs of mucin 1 and mucin 4. Key domains include the following: a variable number of tandem repeats
(VNTR); sperm protein, exterokinase, and agrin (SEA) modules; transmembrane (TM) domains; cytoplasmic tail (CT); ni-
dogen homology sequence (NIDO); adhesion-associated domain in mucin 4 and other proteins (AMOP); von Willebrand
factor D sequence (VWD); and epidermal growth factor (EGF)-like regions. aa, amino acids.

Table 2. Known Pathogens That Interact with

Human Milk Mucin 1 and Mucin 4

Mucin Molecular size Microorganism

Mucin 1 *400 kDa HIV23

Rotavirus24

Escherichia coli25

Salmonella22

Mucin 4 *900 kDa16 Salmonella22

HIV, human immunodeficiency virus.

Table 3. Antipathogen Activities of Human

Milk Secretory Immunoglobulin A

Pathogen

Bacteria Clostridium botulinum30

Clostridium difficile33

Escherichia coli36

Haemophilus influenzae38

Mycobacterium tuberculosis40

Salmonella typhimurium42

Shigellae44

Staphylococcus aureus46

Helicobacter pylori47

Vibrio cholerae29

Viruses Coxsackie B4 virus31

Norovirus34

Rotavirus37

Poliovirus39

Rubella41

Measles43

HIV45

Fungi/protozoa Candida albicans32

Entamoeba histolytica35

HIV, human immunodeficiency virus.
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system, such as binding to lipopolysaccharide, inhibition of
several cytokines (tumor necrosis factor-a and interleukin-1b),
or binding to bacterial nonmethylated cytosine–guanosine
motifs.64 Lactoferrin elevates the number and the activity of T
and B lymphocytes and natural killer cells, stimulates the re-
lease of several cytokines, accelerates the maturation of T and
B cells, and elevates the expression of several types of cellular
receptors.80 Moreover, lactoferrin protects against chemically
induced carcinogenesis, tumor growth, and/or metastasis in
several animal model experiments. It targets tumors of spe-
cific organs, such as the esophagus, tongue, lung, liver, colon,
and bladder.64

Butyrophilin

A major feature of milk is the specialized structure that
allows the stable dispersion of fat droplets, denoted the milk
fat globule. It is surrounded by the milk fat globule mem-
brane, which is derived from the maternal mammary epi-
thelium, and contains a large and complex glycocalyx (i.e., its
extracellular matrix). When isolated, this membrane exhibits
four major protein bands on gel electrophoresis: butyrophilin,
mucins, lactadherin, and xanthene oxidase. Butyrophilin is
the prominent band of apparent 66 kDa in Coomassie Brilliant
Blue–stained gels.90–92 It is a type I transmembrane glyco-
protein with a cytoplasmic C-terminal tail.93 Butyrophilin is
expressed only during lactation and appears to be essential for
milk fat globule production. Butyrophilin may function as an
integral receptor for cytoplasmic fat droplets; budding of the
droplets at the cell surface is initiated by interactions between
the cytoplasmic tail of butyrophilin and other proteins, no-
tably the redox enzyme xanthine oxidase.93 Butyrophilin
functions in vivo to stabilize the association of xanthine
oxidase with the milk fat globule membrane by direct inter-
actions through the PRY/SPRY/B30.2 domain.94 The auto-
immune encephalomyelitis that follows immunization with

myelin/oligodentrocyte glycoprotein is prevented by butyro-
philin treatment, which also improves the clinical manifes-
tations of preexisting disease.95

