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Abstract
The involvement of matrix metalloproteinase (MMP) 9 in methamphetamine-induced
neurotoxicity was evaluated. Injection of mice with stimulant or toxic doses of methamphetamine
up regulated MMP9 gene expression in the brain within 5 min. By 24 h, MMP9 gene expression
returned to control levels in the stimulant-treated mice, but remained elevated in animals exposed
to toxic doses of methamphetamine. Reductions in striatal dopamine levels, a marker of
methamphetamine neurotoxicity, developed 1–7 days following methamphetamine exposure, but
were not accompanied by concomitant changes in MMP9 gene expression. In MMP9 knock out
mice, methamphetamine retained its ability to elicit neurotoxicity. The data suggest that MMP9
expression does not contribute to methamphetamine-induced neurotoxicity, and may instead be
involved in remodeling of the nervous system.
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Introduction
Matrix metalloproteinase (MMP) 9 is up regulated following various types of insults to the
brain, and has been suggested as a marker of neurodegeneration [1–5]. However, recent
studies have also implicated MMP9 in neural remodeling [4, 6–12], making it unclear
whether increased expression of MMP9 contributes to damage or recovery from damage in
the central nervous system. The psychomotor stimulant methamphetamine up regulates
MMP9, and recent studies suggest that this contributes to neural remodeling [13–15].
However, the involvement of MMP9 in methamphetamine-induced neurotoxicity remains
unclear and was thus evaluated in the present study.

Methods
Subjects: Male, Swiss Webster (Harlan, Indianapolis, IN), FVB and MMP9−/− (Jackson
Laboratory, Bar Harbor, ME) mice were used. Animal procedures were conducted as
approved by the Institutional Animal Care and Use Committee at each participating
university.
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Drugs
Methamphetamine hydrochloride (Research Biochemicals International, Natick, MA) was
administered to the mice as either a large bolus (40 mg/kg) or using a repeated dosing
schedule to achieve the same cumulative dose (10 mg/kg, 4×, 2 h intervals) [16]. For the
time course studies, bolus injections were given to facilitate determining the progression of
the gene expression changes. However, since more deaths resulted following bolus
injections of the high methamphetamine dose, as compared to repeated administrations to
the same cumulative dose, for the studies involving MMP9 knockout mice, the repeated
dosing schedule was used.

Time course
Swiss Webster mice were injected with methamphetamine (1, 10, or 40 mg/kg, i.p.) and
their brains collected at designated time points. For earlier time points (5 min to 24 h) which
precede the development of neurotoxicity, MMP9 gene expression was determined in whole
brain. For the later time points during which neurotoxicity develops (Days 1, 2, 3, 7), MMP9
gene expression was measured in half brain and also striatum, a brain region profoundly
affected by methamphetamine neurotoxicity [17–19].

Real time
PCR: MMP9 gene expression was quantified using real time PCR. Total RNA was extracted
from each sample using Trizol reagents, followed by first strand cDNA synthesis using
Superscipt II RNase H Reverse Transcriptase (Gibco BRL, Life Technologies, Rockville,
MD) and random decamers (Ambion, Austin, TX). Primer Express software (Applied
Biosystems, Foster City, CA) was used to design upper (CACCTTCACCCGCGTGTAC)
and lower (TGCTCCGCGACACCAAA) primers, and a stock solution prepared by diluting
the oligos to100 pmol/μl in sterile water. Each PCR reaction was comprised of 2 μl cDNA
template, 12.5 μl master mix, 0.125 μl of each primer (upper and lower), and 10.25 μl
sterile water. Thermal cycling, using an ABI PRISM 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA), was initiated at 50° C for 2 min, followed by a first
denaturing step at 95° C for 10 min, and then 40 cycles at 95° C for 15 s, and at 60° C for 1
min. Threshold cycle (Ct) was determined using SDS software (Applied Biosystems, Foster
City, CA) and relative gene expression levels evaluated by the ΔΔCt method. 28s rRNA
was used as a reference.

MMP9 knock out mice: MMP9−/− and wild type FVB control mice were injected with
methamphetamine (0–10 mg/kg, 4×, 2 h intervals), and body temperature measured one hour
after each injection. One week after the treatments, the brains were collected and striatal
dopamine levels measured using a Dopamine Research Enzyme Immunoassay kit and
protocols supplied by the manufacturer (Rocky Mountain Diagnostics, Colorado Springs,
CO). A separate group of mice were injected with a stimulant dose of methamphetamine (1
mg/kg, i.p.) once a day for nine consecutive days and locomotor activity measured for 90
min using an automated activity monitoring system (San Diego Instruments, San Diego,
CA) to quantify the development of behavioral sensitization.

