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Abstract
In this article, we directly questioned the common practice in growth mixture model (GMM)
applications that exclusively rely on the fitting model without covariates for GMM class
enumeration. We provided theoretical and simulation evidence to demonstrate that exclusion of
covariates from GMM class enumeration could be problematic in many cases. Based on our
findings, we provided recommendations for examining the class enumeration by the fitting model
without covariates and discussed the potential of covariate inclusion as a remedy for the weakness
of GMM class enumeration without including covariates. A real example on the development of
children’s cumulative exposure to risk factors for adolescent substance use was provided to
illustrate our methodological developments.
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Introduction
Growth mixture modeling (GMM; Muthen & Muthen, 2000; Muthen & Shedden, 1999;
Nagin, 1999) has recently become a popular tool in longitudinal research. Despite its
popularity, one of the oldest and most challenging task in GMM still is the extraction of
correct number of the classes without much a priori knowledge (Tofighi & Enders, 2007).
Although less noticed, an important consideration related to this task is whether covariates
should be included in determination of the number of classes (Tofighi & Enders, 2007).

Today, most applications used GMM model without covariates to determine the number of
classes. In this model, as the one illustrated in Figure 1, subjects (denoted by i in Figure 1)
are assumed to belong to different classes (denoted by ci, which includes ci1, ···, ciK, where
cik = 1 if the ith subject falls in kth class and is zero otherwise) with distinct patterns of
trajectories of outcomes over time (denoted by yi1, yi2, ···, yiJ). Furthermore, within each
class, the heterogeneity of outcome trajectories can be further explained by some growth
factors such as the intercept and slope factors (denoted by ηiI and ηiS in Figure 1
respectively).
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Muthen (2004) suggested that incorporating covariates may play an important role in
enumerating classes. According to this suggestion, as illustrated in Figure 2, including
covariates (denoted by xi, which includes P covariates xi1, ···, xiP) into the GMM model
above to predict the class membership and the growth factors within each class may be
helpful for GMM class enumeration. However, few practice today followed the suggestion
and included covariates in the stage of class enumeration even though the final model could
have many substantive and statistical advantages by the inclusion (e.g., Muthen, 2004).

Unquestionably, correct class enumeration is one key issue in GMM. To our knowledge,
Tofighi and Enders (2007) may be the only existing study that has addressed the issue of
covariate inclusion on class enumeration in the context of GMM and they found a
detrimental effect of covariate inclusion on GMM class enumeration. It should be noticed
that their simulation used a substantively more complex model than other models found in
applied practice so that their conclusion may not be applicable to the more restricted models
commonly-used in practice, the focus of this article.

In this article, we investigate the issue of covariate inclusion and its implication to GMM
class enumeration. We first use a real example to demonstrate that class enumeration with
and without covariates could have different conclusions on the number of classes and
explore this discrepancy from a statistical perspective. Then we introduce a new GMM data
generation model as illustrated in Figure 3. Unlike in the fitting model in Figure 2, xi is no
longer treated as covariates, is now predicted by class membership ci and could have
different distributions across classes in this new data generation model. As demonstrated
below, this new data generation model by its design allows easier manipulation of within-
class distribution of xi. Through this data generation model, we generate data with different
distribution of xi (e.g., binary, mildly nonnormal and severely nonnormal) within classes to
assess the effects of (1) fitting models conditional on xi when xi is in fact predicted by class
membership, and (2) omitting xi when it is predicted by class membership and predicts
growth factors, on class enumeration. The results of simulation will then be presented.
Finally, implications of results are discussed with the real example we provided and
conclusions are presented at the end of the article.

A Real Example
Our data is from the National Survey of Child and Adolescent Well-Being (see NSCAW,
2007 for detail) and the children in their middle childhood (aged from 6 to 10 at baseline-the
first of four waves available) are selected. Our focus is the development of their cumulative
exposure to risk factors for their adolescent substance use. We sum cumulative exposure to
nine risk factors and form our risk index at each wave. We identify seven caregivers’
characteristics at baseline as covariates. They include age, employment status, substance
abuse experience, education, marital status and ethnicity of caregivers as well as the
indicator of whether biological mother is caregiver or not. We remove eleven cases having
missing values on the covariates and obtain 1481 cases for the illustration here.

Excluding covariates as in Figure 1, we apply GMM model with the number of classes
ranging from 2 to 5 to our risk indices across four waves. In this fitting model, we assume
that the variances of residuals (εi1, ···, εiJ in Figure 1), the variances and covariances of
growth factors (ξi0 and ξi1 in Figure 1) are invariant across classes. We obtain the following
fit statistics for each model: AIC (Akaike, 1987), BIC (Schwartz, 1978), adjusted BIC
(ABIC; Sclove, 1987), Lo-Mendell-Rubin likelihood ratio test (LMR; Lo et al., 2001),
adjusted LMR likelihood ratio test (ALMR; Lo et al., 2001), and the bootstrap likelihood
ratio test (BLRT; McLachlan, 1987; McLachlan & Peel, 2000)1. By examining these
statistics and parameter estimates, we exclude the two-class model due to bad fit and the

Li and Hser Page 2

Multivariate Behav Res. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



five-class models due to improper solution. The plots of trajectories implied by three and
four-class models are presented in Figure 4 and Figure 5 respectively. The results of analysis
show that the parameter estimates of both models have no serious substantive problem.
However, the model fit statistics in the two figures lead to a conflicting conclusion on the
number of classes for the study. The information criteria, AIC, BIC, ABIC and BLRT,
support the four-class model while LMR and ALMR support the three-class model.

Given this conflict, we add seven covariates to predict the class membership and the growth
factors (as in Figure 2) and refit the three and four-class models. In both models, the effects
of covariates on growth factors are assumed to be invariant across classes. For parsimony,
we also simplify both models after inclusion of covariates and initial refitting as below.
Throughout our modification, we use .05 alpha level to determine the significance of
parameter estimates and the scaled χ2 difference test (Satorra & Bentler, 2001) for model
comparison. The covariate effects on growth factors whose estimates are not significant in
both models will be evaluated by the scaled χ2 difference test before removal of parameter.
The covariates that have no significant prediction of any class membership in both models
will also be tested for removal. In the final three and four-class models obtained by this
modification, all seven covariates are retained. All of them have at least a significant
prediction of class membership in both models. Among seven covariates, biological mother
as caregiver or not, substance abuse experience and education of caregivers have significant
covariate effects on growth factors in both models. Age of caregivers has a significant
covariate effect on intercept factor in the final three-class model but not in the final four-
class model. Ethnicity of caregivers has a significant covariate effect on intercept factor in
both final models. However, its effect on slope factor is significant in the final four-class
model but not significant in the final three-class model. Even though not significant in both
models, we decide to keep them in the final models because no common parameters can be
further reduced for both models.

