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Abstract
We describe a general methodology for designing an empirical scoring function and provide
smina, a version of AutoDock Vina specially optimized to support high-throughput scoring and
user-specified custom scoring functions. Using our general method, the unique capabilities of
smina, a set of default interaction terms from AutoDock Vina, and the CSAR (Community
Structure-Activity Resource) 2010 dataset, we created a custom scoring function and evaluated it
in the context of the CSAR 2011 benchmarking exercise. We find that our custom scoring
function does a better job sampling low RMSD poses when crossdocking compared to the default
AutoDock Vina scoring function. The design and application of our method and scoring function
reveal several insights into possible improvements and the remaining challenges when scoring and
ranking putative ligands.

Introduction
A scoring function that accurately represents and predicts ligand-protein interactions is
necessary for molecular docking, energy minimization, molecular dynamics simulations,
and hit identification/lead optimization in structure-based drug discovery. 1–9 Docking is a
common method of structure-based virtual screening that seeks to predict the orientation and
conformation, or pose, of a ligand within a protein receptor. 4–16 A central limitation of
docking is the long-standing and unsolved problem of scoring: accurately predicting the
binding affinity of a small molecule from receptor-ligand interactions. 3,9,17–20

Docking can conceptually be broken down into two main challenges. The first is sampling
the correct pose of the molecule and the second is correctly ranking and selecting the correct
pose (scoring). There are a number of methods for sampling that can rapidly explore the
conformational space of the small molecule, 5,6 but as the amount of flexibility in the ligand
and the receptor increases, the complexity of sampling increases exponentially. Scoring
functions are used both to guide sampling and to rank the sampled poses. For instance, the
scores of putative poses may guide a Monte Carlo sampling method, as with AutoDock
Vina, 10 or determine the fitness of a population in a genetic algorithm, as with AutoDock
4. 21 In any case, an accurate scoring function is required to successfully rank and select the
sampled poses.

The form and parametrization of scoring functions varies widely across implementations.
Force-field based scoring functions 7,22–27 seek to quantify the actual molecular forces that
exist between a protein and a small molecule. Van der Waals interactions, electrostatic
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interactions, and hydrogen bonding interactions are common components of force-field
based scoring functions. These terms are ideally parametrized from first principles. Force-
field scoring functions are often designed for use in molecular dynamics simulations 23–26

and may require explicit treatment of water or an implicit solvent model. 28

Knowledge-based scoring functions 29–33 seek to derive simplified potentials directly from
databases of structural data. For example, the PMF 30 scoring function consists of a pairwise
summation over all the atom-type specific interactions between the protein and ligand. This
approach seeks to approximate complex, difficult to characterize physical interactions using
large numbers of simple terms. However, the resulting scoring function lacks an immediate
physical interpretation, and the large number of terms increases the risk of overfitting,
necessitating a rigorous validation protocol.34,35

Empirical scoring functions 36–40 incorporate elements of both force-field based and
knowledge-based scoring functions. They consist of physically meaningful terms that are
parameterized to reproduce binding affinities or binding poses. Empirical scoring functions
may have similar terms to force-field based scoring functions, and they may also contain
more complex, heuristic, terms, such as hydrophobic and desolvation interactions, that are
not easily addressed by force-field based scoring functions. Empirical scoring functions are
typically trained on a set of selected cocrystal structures with known binding affinities, and
their tunable parameters are fit to the data using techniques such as linear regression. Like
knowledge-based scoring functions, the performance of empirical scoring functions depends
upon, and improves with, the quantity and quality of the training data. Empirical scoring
functions are typically less prone to overfitting due to the constraints imposed by the
physical terms and can provide insight into the individual contributions of different
molecular interactions to binding affinity.

No matter the goal, be it affinity prediction, pose prediction, or discrimination of binders and
non-binders, one must have high quality structural and affinity training data in order to
develop and validate a scoring function. The Community Structure-Activity Resource
(CSAR) is a response to this need (http://csardock.org). The 2010 CSAR benchmark
exercise resulted in the creation of the CSAR-NRC HiQ 2010 dataset. 41 This high-quality
dataset consists of 343 curated structures from the Binding MOAD 42 database. We
developed an empirical scoring function for docking and scoring using this dataset and
submitted the results for evaluation in the 2011 CSAR benchmark exercise.