Results
Time course of MMP9 gene expression: Analysis of variance revealed a significant effect of
time (F[9,105]=3.87, P<0.0005). As shown in Figure 1, treatment with methamphetamine up
regulated MMP9 gene expression within 5 min. At 24 h, MMP9 gene expression returned to
control levels in the stimulant (1 mg/kg)-treated mice, but remained elevated in animals
exposed to higher (10 and 40 mg/kg) doses of methamphetamine (post-hoc tests 0 vs. 24 h,
P<0.01). Neurotoxicity was evident 1–7 days following methamphetamine exposure as
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depletions in striatal dopamine levels (Figure 2). Two way analysis of variance confirmed a
significant effect of methamphetamine dose (F[2,47]=10.25, P<0.0005). However, in mice
treated with the neurotoxic 40 mg/kg dose of methamphetamine, there was a lack of
correlation between striatal dopamine levels, a well established marker of methamphetamine
neurotoxicity, and MMP9 gene expression in the half brain (r2=0.18, n.s.) or striatum
(r2=0.53, n.s.).

Effects of methamphetamine in MMP9−/− mice: In MMP9 knock out mice, neurotoxic
dosing with methamphetamine produced increases in body temperature (F[4,20]=5.88 to
14.97, P<0.005 to 0.0001) and depletions in striatal dopamine levels (F[4,19]=56.21,
P<0.0001) that were comparable to wild type mice (Figure 3). Although the absence of
MMP9 did not affect methamphetamine neurotoxicity, the knock out mice exhibited the
expected decrease in behavioral sensitization following repeated administration of stimulant
doses of methamphetamine (Figure 4).

Discussion
Treatment with methamphetamine resulted in a rapid up regulation of MMP9 gene
expression, which was measurable within minutes. By 24 h, MMP9 gene expression
returned to control levels in stimulant treated mice, but remained elevated in animals
exposed to higher doses of methamphetamine. To determine if the elevated levels of MMP9
gene expression were associated with the development of neurotoxicity, striatal dopamine
levels and MMP9 gene expression were monitored 1–7 days following methamphetamine.
During this time frame in which methamphetamine neurotoxicity develops [20, 21], there
was the expected depletion in striatal dopamine levels in mice exposed to toxic doses of
methamphetamine. However, this well established marker of methamphetamine
neurotoxicity was not accompanied by concomitant changes in MMP9 gene expression,
suggesting that MMP9 gene expression does not serve as a marker for neurodegeneration in
methamphetamine-induced neurotoxicity, as it appears to following some types of stroke [5,
11, 22, 23]. To determine if MMP9 protein expression has consequences for
methamphetamine neurotoxicity, MMP9 knock out mice were treated with
methamphetamine. Mice lacking MMP9 still developed hyperthermia and neurotoxicity to
methamphetamine. However, similar to an earlier study [13–15], MMP9 knockout mice
exhibited a reduced response to the locomotor sensitizing effects of methamphetamine, an
effect which is thought to involve remodeling of the nervous system.

Conclusion
Together, the data suggest that changes in MMP9 expression do not affect
methamphetamine-induced neurotoxicity, and may instead contribute to remodeling of the
nervous system.
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Figure 1.
Time course of MMP9 gene expression in mouse whole brain following administration of
methamphetamine. Methamphetamine produced a rapid up regulation of MMP9 gene
expression which was sustained after 24 h at higher (10 and 40 mg/kg) doses.
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Figure 2.
Dopamine levels in mouse striatum following administration of methamphetamine.
Exposure to a neurotoxic (40 mg/kg) dose of methamphetamine elicited a significant
reduction in striatal dopamine levels.
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Figure 3.
Effect of neurotoxic dosing with methamphetamine in MMP9−/− mice. MMP9 knock out
mice exhibited methamphetamine-induced neurotoxicity, as measured as depletions in
striatal dopamine levels, which were comparable to background mice.
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Figure 4.
Effect of repeated stimulant dosing with methamphetamine in MMP9−/− mice. MMP9 knock
out mice exhibited a reduction in behavioral sensitization to methamphetamine as compared
to background mice.
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