With inclusion of covariates, the trajectories implied by the two models do not change much
from Figure 4 and Figure 5. The fit statistics for the final three-class model with covariates
are as follows: AIC = 15615.249, BIC = 15821.968, ABIC = 15698.076, and the p-values of
LMR and ALMR both are less than .0001. For the final four-class model, AIC = 15564.452,
BIC = 15829.475, ABIC = 15670.640, and the p-values of LMR and ALMR are 0.2119 and
0.2153 respectively. For both models, the p-values of BLRT may not be trustworthy as
prompted by Mplus (Muthen & Muthen, 2006) and are ignored here. From AIC, BIC and
ABIC, we see that the overall fit of both models improves after inclusion of covariates. As
to class enumeration, fit indices still give inconsistent conclusion. LMR and ALMR still
support the three-class solution. Unlike AIC or ABIC, BIC begins to support the three-class
solution. If we weight BIC more in class enumeration (e.g., Jeffries, 2003; Jones & Nagin,
2007), the class enumeration conclusions with or without covariates diverge.

A Potential Problem in the Common Practice of GMM Class Enumeration
A common practice in GMM applications is to use GMM without covariates as in Figure 1
for class enumeration. This practice implicitly assumes that GMM without covariates would
recover the correct number of classes no matter if covariates have impact on class
membership or growth factors in population. However, this assumption may not hold
always.

1Please refer to Nylund, Asparouhov & Muthen (2007) or Tofighi & Enders (2007) for an overview of these fit indices such as their
definitions, assumptions, and limitations.

Li and Hser Page 3

Multivariate Behav Res. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Let yi = (yi1 ···yiJ)′ and ηi = (ηiI, ηiS, ηiQ)′, where ηiQ is the quadratic factor in GMM. Then
the GMM data for the model in Figure 2 can be generated in this way (e.g., Muthen, 1998–
2004). First, xi, which can be different types of variables (e.g., categorical or nonnormal
continuous variables), is generated from a distribution f1(xi); then ci is generated from the
multinomial distribution f1(ci|xi) conditional on xi; finally yi is generated from a conditional
normal growth model f(yi|xi, ci). We denote this data generation scheme as Scheme 1.

The probability of the observation generated by Scheme 1 can be expressed as

(1)

where πik, the probability of ith case in kth class conditional on xi, can be modeled as

(2)

with aK = 0, bKp = 0, and ak and bkp as logit intercept and slope respectively (e.g., Muthen,
1998–2004), and f(yi|xi, ci) can be expressed as

(3)

In this article, we specify the within-class level-1 (outcomes) model f(yi|ηi, xi, ci) in (3) as

(4)

for class k, where j = 1, ···, J, tj = (j − 1) is the time score at time j for all cases and

 is the normal distributed residual of , which is assumed to be independent
across time. We specify the within-class level-2 (person-level) model f(ηi|xi, ci) in (3) as

(5)

for class k, where  and  are the intercepts of the growth factors ηi in kth class, all

other s are the regression coefficients of ηi on xi in kth class, and  and  are the
multivariate normal distributed residuals of growth factors with a zero mean vector,

 and . As in Tofighi and Enders (2007), we
specify no random error and no covariate effect for the quadratic factor in (5).

Scheme 1 is the assumption for the GMM fitting model with covariates as in Figure 2.
However, there is a less obvious problem for Scheme 1. In application, if the data is really
generated in this way, or in other words, if the data is really like what the GMM fitting
model with covariates as in Figure 2 assumes, the fitting model with covariates would be a
correctly specified model. However, at the same time, the fitting model without covariates
as in Figure 1 in general could be misspecified in the within-class distribution (see Appendix
I for detail). More importantly, this misspecification in the within-class distribution, if
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serious enough, could cause the fitting model without covariates as in Figure 1 enumerate a
greater number of classes than the model with covariates would (e.g., Bauer & Curran, 2003,
2004; Tofighi & Enders, 2007) and pose problem to the common practice of class
enumeration in GMM applications as we mentioned before.

Of course, we must mention that our conclusion above is only applied to the situation where
the growth factors ηi as assumed in Figure 2 are influenced by xi within classes in
population. When xi only predict the class membership under Scheme 1 and have no
influence on the growth factors in (5) as assumed in some studies (e.g., Lubke & Muthen,
2007), the fitting models as in both Figure 1 and Figure 2 are correct and theoretically would
have the same number of classes (see Appendix I for detail).

A New Data Generation Scheme
Before further investigation of the issue of the covariate inclusion or exclusion on GMM
class enumeration, we introduce a second GMM data generation scheme (Scheme 2) which
is implied by the data generation model in Figure 3. This data generation scheme is different
from Scheme 1 and is defined as follows: first ci is generated from a multinomial
distribution f2(ci); then xi is generated from some distribution (e.g., binary or some
continuous distribution) given the membership ci; then yi is generated from the conditional
normal growth model f(yi|xi, ci) in (3).

The probability of observation generated in this way can be expressed as

(6)

where πk is the probability of ith observation in kth class, which is not conditional on
anything. Due to the inclusion of f2(xi|ci), Scheme 2 in (6) compared to Scheme 1 has an
advantage that it is more convenient for us to manipulate the within-class distribution of xi
(e.g., mildly nonnormal and severely nonnormal) during GMM data generation. We will use
Scheme 2 in simulation studies below to investigate the class enumeration issues.

Specifically, when the within-class distribution f2(xi|ci) is normal in data generation, by
integrating (6) over xi as (A-3) in Appendix, we can see that the within-class distributions
f2(ηi|ci) and f2(yi|ci) corresponding to f1(ηi|ci) and f1(yi|ci) in (A-3) respectively would be
normal in the data and thus the fitting model without covariates xi as in Figure 1 exactly
matches the data by Scheme 2. By the same logic, when xi include categorical variables or
are nonnormally distributed within classes under Scheme 2, the fitting model without
covariates xi as in Figure 1 would be misspecified because the within-class normality
assumption of ηi and yi has been violated in the generated data. This misspecification in
distribution may impair the class enumeration performance of the model as we mentioned
before.