Methods
Using the CSAR-NRC HiQ 2010 dataset, 41 we designed and implemented a custom
empirical scoring function within smina. The workflow for the design of our scoring
function is shown in Figure 1.

smina
We used smina to design our custom scoring function. We created smina as a fork of
AutoDock Vina10 to provide enhanced support for minimization and scoring. It is available
under a GPL2 license at http://smina.sf.net. AutoDock Vina provides an open source,
modular, and easy to modify code base. To create smina we have modified the source code
to support custom scoring functions and improve the performance of scoring and
minimization workflows. For instance, smina can automatically calculate partial charges of
ligands using OpenBabel, 43 process multi-conformer files, such as sdf files, is 10–20x faster
when minimizing large sets of ligands, and supports user-specified scoring functions. We
are continuing to work on smina to improve the robustness and performance of the

Koes et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://csardock.org
http://smina.sf.net


minimization algorithms and provide additional options for custom scoring function
development.

Training Dataset
We used the CSAR-NRC HiQ 2010 dataset 41 to cross-validate and train our scoring
function. These structures comprise 208 distinct protein families, as determined by a 90%
sequence identity threshold. OpenBabel 43 version 2.3.1 was used to convert between file
formats. Protein and ligand structures are preprocessed with the prepare_receptor4.py and
prepare_ligand4.py scripts from AutoDock Tools 21 to compute partial charges and
protonation states. The provided “pK” affinity values were used for training.

We prepared two sets of structures for training from the CSAR 2010 dataset. The crystal
training set consists of crystal structures taken directly from the CSAR 2010 dataset. The
docked training set consists of docked structures. To create these docked structures, we
regenerated each ligand conformation from a SMILES string using OpenEye omega44 and
re-docked the ligand to the receptor using smina, which performs equivalently to AutoDock
Vina, with the options --exhaustiveness=32 --seed=0. The axis-aligned box used for docking
was centered around the bound ligand pose with each dimension extended 8Å from the
ligand with a minimum length of 22.5Å for each dimension. Of the nine poses returned by
smina, we retain the pose that is the closest, as measured by the heavy-atom root mean
squared deviation (RMSD), to the crystal ligand pose.

This process resulted in 293 docked structures where the docked ligand was within 2Å
RMSD of the crystal pose. We created this training set of docked structures since we felt
that these imperfect poses, which are minimized with respect to the default Vina energy
function, might be a better representation of the prospective docked structures we ultimately
wanted to score. In order to maintain consistency between the two training sets, we only
included the corresponding set of 293 structures in the crystal training set.

Interaction Terms
The default AutoDock Vina scoring function was trained to simultaneously optimize pose
prediction, affinity prediction, and speed. 10 It consists of three steric terms, a hydrogen
bond term, a hydrophobic term, and a torsion count factor. However, a larger space of
energetic terms were considered in the design of AutoDock Vina and these terms remain
accessible within the source code. These terms are shown in Figure 2. In addition to the
Gaussian, repulsion, hydrogen bonding, and hydrophobic terms that compose the default
scoring function, there are an assortment of simple property counts, an electrostatic term, an
AutoDock 4 desolvation term, 45 a non-hydrophobic contact term, and a Lennard-Jones 4–8
van der Waals term. For scoring purposes, only heavy atom interactions between the ligand
and protein are considered (when docking, intra-molecular heavy-atom interactions are also
used). All these terms are made available and fully parameterizable in smina. In the design
of our custom scoring function we considered these terms and their pre-existing
parameterizations, shown in Table 1, for a total of 58 distinct terms. The goal of our training
protocol is to identify the most useful linear combination of these terms.

Training Protocol
Our training protocol is implemented as RapidMiner 46 workflows which are included in the
Supplementary Materials.

Although we ultimately trained our empirical scoring function on the entire set of 293
structures from the CSAR 2010 dataset, in order to properly parameterize the scoring
function and gain an estimate of its accuracy, we used clustered cross-validation. Cross-

Koes et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



validation assesses the accuracy of a model by training the model on a subset of the data and
then evaluating it on the remaining data. With clustered cross-validation, we clustered
targets in the CSAR set by 90% sequence identity and partitioned these clusters into a
training set and test set. We also considered a more typical bootstrapping cross-validation
where structures are randomly selected (with replacement) to make up the training set. In
both cases we constructed a training set that is approximately 2/3 the size of the full set. This
process is repeated 100 times with different random selections of clusters/structures.

For a given set of interaction terms, we used linear regression to fit coefficients to these
terms. We evaluated the performance of a scoring function using the Pearson correlation
coefficient (R) between the predicted affinities and the experimental affinities. The
performance of clustered cross-validation, Rccv, is the average of all 100 test set
correlations. We observed similar trends and feature selections when the root mean square
error (RMSE) of the affinity predictions was used instead of correlation (data not shown).