Lactadherin

Lactadherin is the 46-kDa glycoprotein of the human milk
fat globule membrane, which is also known as PAS-6/7, in-
dicating the two glycosylation variants on sodium dodecyl
sulfate–polyacrylamide gel electrophoresis analysis.96 Hu-
man milk lactadherin binds specifically to rotavirus and in-
hibits its replication, thereby protecting human milk-fed
infants against symptomatic rotavirus infection.97 Human
lactadherin inhibits rotavirus infection of MA 104 and Caco-2
cells by direct interaction between rotavirus and the oligo-
saccharides of the lactadherin molecule.98 Removal of sialic
acid from lactadherin results in loss of this inhibitory activi-
ty.99 The protein core also exhibits specific biological activi-
ties: lactadherin exhibits a vascular endothelial growth factor
pro-angiogenic effect in adult neovascularization,100 sug-
gesting a use in modulating blood vessel growth in a patho-
logical setting. Lactadherin has EGF1–EGF2 domains
(epidermal growth factor homology) at the amino-terminus
and C1 and C2 domains that share homology to the
phosphatidylserine-binding domains of blood coagulation
factors V and VIII96,101; lactadherin can mediate clearance of
phosphatidylserine-expressing procoagulant platelet-derived
microvesicles.102 Milk lactadherin is present in the intestines
of breastfed infants before the tight junctions of the intestinal
epithelium close and when fat complexes can cross the mu-
cosa by bulk transport. Thus, human milk lactadherin could
gain access to the circulation of the neonate, where its strong
anticoagulant effects (half-maximal concentration is 1–4 nM)
would be mediated through modulating factor V and VIII
activities and through microvesicle clearance. Although the
potential function of lactadherin is not understood, it may
participate in early homeostasis of circulating cells; also, many
diseases induce strong procoagulation processes, including
sepsis, suggesting other possible domains of protective
activity. Indeed, a recent report indicates that recombinant
lactadherin may attenuate sepsis-induced apoptosis.103 Lac-
tadherin interacts with damaged intestinal epithelium in vivo
and plays an important role in stimulating growth of intesti-
nal epithelial cells in vitro.104 Thus, orally ingested lactadherin
could have potential in the prevention and treatment of in-
testinal injury in infants.

Leptin and Adiponectin

Leptin and adiponectin are members of adipose-secreted
glycoprotein metabolic regulators known as adipokines105

that are present in human milk.11,106,107 Various adipokines
have pro-inflammatory or anti-inflammatory activities and
have potential as regulators of metabolic function.108 Leptin is
a 16-kDa glycoprotein hormone that regulates energy intake
and energy expenditure, including appetite and metabo-
lism.109 In experimental studies on animals, leptin is trans-
ferred from the maternal circulation to breastmilk and then
passes to neonatal blood, suggesting that maternal leptin may
exert biological effects on the infant.110 Adiponectin is a 30-
kDa glycoprotein produced primarily in adipose tissue and
participates in several physiologic processes that may affect

Table 4. Antipathogen Activities of Human

Milk Lactoferrin

Pathogen

Bacteria Escherichia coli65

Salmonella typhimurium66

Shigella dysenteriae67

Listeria monocytogenes68

Streptococcus spp.69

Vibrio cholerae70

Legionella pneumophila71

Bacillus stearothermophilus72

Bacillus subtilis73

Viruses Rotavirus74,75

HIV76

Herpes simplex virus77,78

Cytomegalovirus79

Hepatitis virus80,81

Human papillomavirus82

Adenovirus83

Fungi/protozoa Candida spp.84

Entamoeba histolytica85

Tritrichomonas foetus86

Eimeria stiedai87

HIV, human immunodeficiency virus.

HUMAN MILK GLYCOPROTEINS PROTECT INFANTS 357



human development.11 Human milk adiponectin was first
reported in 2006, and it seems to play a role in the early
growth and development of breastfed infants.11 Furthermore,
adiponectin inhibits the proliferation of myelomonocytic
progenitor cells and induces apoptosis, and this may con-
tribute to the anti-inflammatory effects of this adiponectin.111

Immunoreactive adiponectin was detected in skim milk at
concentrations significantly higher than those of milk lep-
tin.110 The leptin/adiponectin ratio in mid-infancy correlates
with weight gain in healthy term infants.112 Thus, leptin and
adiponectin in human milk may play a role in growth and
development of infants.

Other Glycoproteins in Human Milk

For those with sufficient data, a section is dedicated to re-
viewing their activities (above); those with limited published
data on antipathogen activity are summarized in Table 5.

Future Directions and Implications

Described above are many examples of HMGPs that inhibit
the pathobiology of human diseases. Prevalent among these
inhibitory processes is the ability to competitively bind to the
pathogen or pathogen receptor, thereby interfering with the
essential first step of pathogenesis, the binding of the patho-
gen to its host cell surface receptor. Even this most widely
recognized bioactive mechanism requires elucidation. For
example, glycan moieties of different HMGPs can show sim-
ilar protection against the same pathogens. Mucin 1 and lac-
toferrin inhibit Escherichia coli and Salmonella infection in vitro.
However, it is not known if only the carbohydrate moiety is
responsible for the inhibition, which carbohydrate moiety
inhibits each pathogen, or whether two or more specific car-
bohydrate moieties act together to inhibit pathogen infection.
With the involvement of multiple glycan moieties, would
inhibition be additive or synergistic? These questions beg for
research on the relationship between structural features of a
biologically active molecule and its activity. Such structure–
function research requires pure compound and robust, sen-
sitive bioassays.