Theorectically, the population models implied by Scheme 1 and Scheme 2 can be
transformed to each other in model form (see Appendix II). By these transformations, we
can examine whether the population model by Scheme 2 can be reparameterized to a
population model by Scheme 1 with an implementable model of membership prediction in
form of (2) that is assumed by the fitting model with covariates. By this examination, we can
determine the correctness of the fitting model with covariates when the data are in fact
generated by Scheme 2. In fact, we observe from these tranformations that the fitting model
as in Figure 2 in general may be misspecified for the data generated by Scheme 2 (except in
some special cases as in our studies below; see Appendix II for detail). In GMM literature,
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in addition to misspecification in distribution, other sources of misspecification (e.g.,
misspecification in parameter class specificity, Bauer & Curran, 2004, Enders & Tofighi,
2008; misspecification of nonlinear relationships among observed and/or latent variables,
Bauer & Curran, 2004) have been documented to have detrimental effect and lead to
additional classes for GMM class enumeration. So the misspecification of the fitting model
as in Figure 2 discussed here may impair its class enumeration performance.

Design of Simulation Studies
For each of the studies below, the data is generated by Scheme 2 with four levels of sample
size (N = 200, 400, 1000N = 200, 400, 2000) and xi only has a single variable for
convenience of manipulation. For all these studies, the number of classes is set to 2 and the
proportion of each class is 50 percent. For the distribution f(yi|xi, ci) in (3), the parameters
are as follows:

, ψj = 27.5 for j = 1, ···, 7, and (σ00, σ01, σ11) = (15, 3, 4). From these parameters, we can
see that the residual variances of outcomes, the factor variances and covariances, and the
effects of xi on the growth factors are set to be invariant across classes in population model.
Due to the difference on f2(xi|ci), the within-class distribution of xi, we design three studies
for investigation.

Study I: Binary covariates
In this study, xi is set to be a binary variable (0 or 1) with f2(xi = 1|ci1 = 1) = .30 and f2(xi =
1|ci2 = 1) = .70. As mentioned above, when xi include categorical variables under Scheme 2,
the fitting model without covariates xi as in Figure 1 would be misspecified because ηi and
yi given ci would not be normaly distributed in the generated data as assumed.

It is obvious that the joint distribution of the two binary variables, xi and ci, by Scheme 2 in
this study can be summarized as a 2×2 cross table. This 2×2 cross table can be expressed by
a f2(xi|ci)f2(ci) as in our data generation as well as by an reparameterized f1(ci|xi)f1(xi) with
an implementable model of membership prediction in form of (2). Specifically, by (A-4) in
Appendix II, the implied ḟ(xi) would suggest that xi unconditionally has 50 percent of
chance to be either 0 or 1. The implied π̇ik for the data can also be fully expressed by the
model in (2) with a1 = log(7/3), b1 = log(9/49), a2 = 0 and b2 = 0. Given this
reparameterization of the population model by Scheme 2 and the common f(yi|xi, ci) in the
two schemes, we believe that the fitting model with covariates as in Figure 2 would be an
exact-fitting model for the generated data in this study.

Our setting in this study is substantively meaningful. Suppose now xi = 1 denotes caregiver
who is hispanic and xi = 0 denotes caregiver who is not as in our NSCAW example. By
Scheme 2, our setting states that the first class includes more children of non-hispanic
caregivers while the second class includes more children of hispanic caregivers. Under
Scheme 2 for our data generation, the hispanic origin of caregiver is not conceived as a
covariate as in Figure 2. However, like in many equivalent models in literature (e.g., Lee &
Hershberger, 1990; MacCallum et al., 1993), this difference of xi in substantive meaning or
diagrams (e.g., Figure 2 vs. Figure 3) does not prevent the data in this study to be well fitted
by a fitting model as in Figure 2 where the hispanic origin of caregiver predicts the class
membership of child as a covariate.

Furthermore, the parameters ( ) and ( ) would represent the effects of
caregiver’s ethnicity on the intercept and slope factors within classes. In this article, we
assume the two sets of parameters to be class-invariant. Of course, it is interesting to
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investigate how such within-class effect of caregiver’s ethnicity would affect the within-
class nonnormality of outcomes and consequently the class enumeration performance of
GMM fitting model without covariates included. For this investigation, we set two levels of
effect of xi within classes: low level vs. high level of effect of xi within classes. In these two

conditions, ( ) and ( ) in (5), which were set to be (1.897, 0.948) above, are
further multiplied by 2 and 5 respectively.

Statistically, the larger number is used for the multiplication, the more nonnormal
distribution will result in each class. Substantively, the larger number is used for the
multiplication, the more heterogeneity in the data the covariate would capture. In Figure 6
and Figure 7, we plotted the expected within-class trajectories of yi (for both classes) in

Study I when ( ) in (5) is multiplied by 2 and 5 respectively. From Figure 6 to Figure
7, the distance between the expected within-class trajectories of yi increases in both classes.
In term of Mahalanobis distance, the within-class distance increases from 1.23 to 7.71 in
both classes from Figure 6 to Figure 7. On the other hand, despite the levels of effect of xi,
given xi, the distance between the expected trajectories of yi across classes (e.g., the
trajectories of yi across classes given xi = 1 or the trajectories of yi across classes given xi =
0) holds constantly as 9.34.

Our first study has 8 experimental conditions: two levels of effect of xi within classes and
four sample size levels. To verify the within-class nonnormality, we randomly selected a
sample with N = 2000 under each level of effect of xi and drawn the QQ-plots of yi at Time
7 against standard normal distribution for each class in the two samples from Figures 8–11.
We used yi at Time 7 because at this time the nonnormality of yi reaches its maximum
across classes. In Figure 8 and Figure 9, under the low level of effect of xi, the within-class
distributions of yi approximate the normal distribution well in sample against our
expectation. Of course, under the higher level condition as shown in Figure 10 and Figure
11, the distributions depart from the normal one clearly. We calculated Mardia’s skewness
and kurtosis test statistics (Mardia, 1974) for yi in each class of both samples. With α = .05,
Mardia’s skewness test statistic is significant for both classes under the high level of effect
of xi and is nonsignificant for both classes under the low level condition. For both samples,
Mardia’s kurtosis test statistic is nonsignificant across classes.