We combined our cross-validation procedure with forward selection to identify the smallest
set of informative interaction terms for our scoring function. Forward selection is an
iterative greedy algorithm where terms are added one at a time to the scoring function based
on their performance. The first term selected is the single term that maximizes the
correlation, the next term is the term that when combined with the first term produces the
maximum correlation, and so on. The effect on the performance of the scoring function as
terms are added is shown in Figure 3. We show the performance of forward selection when
selecting and evaluating terms using full regression, bootstrap cross-validation, and
clustered cross-validation. The performance of the full linear regression can only increase as
more terms are added, but cross-validation performance levels off after five terms and then
decreases, indicating that more terms only overfit the data. Unlike previous efforts,34 we do
not observe a large over-estimate in performance using bootstrap cross-validation instead of
clustered cross-validation. We suspect the similarity between the two cross-validations is
due to the diverse nature of the CSAR 2010 training set: there is only one cluster (HIV
proteases) of structures with more than 10 members. Nonetheless, we suspect the larger
errors computed using clustered cross-validation provide a more realistic estimate of the
predictive capabilities of the model and we use Rccv as our primary means of assessing the
predictive properties of a model.

Unsurprisingly, using crystal structures (Figure 3(b)) as opposed to docked structures
(Figure 3(a)) results in slightly higher values of Rccv. The docked structures provide a
noisier training set since the structures are not necessarily ideally positioned, but these
structures are also a better representation of the quality of structure the scoring function will
be required to properly rank. Consequently, it is reassuring that there is not a large
difference in Rccv between the docked and crystal sets. The peak Rccv on crystal structures is
0.683 using five terms. This compares favorably with the results of the original CSAR 2010
exercise 8 where only two out of seventeen scoring function achieved a higher correlation,
although all but the lowest ranked scoring functions have overlapping 95% confidence
intervals.

Scoring Function
The first five terms identified by forward selection are shown in Table 2. The coefficients
for these terms when simultaneously fit to the full training set are shown in Table 3(a). The
first and most significant term is a steric Gaussian that rewards shape complementarity. The
term selected using docked structures features an offset of 1.5Å while the crystal selected
term has an offset of 1.0Å. Both terms prefer a narrow width of 0.3Å. The preference for an
offset indicates that, empirically, the ideal distance between ligand and protein atoms is at
least 1Å farther than the sum of the van der Waals radii. This is somewhat surprising given
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that the docked structures are minimized with respect to the default Vina scoring function
where the steric terms have no offset. This may indicate a need to reparameterize the default
van der Waals radii. Alternatively, this introduced offset may be indicative of the inherent
approximation of using implicit hydrogens.

The next term selected is the charge-dependent AutoDock 4 desolvation term
(ad4_solvation), followed by a repulsion term. The sign of the coefficient of the repulsion
term, shown in Table 3(a), is unexpected: the more two atoms overlap, the higher the
predicted affinity. Such a term would be of limited utility when performing minimization
since it can be maximized by burying the ligand in the center of the protein. The
contributions to this term in the training data come almost exclusively from atoms that form
hydrogen bonds. Hence, this term is actually representing the contributions of hydrogen
bonds to the binding affinity. The final two terms are simple counts: the square of the
number of internal torsions and the number of hydrophobic atoms.

Given the results of forward selection, we manually selected terms to create a scoring
function with similar performance that can still be used for energy minimization. Since the
Gaussian steric term does not penalize overlapping atoms, we replaced it with a van der
Waals term with nearly as good correlation, as shown in Table 2. Since the repulsion term,
when trained on the data, actually rewarded overlapping atoms, we replaced it with the best
performing hydrogen bond term. The remaining two terms, #torsions2 and
#hydrophobic_atoms, are conformation independent properties of the ligand and so play no
role in docking or energy minimization. We chose to omit the final #hydrophobic_atoms
term to reduce the chance of overfitting and keep the focus of the scoring function on the
conformation-dependent terms. The #torsions2 term may be loosely correlated with
configurational entropy, and we submitted predictions to the CSAR exercise both with and
without this term. Unless stated otherwise, when referencing our custom scoring function we
assume the presence of this term. The final regression coefficients are shown in Table 3(b).

Results
We contributed a total of four submissions to the CSAR 2011 exercise. We evaluated our
docked-trained scoring function with and without the #torsions2 term and also considered
the addition of two terms that attempted to measure the solvation state of hydrogen bonds.
These additional terms turned out to be improperly calculated and will not be discussed
further.