The relationship between structure and functional glycobiol-
ogy of HMGPs is now ripe for fruitful human milk research. The
difficulties of glycan analysis are now yielding to sophisticated
new separation and analytic technologies, obviating preparation
of pure compounds. Progress had been hampered by the enor-

mous complexity of glycoprotein–ligand interactions, which can
now be measured by nano-surface plasmon resonance (SPR)
and other emerging techniques121 and efficient high-throughput
screening methods, now possible with shotgun glycan micro-
array122 and robotic technology.

Recent developments in SPR are quite promising. Nano-
SPR is a surface-sensitive optical method to study mole-
cular binding events on a functionalized biosensor. SPR can
be used to study both protein–carbohydrate interactions and
carbohydrate-mediated inhibition of protein–protein interac-
tions. SPR represents a powerful, high-throughput approach
to defining the relevant carbohydrate moiety of an HMGP
that is responsible for binding inhibition.123

In addition to the aforementioned inhibition of binding by
pathogen adhesins or host cell receptors, other mechanisms
for protection of the infant by HMGPs are possible, includ-
ing a prebiotic affect. In 1905, Tissier124 described the dis-
tinctive microflora (now microbiota) of breastfed infants as
containing more Lactobacillus bifidus (now classified as Bifi-
dobacterium bifidum). A molecule in human milk was hy-
pothesized to be responsible for this bifidus growth activity
and designated as the ‘‘bifidus factor.’’ After approximately
70 years of research, the ‘‘bifidus factor’’ was isolated and
identified as a glycan moiety of an HMGP. This should be
considered the prototype of a family of glycans now known
as prebiotics, which are indigestible dietary glycans that
promote proper colonization of the gut. After birth, the va-
cant infant gut undergoes colonization by a succession of
microbes, resulting in the complex stable microbiota of the
more mature child.125 Human milk glycans that stimulate
growth by mutualist bacteria126 are now defined as prebi-
otics: indigestible dietary glycans that stimulate colonization
by beneficial bacteria and provide a health benefit. Typical
prebiotics enhance growth of bifidobacteria and lactobacilli,
are fermented to produce organic acids, lower intestinal
pH,127 suppress potentially harmful bacteria in the micro-
biota, and confer other health benefits to the host. The hu-
man milk oligosaccharides have already been demonstrated
to be prebiotic. However, the HMGPs, which are also indi-
gestible by the human gut enzymes and therefore move into
the colon during intestinal transit and provide bacteria ac-
cess to a potential carbon source, are essentially untested.
Prebiotic HMGPs could also contribute toward the lower
risk of morbidity and mortality in breastfed infants.128,129

We hypothesize that the glycans of milk could work in
concert with glycoconjugates expressed on the surface of the
intestinal mucosa to direct initial colonization leading to-
ward a normal, beneficial gut microbiota.

Another function of prebiotics is their use as substrates for
bacterial fermentation that results in small organic acid metab-
olites, such as short-chain fatty acids and other small acids, like
acetate, lactate, butyrate, succinate, valerate, propionate, etc.
Some of these acids have strong metagenomic effects in intesti-
nal epithelial cells at biologically relevant concentrations.
Different microbes of the microbiota produce different comple-
ments of organic acids.130 It follows that a prebiotic effect by
HMGPs could have profound influences on some aspects of cell
signaling and control and therefore contribute to modulation of
intestinal response to injury and other types of intestinal
inflammation conditions. This could contribute to the known
reduction of risk of necrotizing enterocolitis and other inflam-
matory conditions in premature infants fed human milk.

Table 5. Antipathogen Activities of Other Human

Milk Glycoproteins

HMGP Pathogen

b-Casein Haemophilus influenzae,113

streptococci114

j-Casein Helicobacter pylori115

a-Lactalbumin Reovirus,116 streptococci117

Lysozyme Escherichia coli118

Lactoperoxidase Helicobacter pylori,119 HIV119

Xanthine dehydrogenase/
oxidase

Burkholderia cepacia120

HIV, human immunodeficiency virus; HMGP, human milk
glycoprotein.
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HMGPs could also directly affect inflammation of the
intestinal mucosa. This is discussed above for lactoferrin
but is largely unexplored for other of these human milk
molecules.

The importance of the human milk oligosaccharides, an-
other major family of complex glycans in human milk, is in-
creasingly recognized as clinically relevant to neonates and
term infants alike. The higher-molecular-weight glycopro-
teins are more difficult to isolate and test, which accounts for
the relative lack of definition of their structures and of their
biological functions and clinical relevance. The confluence of
newly emerging technologies for the isolation, purification,
identification, and biological testing of these molecules creates
the promise of newly recognized glycans becoming sources of
novel prophylactic and therapeutic agents that inhibit dis-
eases caused by a variety of pathogens.
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