Study II: Mildly nonnormal continuous covariates
In our second study, xi is set to be a continuous variable. When ci1 = 1, the distribution of xi
is set by the method of Flieshman (1978) to have a mean and variance equal to 1, and
skewness and kurtosis equal to 1 and 3 respectively. When ci2 = 1, the distribution of xi is
set to the same distribution but with a mean equal to δ. For this study, δ is set to 1,  or 2.
As discussed before, when xi is nonnormally distributed within classes under Scheme 2 as in
this study, the fitting model without covariates as in Figure 1 would be misspecified because
ηi and yi given ci would not be normally distributed in the generated data as assumed.

However, for the model with covariates as in Figure 2, the situation is different. When δ = 1,
xi is independent of ci under Scheme 2 and their joint distribution in the generated data can
be reparameterized by a f1(ci|xi)f1(xi) in (1). Specifically, by (A-4), the implied ḟ(xi) would
suggest that xi unconditionally has a single nonnormal distribution, the implied π̇ik for the
data becomes a constant, .50 and suggests that all parameters of the f1(ci|xi) in (2) would be
equal to zero. Clearly, the data in this condition can be correctly fitted by GMM models with
covariates as in Figure 2 even though the class membership prediction would make the
model unparsimonious. Furthermore, when  or 2, the joint distribution of xi and ci in
the generated data may not be able to be reparameterized by a f1(ci|xi)f1(xi) with an
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implementable model of membership prediction in form of (2). By (A-4), the implied ḟ(xi)
for the data is a nonnormal mixture. However, the implied π̇ik would not be fully expressed
by the model for class membership prediction in (2), and consequently GMM fitting model
with covariates would not be a correctly specified model because its assumed model for
membership prediction in (2) can not be satisfied in the generated data.

Let xi denote the age of caregiver at baseline in our NSCAW example. Substantively, the
setting of Scheme 2 in this study states that the average age of caregiver in the second class
could be equal to or older than the one in the first class and this difference may result in
further difference on the growth factors across classes. For our study, this simulated
population would allows us to investigate the class enumeration performance of the model
with covariates as in Figure 2 when age of caregiver in fact is predicted by class
membership and the underlying population could be either correctly or incorrectly fitted by
the model.

In this study, we have 12 experimental conditions: 3 levels of δ value and four sample size
levels. We randomly selected a sample when N = 2000 and δ = 2 and drawn the QQ-plots of
yi at time 7 in Figure 12 and Figure 13. Two plots show that the within-class distributions of
yi approximate to the normal distribution somewhat against our expectation. Mardia’s
skewness and kurtosis test statistics calculated from this sample also suggest that
multivariate normality holds for both classes.

Study III: Severely nonnormal continuous covariates

In our third study, xi follows chi square distribution within classes. When ci1 = 1,  and

when ci2 = 1, , where δ can be either of two values, 1 or 2. Like before, the fitting
model without covariates as in Figure 1 would be misspecified in this study despite the value
of δ because of the violation of normality assumption. Again, when δ = 1, xi is independent
of ci under Scheme 2` and their joint distribution in the generated data can be
reparameterized by a f1(ci|xi)f1(xi) in (1). By (A-4), the implied ḟ(xi) would suggest that xi
unconditionally has a single chi square distribution, the implied π̇ik becomes a constant, .50
and and suggests that all parameters of the f1(ci|xi) in (2) would be equal to zero, and the
data can be correctly fitted by GMM model with covariates even though it may be
unparsimonious. When δ = 2, the mean, variance, skewness and kurtosis of xi in the second

class are equal to , 2,  and 1.5 respectively while xi in the first class follows a central
chi square distribution with mean and variance equal to 1 and 2 respectively. For this
condition, the joint distribution of xi and ci in the generated data may not be able to be
reparameterized by a f1(ci|xi)f1(xi) with an implementable model of membership prediction
in form of (2). By (A-4), the implied ḟ(xi) for the data is a chi square mixture, the implied
π̇ik may not be fully expressed by the model for class membership prediction in (2) and
consequently GMM fitting model with covariates may not be correctly specified because its
assumed model for membership prediction in (2) can not be satisfied in the generated data.

In this study, we have 8 experimental conditions: 2 levels of δ value and four sample size
levels. We randomly selected a sample when N = 2000 and δ = 2 and drawn the QQ-plots of
yi at time 7 in Figure 14 and Figure 15. Two plots show that yi in the first class departs from
normal distribution while yi in the second class approximate normal distribution somewhat.
Mardia’s skewness test statistics calculated for the two classes also suggest that multivariate
normality does not hold for the first class even though Mardia’s kurtosis test statistics are
nonsignificant in both classes.
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Model fitting, fit indices and model evaluation
For each experimental condition above, 200 replications are generated by using R package.
For each replication, two types of fitting models, GMM with covariates and GMM without
covariates, are fitted using Mplus. In both types, the residual variances of outcomes, the
factor variances and covariances, and the covariate effects on the growth factors (if
covariates are included) are set to be invariant across classes. For both types, the number of
classes specified ranges from one to five. When the number of classes specified is greater
than or equal to 2, the number of sets of random starting values, the number of iteration for
each of random starting value sets, and the number of solutions with the highest likelihood
values selected and iterated in the final stage are set to 400, 40 and 20 respectively for all
fitting models.

For model evaluation, we use all six fit statistics used for our NSCAW example. To save the
computational time, the default method in Mplus is used to calculate the BLRT. In addition,
as recommended by Muthen and Muthen (2006), we use 40 draws for the model with k
classes in the initial stage followed by 10 optimizations in the final stage.

In GMM, for AIC, BIC and ABIC, a lower value represents an improvement of fit after
controlling the increase of model complexity. For each replication and each type of fitting
models (GMM with or without covariates), the lowest value of AIC, BIC or ABIC among
the series of fitting models with one to five classes is used for that fit index to determine the
number of classes. As to LMR, ALMR and BLRT (LRTs), the strategy is different. The p-
values of these statistics are used to make a choice between k − 1 vs. k-class models. In
practice, these values could shift from being significant to nonsignificant and then back to
significant again (e.g., Nylund et al., 2007). As a result, we follow Nylund et al. (2007) and
check the p-value of each of fit statistics sequentially from the model with two classes to the
one with five classes. The process will stop and the model with k − 1 classes will be used for
that fit index to determine the number of classes once its p-value for the model with k
classes become nonsignificant (p > .05) for the first time during checking. For example, by
this procedure, the two-class solution will be selected by LMR when the p-values of LMR
are significant for both two and four-class models but not significant for the three-class
model.