The exercise consisted of ligands for four targets: chk1, erk2, lpxc, and urokinase. A single
reference receptor with co-ligand was provided for each target. We docked each ligand into
the binding site defined by the provided co-ligand using AutoDock Vina with --
exhaustiveness=16 --seed=0 --energy_range=3 --num_modes=20. We scored only the pose
that was ranked best by Vina. Time constraints prevented us from exploring alternative
docking and pose selection approaches for the benchmark exercise, but other approaches are
evaluated below with respect to the full dataset.

Using these docked poses, our custom scoring function (with #torsions2) achieved R values
of 0.205, 0.397, 0.525, and 0.506, while omitting #torsions2 changes these values to 0.220,
0.409, 0.514, and 0.469 for chk1, erk2, lpxc, and urokinase, respectively. Overall, this
placed our ranking ability at the median of all submissions, and these correlations are
significantly less than the 0.642 correlation predicted by clustered cross-validation. An
analysis of the ligands with known crystal structure (made available after the conclusion of
the exercise) revealed that the scored ligand pose was within 2Å RMSD of the crystal pose
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for only 7 out of 31 structures. They were distributed as 1/12 for chk1, 0/11 for erk2, 4/4 for
lpxc, and 2/4 for urokinase.

We next use the full 2012 CSAR dataset to consider the effect of alternative docking
strategies and evaluate the efficacy of our custom scoring function on crystal structures.

Dataset
We use the updated November 16th, 2012 CSAR dataset, which is a superset of the
compounds used in the benchmarking exercise, as an independent test set. This dataset was
not available when the scoring function was created. For evaluation purposes, we limit
ourselves to those ligands that have both an available structure and a reported binding
affinity. The resulting test set contains 54 structures from five protein targets, the details of
which are shown in Table 4. We excluded CDK2/CyclinA from the analysis as it had only
one crystal structure and so does not support intra-target analyses such as crossdocking. Test
set structures are prepared as with the training set.

Docking Results
We consider four methods of docking and ranking compounds using our docked-trained
custom scoring function and the default Vina scoring function. We distinguish between the
scoring function used for docking, which guides the Monte Carlo stochastic sampling and
local optimization,1 and the scoring function used for ranking, which selects the top pose
from the poses generated by docking. The resulting “dock-rank” methods are then Vina-
Vina, Vina-custom, custom-Vina, and custom-custom. Docking was performed using smina
with the options --num_modes=40 --seed=0, and the bounding box was determined using
the same method as with the docked training data. This deterministically generates up to 40
poses for ranking using a random seed of zero. We docked using two other random seeds
and found the results to be qualitatively similar. We use the default exhaustiveness level,
which controls the amount of stochastic sampling, but found that docking performance, with
the exception of docking chk1, was generally similar even at much higher exhaustiveness
levels (see Supplemental Figures 41 and 42).

Ligands were docked to both the single reference receptor that was provided by CSAR for
each target (crossdocking) and to the cocrystal receptor of the ligand (redocking). There was
no provided reference structure for cdk2 so we chose cdk2_260 as the reference. For our
analysis, the cocrystal receptor was aligned to the reference receptor using PyMOL’s 47

align command, and then the crystal ligand was aligned using the matrix_copy command.
The heavy-atom RMSD is calculated against this reference-aligned crystal ligand.

Crossdocking
The overall performance of crossdocking using the two scoring functions is shown in Figure
4 with more detailed, per-target, results shown in Figure 5. We consider poses to be
successful if they are under 2Å RMSD. In general, our custom scoring function performs
better than Vina at sampling low RMSD poses among any of the returned poses, but Vina is
better at selecting the correct pose.

A cursory inspection of Figure 5(a) shows different levels of performance across targets and
dock-rank methods. For example, lpxc was docked and ranked with 100% success for three
of the four dock-rank methods. Compared to lpxc, chk1 and erk2 were much more difficult
to dock and rank. As shown in Figure 5(a), none of the dock-rank methods were able to

1The version of smina used in this study was not able to include charge-dependent terms in the scoring used to guide Monte Carlo
search; they were included when performing local optimization.
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predict a top ranked pose with low RMSD for more than 20% of the compounds for these
targets. This could be due to two reasons: either the docking did not sample low RMSD
poses (problem with sampling), or low RMSD poses were sampled, but were poorly scored
(problem with scoring). We observe examples of both types of failures. Figure 6 shows the
complete docking and scoring results for a selected set of compounds (two per target) for
two dock-rank methods: Vina-Vina and custom-custom. Full results for each dock-rank
method are shown in Supplemental Figures 1–40. An example of a failure in sampling is
chk1_115 in Figure 6(a), where the lowest RMSD pose is >8Å. In comparison, our custom
scoring function was able to dock a low RMSD structure and rank it as the top hit (Figure
6(b)). There are many examples of scoring failures with both scoring functions. For
example, neither scoring function was able to correctly rank the low RMSD poses that were
found for cdk2_20 and for urokinase_8 (Figure 6).