In our model evaluation, we treat local or improper solutions and failure of convergence
equally. For example, if a fitting model with two classes fails to converge or converges to a
local or improper solution in a replication, then an extremely large positive value will be
given to AIC, BIC, ABIC and the p-values of LRTs for the two class model to prevent the
number two from being enumerated by the model as the correct number of classes in that
replication. For LRTs, when their p-values are prompted to be untrustworthy by Mplus, the
extremely large positive number will also be given to the p-values of the corresponding fit
indices for that model during model evaluation due to the same purpose.

Results
For our first study, we present the class enumeration results of different fit indices under the
low and high level of effect of xi in Table 1 and Table 2 respectively. The class enumeration
results for our second study are presented in Table 3–Table 5 for δ = 1,  and 2
respectively. The class enumeration results for our third study are presented in Table 6 and
Table 7 for δ = 1 and 2 respectively. In all these tables, for each experimental condition and
each type of fitting models, the percentage of times at which a fit index indicated a specific
number as the correct number of classes was given under that number of classes. Note that
in all our studies, the correct number of class is two and has been bolded in all seven tables.
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Performance of parameter recovery
Before the discussion of class enumeration, it is worthwhile to examine the parameter
recovery performance of our correctly-specified models at first. In our first study, the two-
class GMM fitting model with covariates is exactly specified in Table 1 and Table 2 despite
the levels of effect of xi. In our second and third studies, the two-class GMM fitting model
with covariates would be correctly specified when δ = 1 as in Table 3 and Table 6. In both
studies, the two-class GMM fitting model with covariates would be misspecified when

 or 2. The GMM fitting model without covariates would be always misspecified in all
studies.

In our studies, the correctly-specified GMM models perform well in parameter recovery.
Across the three studies and the four sample size levels, the probabilities of the 95%
confidence interval of parameters containing their population values over 200 replications
range from .90 to .99 with three exceptions in our third study when N = 200. The three
coverage exceptions are 88.5% for membership prediction by covariate (b1 in equation 2),

86.5% for the covariate effect on intercept factors (  and , which are assumed to be

class-invariant), and 81% for the covariate effect on slope factor (  and , which are
assumed to be class-invariant too). Despite inclusion or exclusion of these three coverage
probabilities, the median of the coverage probabilities across all parameters, all studies and
all sample sizes would be 95%.

In addition to the coverage probabilities, the mean relative bias (MRB) of parameter
estimates (see p. 352 of Bauer & Curran, 2003 for the definition) are also within the
acceptable level (<10%, see Kaplan, 1989) in all cases and support a good performance of
parameter recovery. The largest MRB (5.48%) happens to the estimates for σ00 in our third
study when N = 200 while all others are less than 5%. When N ≥ 400, the MRBs are less
than 2.5% for all cases. For more information of parameter recovery, please refer to http://
www.caldar.org/documents/li-hser-estimates.pdf, where the mean of estimates, the average
standard errors, the MRBs, and the coverage probabilities over replications are listed for
each parameter of the models across sample sizes.

Performance of GMM model without covariates
Unlike previous studies (e.g., Nylund, et al., 2007), we study the class enumeration
performance of the GMM fitting model without covariates when it is not the correctly
specified model. Across all seven tables, the degree of misspecification of the GMM fitting
model without covariates varies. When the within-class nonnormality is minor as in Table 1,
and Table 3-Table 5, BIC is the most robust index to the misspecification and detects the
correct number of classes over 97.5 percent of times when N ≥ 400. In these tables, AIC
performs poorly in general and ABIC detects the correct number of classes at majority of
times but performs somewhat worse than BIC across the sample size levels (except N =
1000 and 2000 in Table 1). Among LRTs, BLRT performs well when N = 200. However,
LRTs especially LMR and ALMR (LMRs) are relatively more sensitive and tend to accept
more extra classes when N ≥ 400. This tendency of LMRs is similar to their performance in
Nylund et al. (2007) when the GMM fitting model without covariates is correctly specified.

When the within-classes nonnormality become more severe as in Table 2, Table 6 and Table
7, BIC is more robust to the misspecification and more tends to reject extra classes than all
other indices when N = 200. However, interestingly, in this condition, BIC, ABIC and
BLRT begin to be less robust to misspecification than LMRs and ALMR when N ≥ 400 and
tend to almost exclusively accept more classes than necessary when N ≥ 1000. In reverse, at
this time, LMR and ALMR become more conservative and still detect the correct number of
classes at a substantial percent of times. For example, in Table 2, when N = 2000 and BIC
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and ABIC almost exclusively support the four-class solution, LMRs still support the two-
class solution around 50 percent of chance. Across the three tables, it seems that for the
model without covariates LMRs are more sensitive to some minor misspecification (as in
Table 1, Table 3-Table 5) but are less sensitive to some severe misspecification (as in Table
2, Table 6 and Table 7) than other indices.

Performance of GMM model with covariates
As discussed before, the fitting model with covariates included is the exactly specified
model for the data in Table 1 and Table 2. In Table 3 and Table 6, when δ = 1 in the second
class, the fitting model with covariates included are correctly specified but not the most
parsimonious one. In the four tables, as expected, the fitting model with correct covariate
inclusion clearly outperforms the one without covariates in recovering the correct number of
classes across fit indices and Ns, no matter if the misspecification for the fitting model
without covariates is minor (e.g., in Table 1 and Table 3) or severe (e.g., in Table 2 and
Table 6) and no matter how BIC, ABIC and LMRs by the fitting model without covariates
agree or disagree with each other. For example, in Table 2 and Table 6, due to severe
misspecification of the model without covariates included, BIC, ABIC and LMRs tend to
favor the model with more than two classes and may also give inconsistent conclusions on
class enumeration when N ≥ 1000. However, with the correct inclusion of covariates, all fit
indices (except AIC) tend to reject extra classes and consistently support two-class model.