Sampling Problems—Successful docking for chk1 and erk2 was limited primarily by
sampling. This is shown in Figure 5(b), where for more than half the compounds neither of
the docking methods generated any pose with ≤2Å RMSD. Docking erk2 compounds with
Vina finds a low RMSD pose for only a single compound, compared to docking with our
custom scoring function which found a low RMSD pose for 5/12 compounds. For chk1, a
low RMSD pose is sampled for 2/16 compounds with Vina and 7/16 compounds with our
custom scoring function. Increasing the amount of stochastic search by setting the
exhaustiveness level to 50 while scoring with Vina significantly improves chk1 (7/16 low
RMSD poses are found), but gives only a small improvement for erk2 (2/12 low RMSD
poses are found). Interestingly, when scoring with our custom scoring function, increasing
the search exhaustiveness did not improve our sampling performance, which was already
significantly better than with Vina scoring (details are provided in Supplemental Figure 42).
This demonstrates that modifying the scoring function used to guide docking may be a more
efficient means of improving sampling compared to simply increasing the number of
random trials in a stochastic method.

Scoring Problems—While pose selection of chk1 and erk2 appears to be limited by
sampling, cdk2 appears to be mostly limited by scoring. A low RMSD structure was
sampled for 10/14 compounds using Vina and 14/14 compounds using our custom scoring
function, and the best dock-rank method (Vina-custom) is able to predict a low RMSD pose
as top-ranked for 8/14 of the compounds (Figure 5(a)). While docking with our custom
scoring function sampled a low RMSD pose for all of the cdk2 compounds, neither custom-
custom or custom-Vina could rank a low RMSD pose as the top-ranked pose for more than
25% of the compounds. Similarly, crossdocking urokinase compounds also suffered from
scoring problems. Both docking methods sampled a low RMSD pose for all of the
compounds, but none of the dock-rank methods were able to predict a low RMSD pose as
the top ranked for more than 50% of the compounds.

Receptor Flexibility
Our docking methods assume a rigid receptor structure. We assess the impact of protein
flexibility on the crossdocking results in three ways: structural comparison, redocking, and
minimization. For simplicity, in the main text we will only discuss two dock-rank methods,
Vina-Vina and custom-custom. The full results can be found in the Supplemental
Information.

Structural Comparison—The successful crossdocking of lpxc and urokinase and the
unsuccessful crossdocking of chk1 and erk2 can be rationalized by comparing the structures
of the provided reference receptor and the cocrystal receptors. The receptor structures of
cdk2 also help to explain its middling crossdocking results. Figure 7 shows the crystal
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binding pose of a representative ligand for each target in an overlay of the reference and
cocrystal receptor structures.

There is little rearrangement of the binding sites for lpxc, Figure 7(d), and urokinase, Figure
7(e). Correspondingly, both lpxc and urokinase consistently sample low RMSD poses when
crossdocking and redocking. Cdk2 has some receptor rearrangement that results in an
apparent tightening of the cocrystal binding site. Comparing the binding site of the reference
and the cocrystal receptors, the binding site of the cocrystal is slightly smaller (vertically in
Figure 7(a)) and the reference structure is more open. These relatively minimal changes
appear to be reflected in the similarity of the sampling in crossdocking and redocking
(Figure 5(b)).

We find there are more prominent differences in receptor structure for erk2 and chk1. A
comparison of the binding site of the reference and cocrystal receptors of erk2, Figure 7(c),
shows a significant change in the binding site. In the reference receptor the bottom of the
binding pocket is filled in while the top of the pocket is more open and less constrained. The
binding site of chk1, Figure 7(b), is also more open in the reference receptor. These more
open binding pockets place fewer restrictions on ligand positioning and increase the
complexity of the sampling problem.

Redocking—Figures 5(c) and 5(d) show sampling and scoring performance for redocking.
The starting ligand structure for redocking was the bound ligand structure provided by
CSAR. Unsurprisingly, the sampling obtained from redocking, shown in Figure 5(d), was
significantly improved over crossdocking, shown in Figure 5(b). For all targets, both
docking methods were able to sample a low RMSD pose for >90% of the compounds, with
the exception of docking erk2 with our custom scoring function. Figure 5(c) shows the
performance of each dock-rank method at selecting low RMSD top-ranked poses. Consistent
with the crossdocking results, lpxc was comparatively easy to redock and rank. However,
optimal pose selection was still not achieved for the other four targets.

The significant improvements in redocking versus crossdocking shown in Figure 5 suggest a
pivotal role for receptor flexibility in docking. It is clearly easier to redock a compound into
its native structure. However, as we show in the next section, failures in crossdocking are
not necessarily solely the result of intrinsic incompatibilities between the reference receptor
and the ligand.

Minimization—We place the crystal ligand pose into the reference receptor to create a
cross-unminimized pose and minimize the pose with a scoring function to create a cross-
minimized pose. The --local_only option of smina was used to perform minimizations.
Similarly, we refer to the native crystal structure as the self-unminimized pose and the result
after minimization as the self-minimized pose. These poses and their predicted affinities
provide insight into the theoretical performance of docking given a ‘perfect’ sampling where
the crystal pose is sampled. In fact, for every ligand the cross-minimized pose had a lower
RMSD than any of the found crossdocked poses.

The difference in predicted affinity between the self-unminimized and cross-unminimized
poses provides some insight to the extent that changes in receptor structure change the
native interactions of the crystal pose. Targets with significant changes in receptor structure,
such as erk2, have large average differences while targets with more rigid receptors, such as
urokinase, have smaller differences. This can be seen in Figure 6 and Supplemental Figures
1–40 as the spread between the squares indicating unminimized poses. Average values are
provided in Supplemental Table 1. However, large differences in unminimized predicted
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affinity do not mean that a reasonable cross-docked pose that has a low RMSD to the crystal
pose cannot be found.

As shown in the first line of Table 5, only a few cross-minimized poses (5 for Vina, 2 for
custom scoring) deviate by more than 2Å RMSD from the crystal pose. These are cases
where the reference receptor structure is simply incompatible with the crystal pose of the
ligand. An additional handful of cross-minimized poses remain within 2Å RMSD, but score
more poorly than any docked structure (second line of Table 5). The remaining cross-
minimized poses (48 for Vina, 50 for custom scoring) are scored such that, had they been
sampled, they would have been included in the docking results. However, simply increasing
the amount of stochastic sampling is only partially effective (see Supplemental Figure 41) at
improving docking performance suggesting that the interplay between scoring and sampling
is also important. Even with ‘perfect’ sampling, the scoring problem of correctly ranking
poses remains a challenging problem. As shown in the last row of Table 5, Vina was able to
top-rank only 10/54 cross-minimized poses and our custom scoring function top-ranked
none of these lowest RMSD poses.

Scoring Results
We now consider the performance of our custom scoring function independent of docking
performance by directly scoring the crystal poses of the independent test set. The affinities
predicted by both our custom, docked-trained, scoring function and the default Vina scoring
function are shown relative to the experimental affinities in Figure 8. The predictions of the
crystal-trained scoring function was virtually identical to the docked-trained function with
an average absolute difference in predicted affinity of 0.05. Our docked-trained custom
scoring function achieves correlation coefficients of 0.690, 0.685, 0.565, 0.800, and 0.833
for cdk2, chk1, erk2, lpxc, and urokinase respectively. However, when the dataset is
considered as a whole, the correlation is 0.531. As can be seen in Figure 8, this is due to
different predictive trends between targets. For example, cdk2 tends to be over-predicted
while chk1 tends to be under-predicted.

The root mean squared errors (RMSE) of our predictions and of the Vina scoring function
are shown in Table 6. Again, the crystal-trained and docked-trained scoring function
perform similarly. In all cases our custom scoring function outperforms Vina. Interestingly,
despite being an easy docking target, the Vina scoring function had particular difficulty
scoring the lpxc ligands.

Finally, we compare the correlations of our custom scoring function with Vina and
molecular weight in Figure 9. In each case our custom scoring function outperforms Vina,
but for chk1 and erk2 molecular weight correlates better with the experimental affinity than
our predictions. Unfortunately, as suggested by the 95% confidence intervals shown in
Figure 9, the only comparison that is statistically significant (p< 0.05) is the improvement in
correlation of our scoring function relative to Vina when evaluating lpxc. For this target,
which has only 5 ligands in the test set, the predictions of Vina anti-correlate with the
experimental affinities.