Of course, variation among different fit indices also exists in this case. Across the four tables
and Ns, BIC performs better than all other fit indices and almost exclusively favors the two-
class model. In reverse, ABIC would exclusively favor the two-class model only when N ≥
1000. In Table 1 and Table 2, when the model with covariates is the exactly specified model,
LMRs perform very well when N ≥ 400. However, in Table 3 and Table 6, LMRs become
less robust and accept more extra classes across Ns. Notice that the fitting model with
covariates included is the correctly specified model but not the most parsimonious one in the
two tables. The worse performance of LMRs in the two tables may be due to this reason. As
to BLRT, it performs well in Table 1 and Table 3 when N ≥ 400 but tends to accept more
extra classes in Table 2 and Table 6 when N increases.

Like its exclusion, covariate inclusion can bring misspecification to the fitting model too as
in Table 4, Table 5 and Table 7. Consequently, as expected, the class enumeration by GMM
model with covariates overall deviates from the correct number of class in the three tables
(except BIC in Table 4). Furthermore, it is interesting to compare the class enumeration
performance before and after the inclusion of covariates in this situation. In Table 4, where
the misspecification before inclusion of covariates is relatively minor, BIC is robust to the
misspecification after covariate inclusion, performs as well as before inclusion of covariates
and almost exclusively favors the two-class model across Ns. Unlike BIC, after covariate
inclusion, all other fit indices depart in various degrees from the two-class model across Ns.
Compared to exclusion of covariates, inclusion of covariates in Table 4 is substantially
detrimental to AIC and ABIC across Ns. For LRTs, this detrimental effect of covariate
inclusion does not become obvious until N = 2000.

In Table 5, where the misspecification before inclusion of covariates is still minor and δ
increases from  to 2, the robustness of BIC on longer holds. More severe misspecification
after covariate inclusion is detrimental to all fit indices and they tends to depart from the
two-class model when N ≥ 400. Of course, even in this situation, BIC is still relatively more
conservative than all other fit indices in accepting more extra classes. In addition, in Table 5,
despite the misspecification after covariate inclusion, LMRs are relatively more conservative
than AIC, ABIC and BLRT in class enumeration across Ns.
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Finally, in Table 7, where the misspecification before inclusion of covariates becomes
relatively severe, all fit indices depart from the two-class model across Ns after covariate
inclusion. In this table, when N ≤ 400, BIC performs better or equally well after inclusion of
covariates and all other fit indices perform similarly before and after the inclusion. When N
≥ 1000, BIC and ABIC more tend to favor the three-class model and reject both the two and
four-class models after inclusion of covariates than before the inclusion. This tendency also
happens to LRTs even though they accept the two and especially four-class models more
frequently than BIC and ABIC after covariate inclusion.

Discussion and Recommendation
In this article, our simulation studies investigated the class enumeration performance of two
types of widely-used GMM fitting models under Scheme 2. Clearly, our data generation
model by Scheme 2 structurally deviates from both fitting models. However, despite this
deviation, through our study design, we generated our experimental conditions for the two
types of fitting models by Scheme 2. That is, GMM fitting model without covariates is
minorly misspecified as in Tables 1, Table 3–Table 5 while is severely misspecified as in
Tables 2, Table 6 and Table 7. At the same time, GMM fitting model with covariates is
correctly specified as in Tables 1–Table 3, and Table 6 while is misspecified as in Tables 4,
Table 5, and Table 7. Even though our type of factorial design here with two levels of
severity of misspecification in GMM fitting model without covariates and two levels of
correctness of specification in GMM fitting model with covariates may not be very strict, it
could allow us systematically investigate the strength of the two widely-used GMM fitting
models in different experimental conditions and provides guidelines or recommendations for
GMM class enumeration. In fact, this kind of study is clearly relevant in practice since either
of the two widely-used GMM fitting models could be misspecified in real world and
researchers generally don’t know whether they would be correctly specified or not in their
applications. Of course, our design only includes a portion of potential factorial
combinations for the two fitting models, the true data generation model in practice could be
other than Scheme 2, and future studies are needed.

In this article, we studied the class enumeration performance of GMM fitting model without
covariates when it is not the correctly specified model. Our findings for the model without
covariates should be relevant to some existing literature. Nylund et al. (2007) suggested
using BIC to narrow the number of potential models down, and then using BLRT and
substantive interpretation to help guide the final choice. Although BLRT performs well in
Nylund et al. (2007) when the fitting model without covariates is the correctly specified
model, it performs poor in general in our studies when it is a misspecified one. Across seven
tables, except when N = 200 and the misspecification is minor (e.g., in Table 1), BLRT
performs worse than either BIC or LMRs.

As a result, unlike Nylund et al. (2007), we instead suggest to pay attention to the sample
size and the discrepancy of class enumeration by BIC and LMRs. Our results show that BIC
can outperform LMRs and reject extra classes when the mis-specification of GMM fitting
model without covariates is minor (e.g., Table 1, Table 3–Table 5) or when the
misspecification is severe and N = 200 (e.g., Table 2, Table 6 and Table 7). On the other
hand, LMRs are more conservative than BIC and reject extra classes when the
misspecification of the fitting model is severe and N is large (e.g., Table 2, Table 6 and
Table 7). Thus, in a relatively large sample (e.g., N ≥ 1000 as in our NSCAW example), as
long as LMRs enumerates a different (either less or more) number of classes from BIC, it is
very likely that some misspecification (either minor or severe) exists in our fitting model for
class enumeration. At this time, the less number of classes enumerated by BIC or LMRs
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should receive some attention. On the other hand, in a relatively small sample (e.g., N <
400), BIC would be more reliable than LMRs in general.

In this article, the class enumeration strategy for LMR, ALMR and BLRT we used is same
as the one used by Nylund et al. (2007) for their Table 8. Our results by this strategy suggest
that LMRs should be considered sequentially and independently and not be limited to the
number of potential models narrowed down by BIC when the sample size is large and BIC
enumerates a very different number of classes from LMR and ALMR. For example, in Table
2, when N ≥ 1000 and BIC exclusively detects four classes, the potential number of classes
for LMR and ALMR would be limited to three, four or five and the correct number of
classes, two, will be missed if they are not considered sequentially and independently.