Discussion
For the purposes of the CSAR exercise we limited ourselves to those interaction terms
already present in the Vina code base. However, our analysis reveals some potential areas
for improvement. Given the preference for a narrow Gaussian at an offset over the optimal
van der Waals distance, we suspect a 6–12 van der Waals potential with an offset might
result in an enhanced steric term for scoring purposes. Alternatively, a reparameterization of
the van der Waals radii or the inclusion of explicit hydrogens may also be effective. The
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Vina linear hydrogen bond potential does not perform as well as the initially selected
repulsion term. An alternative non-linear hydrogen bond term, such as a 10–12 Lennard-
Jones potential, that is still appropriate for minimization would be worth exploring.

We explored the differences between using a docked training set, which is representative of
structures generated during virtual screening, and a crystal training set, which is physically
accurate. The feature selection process applied to these two distinct sets revealed a bias in
the docked structures against the close contacts preferred by crystal structures. However,
when the same set of features was used in the parameterization of the scoring function, the
results were largely insensitive to the choice of training structures. This suggests that
training on docked structures may be more useful as a validation of the ability of the
docking scoring function to mimic the preferences of crystal structures than as a means of
generating a more informative scoring function.

Our custom scoring function was better at sampling low RMSD poses when crossdocking
compared to Vina, as shown in Figure 5(b). However, it was generally less successful than
Vina at correctly selecting the lowest RMSD pose, as shown in Figure 5(a). The
performance of dock-rank methods varied across targets: Vina performed better at choosing
the best pose for cdk2 and urokinase, and our custom scoring function performed marginally
better for chk1 and erk2.

We used several methods to evaluate the effect of receptor flexibility on docking. In general,
there is little variability between the receptor structures of lpxc and urokinase and these were
the most successful targets when crossdocking. When comparing crossdocking to redocking,
we found that redocking with the two scoring functions performed comparably at sampling a
low RMSD pose, but Vina was much better at selecting a low RMSD pose as the top ranked
pose. Furthermore, the ability of our scoring function to sample a low RMSD pose when
crossdocking was significantly better than Vina: 10 additional < 2Å RMSD poses were
sampled. This is likely the result of how the two scoring functions were trained. Vina was
specifically optimized to maximize redocking performance on the PDBBind database, 10

whereas our custom scoring function was only trained for affinity prediction and featured a
“softer” 4–8 Lennard-Jones steric potential.

When crossdocking with the Vina scoring function and our custom scoring function, a < 2Å
RMSD pose was not sampled for 26 and 16 ligands, respectively. However, there were a
total of only 6 ligands with Vina and 4 ligands with our custom scoring function where the
cross-minimized ligand would not have been included in the docking results had it been
sampled. This suggests that there is still room to improve docking performance, even
without removing the simplifying assumption of a rigid receptor.

There is some evidence that using a consensus method for docking and ranking poses,
namely the Vina-custom and custom-Vina dock-rank methods, improves overall docking
performance as shown in Figure 5(a). However, the benefits of doing so are inconsistent
across targets. Re-ranking the Vina docked compounds with our custom scoring function
maintained or improved performance for 4/5 of the targets compared to ranking them with
Vina. Scoring the poses docked with our custom scoring function with Vina gave marginally
better predictions for only 2/5 targets which does not include the easy to dock lpxc.

The above methods were applied and discussed only in the context of the specified datasets,
namely the CSAR 2010 and CSAR 2012 datasets. However, the methods and subsequent
analysis could easily be applied to other datasets. As more high-quality structure and affinity
data is made available, we can regenerate a custom scoring function and reasonably expect
to observe an improvement in the agreement between predicted and actual binding affinity.
However, improvements in affinity prediction do not necessarily correlate with
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improvements in docking performance, as demonstrated by Figures 9 and 4. This may be
because our method, unlike others, 10,48 does not incorporate negative training data about
inactive compounds and incorrect poses. Expanding our method to include such data will be
the subject of future investigations.