Of course, we have to mention that even though a smaller number of classes enumerated by
BIC or LMRs or an agreement of class enumeration between BIC and LMRs could be
informative or helpful, they do not guarantee a correct solution for class enumeration. For
example, in Table 6 and Table 7, when N = 2000, the percent of times LMRs favors the two-
class model drops below 50. In other words, it is very likely that BIC and LMRs favor the
same model with more than two classes or different models with more than two classes.

In practice, GMM fitting model without covariates is very likely to be misspecified. Even
though inspecting BIC and LMRs as discussed above could be helpful in some cases, it can
not be the complete story. Our studies demonstrate that there is another potential way to
overcome the problem of GMM fitting model without covariates. That is inclusion of
covariates for GMM class enumeration. We demonstrated in Appendix that GMM fitting
models with or without covariates theoretically are not always consistent to the same
population model as many applications assumed. This could cause class enumeration
problems for the fitting model without covariates and lead to a better performance by the
fitting model with covariates. We demonstrated this point by the results in Tables 1–3 and
Table 6. In these tables, despite the severity of misspecification and the agreement or
disagreement between BIC and LMRs by the model without covariates, the fitting model
with correct covariate inclusion clearly outperforms the one without covariates in recovering
the correct number of classes across fit indices and Ns. In practice, this consistent rejection
of extra classes across fit indices could be a strong indication of beneficial effects of
covariate inclusion. Our results also demonstrated the variation among different fit indices
for class enumeration in this condition. Based on our results, we recommend BIC for class
enumeration when inclusion of covariates leads fit indices to favor a less number of classes
but does not provide a consistent conclusion across fit indices.

Of course, the inclusion of covariates could also bring some extra problems which would not
happen to the model without covariates included. For example, in Table 4, Table 5 and
Table 7, inclusion of covariates brings misspecification in membership prediction to the
fitting model. In the three tables, the fitting model with or without covariates both are
misspecified but are subject to different sources of misspecification. In Table 4 and Table 5,
where the misspecification before inclusion of covariates is relatively minor, all fit indices
after inclusion of covariates tend to accept more extra classes as N or the misspecification in
membership prediction increases. In Table 7, where the misspecification before inclusion of
covariates is relatively severe, all fit indices (except BIC when N ≤ 400) more tend to favor
the three-class model and reject the two and four-class models after inclusion of covariates
than before the inclusion. By our results, we suggest that comparison of class enumeration
before and after inclusion of covariates in practice is a comparison of relative sensitivity of
class enumeration to the two types of misspecification.

Li and Hser Page 13

Multivariate Behav Res. Author manuscript; available in PMC 2013 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



NSCAW example revisited
Given the findings above, we go back to our NSCAW example. In our example, without
including covariates into the fitting model, BIC and ABIC both support a four-class solution
while the p-values of LMR and ALMR are significant for the two and three-class models but
are not significant for the four-class model. Given that our sample size is large (N = 1481),
based on our findings above, it is likely that the more conservativeness of LMR and ALMR
than BIC and ABIC in class enumeration in that example may results from some serious
misspecification of the fitting model as in some of our tables (e.g., Table 2).

After inclusion of covariates as we described before, BIC shifts away from the four-class
solution and favors the three-class model. Notice that in Table 4, Table 5 and Table 7, BIC
is the index that least tends to accept extra classes after inclusion of covariates and should be
recommended in this case. Like before inclusion of covariates, the p-values of LMRs are
nonsignificant for the four-class model. Even though AIC and ABIC still support the four-
class solution and are inconsistent with BIC and LMRs, the difference of AIC and ABIC
between the three and four-class models reduce after inclusion of covariates.

All of these changes are in the direction of favoring the three-class model. However, as we
discussed before, for this example, it would be safer for us to say that the beneficial effect of
covariate inclusion makes the misspecification after inclusion become less serious to class
enumeration than the one before inclusion. In our example, not all of fit indices support a
smaller number of classes and give an consistent conclusion. Even though it is beneficial,
the effect of covariate inclusion may not be complete or strong enough in our example as in
our simulation studies. In fact, even when all fit indices become consistent after inclusion of
covariates, the model with the selected number of classes may still be misspecified. For our
example, whether a three-class model or a four-class model should be used as the basis of
determining the number of classes still needs substantive knowledge to help us judge the
interpretability of the trajectories and parameter estimates and to make final selection. In
fact, if researchers cannot interpret a solution (either with or without covariates included;
either with less or with more number of classes) favored by the statistical procedures above,
the model becomes impractical and useless. For our example, combining our substantive
judgment and our analysis above, we select the three-class solution for our data.

Limitations and implications
Throughout this article, we assumed the within-class normality for GMM fitting model
without covariates. As we demonstrated, this assumption could cause a poor class
enumeration performance for the fitting model when the within-class distribution is severely
nonnormal in practice. Of course, in practice, some within-class distributions other than
normal distribution can be specified by researchers for the GMM fitting model without
covariates. For example, a fitting model with more general within-class distribution
assumptions may take into account of the within-class nonnormality of the data in our Study
III and perform well in class enumeration. However, we need notice that even that type of
fitting model may not be able to include all possible within-class nonnormalities in practice.
In this sense, even though the models with more general within-class distribution
assumptions are needed, it may not be the complete solution for the fitting model without
covariates.

In this article, we evaluate the covariate effect on GMM class enumeration and recommend
some fit indices (e.g., BIC, LMRs) for practical use. Theoretically, the performance of these
fit statistics requires that the sample size is large enough. Whether the beneficial effect of
covariate inclusion or the robust class enumeration performance of some fit indices (e.g.,
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BIC) still exist in some smaller sample size (e.g., N = 50 or N = 100) is an interesting
question and need more studies in future.

Our studies demonstrate that misspecification caused by inclusion of covariates, like other
sources of misspecification mentioned before, can lead GMM class enumeration away from
the truth in practice. In general, including covariates into the fitting model would add more
information to the fitting model than excluding them would. Our results may suggest that
this is not absolutely true and including more incorrect information could be harmful too. Of
course, as we mentioned before, the detrimental or beneficial effects of covariate inclusion
still depend on the relative strength of the model with or without covariates to the class
enumeration in application and are subject to substantive judgment finally. However, it
leave a question that what is the mechanism that the misspecification causes this
impairment. Future study on this question is needed.

In this article, we assume that the residual variances of outcomes, the factors variance and
covariances, and the covariate effects on the growth factors (if covariates are included) are
class-invariant in the GMM models for our example and simulation studies. We use this type
of model due to its popularity. Tofighi and Enders (2007) studied inclusion of covariates for
GMM class enumeration when models are much less restrictive. Given the very different
level of class specificity of their population and fitting models, how well our conclusions on
inclusion of covariates for GMM class enumeration in this article would be applicable to
that type of models still need more future studies.

In this article, we only considered time-invariant covariates and ignored time-varying
covariates. Like time-invariant covariates, inclusion of time-varying covariates may also

influence the class enumeration. In our first study, we multiplied ( ) by 2 and 5.
However, we didn’t do that when the covariate is continuous. Clearly, with different values

of ( ), the nonnormality of xi would have different impact on the nonnormality of yi
within classes. In addition, in this article, we fixed the mixing proportions to be equal across
classes. Our conclusion may change when the mixing proportion of some classes are very
small. Further research along this direction is needed.
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Appendix
I. Let xi = (xi1, xi2), where xi1 includes all categorical covariates and xi2 includes all

continuous variables. For Scheme 1, we can reformulate

(A-1)
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where ḟ(xi|ci) = Πk[πikf1(xi)/Σxi1{∫ πikf1(xi)dxi2}]cik and π̇k = Σxi1 {∫
πikf1(xi)dxi2}. Notice that π̇k is not conditional on xi and for cik, there is only one
element equal to 1 while all others are zeros. So for any ith observation,

(A-2)

where m is the value by which cim = 1.

From (A-1), we can see if we first sample xi from some distribution and then
sample ci by (2) and yi from f(yi|xi, ci) in (3), we can obtain a same sample if we
first sample ci from a multinomial distribution with P(cik = 1) = π̇k and then sample
xi from ḟ(xi|ci) conditional on ci and yi from f(yi|xi, ci) conditional on ci and xi.

In general, ḟ(xi|ci) by (A-2) will barely be normal for each class except in some
special cases, for example, when f1(xi) is normal and πim is a constant and does not
vary with xi. This within-class nonnormality of ḟ(xi|ci) could cause problem for the
GMM fitting model without covariates as in Figure 1. Suppose that there is no
direct path from xi to yi (time-varying covariates) in population. Then combining
(A-1) with (3) and integrating (A-1) over xi, the marginal distribution f1(yi, ci),
which the GMM fitting without covariates as in Figure 1 is based on, in the data by
Scheme 1 can be obtained as

(A-3)

By (4) and (5), f(yi|ηi, ci) and f(ηi|xi, ci) are conditional normal. However, as
mentioned before, ḟ(xi|ci) in general would be barely normal under Scheme 1. Then
the within-class distribution f1(ηi|ci) and consequently f1(yi|ci) by (A-3) in general
will not be normal in the data by Scheme 1 except when ḟ(xi|ci) is normally
distributed. On the other hand, in GMM application, the fitting model without
covariates as in Figure 1 assumes the within-class distributions f1(ηi|ci) and
consequently f1(yi|ci) to be conditional normal in estimation. Thus, under Scheme
1, or in other words, if the data is really like what the GMM fitting model with
covariates as in Figure 2 assumes, the GMM fitting model without covariates as in
Figure 1 may be misspecified in the within-class distribution in general.

Of course, there is one exception. When xi only predict the class membership under
Scheme 1 and has no influence on the growth factors in (5) as assumed in some
studies (e.g., Lubke & Muthen, 2007), the distribution f(ηi|xi, ci) is independent of
xi in the data. Consequently, f1(ηi|ci) and f1(yi|ci) in (A-3) are normal within classes
no matter how xi is distributed and the fitting models as in Figure 1 and Figure 2
are both correct for the data.

II. Comparing (A-1) and (6), it is clear that the population model implied by Scheme 1
can be transformed to the form of Scheme 2 in (6) with f2(xi|ci) = ḟ(xi|ci) and πk =
π̇k. On the other hand, for Scheme 2, we can reformulate
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(A-4)

where f2(xi|k) is the conditional probability of xi given kth class under Scheme 2,
π̇ik denotes πkf2(xi|k)/Σk πkf2(xi|k), and ḟ(xi) denotes Σk πkf2(xi|k). Then
comparing (A-4) and (1), it is clear that the population model implied by Scheme 2
can be transformed to the form of Scheme 1 in (1) with πik = π̇ik and f1(xi) = ḟ(xi).

Moreover, in terms of Scheme 1 in (1), the implied unconditional distribution of xi
in the GMM data generated by Scheme 2 would be a mixture in general. However,
π̇ik, the implied probability of ci given xi in this type of the data, in general may not
be completely expressed for all possible xi by the model for class membership
prediction in (2). When this is the case, the joint distribution of xi and ci by f2(xi|
ci)f2(ci) in the generated data can not be reparameterized into a f1(ci|xi)f1(xi) with
an implementable model of membership prediction in form of (2), and
consequently the fitting model with covariates as in Figure 2 may be misspecified
because its assumed model for membership prediction in (2) can not be satisfied in
the generated data by Scheme 2.
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Figure 1.
Growth mixture model without covariates
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Figure 2.
Growth mixture model with covariates
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Figure 3.
Data generation model for our simulation studies
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Figure 4.
Trajectories by three-class GMM model without covariates.
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Figure 5.
Trajectories by four-class GMM model without covariates.
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Figure 6.
Trajectories under Low Level of Effect of xi in Study I.
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Figure 7.
Trajectories under High Level of Effect of xi in in Study I.
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Figure 8.
QQ-plot of yi at Time 7 in Class 1 under Low Level of Effect of xi
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Figure 9.
QQ-plot of yi at Time 7 in Class 2 under Low Level of Effect of xi
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Figure 10.
QQ-plot of yi at Time 7 in Class 1 under High Level of Effect of xi
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Figure 11.
QQ-plot of yi at Time 7 in Class 2 under High Level of Effect of xi
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Figure 12.
QQ-plot of yi at Time 7 in Class 1 when xi has a mean equal to 1 and is mildly nonnormal
within the class
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Figure 13.
QQ-plot of yi at Time 7 in Class 2 when xi has a mean equal to 2 and is mildly nonnormal
within the class
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Figure 14.

QQ-plot of yi at Time 7 in Class 1 when 
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Figure 15.

QQ-plot of yi at Time 7 in Class 2 when 
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