Conclusion
We have presented a general and robust method for the design of an empirical scoring
function given a set of potential terms (here, the pre-existing terms of AutoDock Vina) and a
high quality dataset of structures and affinities (here, the CSAR 2010 set). Our results are
inline with the best performing scoring functions of the CSAR 2010 exercise and provide
insights into potential areas of improvement. Our scoring function exhibits improvements in
sampling when crossdocking, but the challenge of selecting the correct docked pose
remains. Finally, we provide smina, a fork of AutoDock Vina specially designed for scoring
function development and minimization workflows. The source code for smina and prebuilt
binaries are available under the GNU Public License v2.0 from http://smina.sf.net.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The design process for our empirical scoring functions. A variety of features computed by
AutoDock Vina were evaluated for both crystal and docked training structures. Clustered
cross-validation, where complexes with high sequence identity are not split between the
training and test sets, is used to drive feature selection. The selected features are then used to
train a linear regression model on the entire training set.
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Figure 2.
The interaction terms implemented in AutoDock Vina. d is the distance between two atoms,
a1 and a2. dopt(a1, a2) is the optimal distance between atoms (the sum of the van der Waals
radii). ddiff (a1, a2) is d − dopt (a1, a2). o, w, x, b, and q are parameters that are varied as
shown in Table 1 to produce different terms. o offsets the optimal position of the term. w
specifies the width of a Gaussian. x is the exponent of the electrostatic term. b specifies
where the piecewise linear terms become zero. q determines to what extent the desolvation
term is charge dependent.
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Figure 3.
The change in the Pearson correlation as more features are added to the scoring function
using forward selection. Cross-validations are shown with the standard error of the mean.
Although the correlation of the full regression can only improve as more terms are added,
cross-validation performance levels off after five terms, indicating that additional terms
overfit the data.
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Figure 4.
A summary of docking performance across all 54 compounds and 5 targets for the Vina-
Vina and custom-custom dock-rank methods. The “first pose” RMSD is the RMSD to the
crystal ligand of just the top-ranked pose while the “any pose” RMSD is the best RMSD of
any of the 40 poses returned by docking. Our custom scoring function does a better job of
sampling low RMSD poses when crossdocking, as indicated by the “any pose” results, but
Vina does better at selecting low RMSD poses as the top-ranked poses.
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Figure 5.
The docking results for all protein targets using Vina and our custom scoring function. In (a)
and (c) there are four bars for each target, one for each dock-rank method. For each target
the bars are, in order left to right: Vina-Vina, Vina-custom, custom-Vina, and custom-
custom. (a) The RMSD for the top ranked (by predicted affinity) pose of each compound
when crossdocking using each dock-rank method. (b) The RMSD of the lowest RMSD pose
of all returned poses for a compound when crossdocking. (c) and (d) The same as (a) and (b)
but for redocking.
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Figure 6.
Representative results for crossdocking using (a) Vina-Vina and (b) custom-custom. Each
plot shows all the results of docking, cross-minimization, and self minimization of a
compound with respect to RMSD (y-axis) and deviation from the experimental affinity (x-
axis). The horizontal line indicates the 2Å RMSD cutoff for a successful pose. For each set
of plots, all docking, scoring, and minimization was done in the context of the indicated
scoring function. Vina scores, which are energies, are converted to ‘pK’ values using a
temperature of 298K.
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Figure 7.
Surface overlay of reference (solid) and cocrystal (translucent) receptor structures of a
selected compound for each target. The aligned crystal pose is shown in sticks.
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Figure 8.
Correlation between predicted and experimental affinities when scoring the crystal
structures of the CSAR 2012 test set. The crystal-trained custom scoring function (not
shown) performs similarly to the docked-trained scoring function.
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Figure 9.
Pearson correlation (R) of the docked-trained custom scoring function, the default Vina
scoring function, and molecular weight with respect to experimental affinities. Error bars
indicate the 95% confidence interval. The custom scoring function achieves better
correlations and tighter confidence intervals than Vina. However, the difference is only
statistically significant (p < 0.05) for lpxc. In this case, Vina predicts values that anti-
correlate with the experimental values (R=−0.56). The crystal-trained scoring function
achieved virtually identical correlations as the docked-trained function (not shown).
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Table 1

Parameter values for the distant dependent AutoDock Vina terms shown in Figure 2. These values are those
corresponding to the 58 terms already defined within the AutoDock Vina source code.

Term Parameters Values

gauss o, w (0,0.3), (0.5,0.3), (1,0.3), (1.5,0.3), (2,0.3), (2.5,0.3), (0,0.5), (1,0.5), (2,0.5), (0,0.7), (1,0.7), (2,0.7), (0,0.9),
(1,0.9), (2,0.9), (3,0.9), (0,1.5), (1,1.5), (2,1.5), (3,1.5), (4,1.5), (0,2), (1,2), (2,2), (3,2), (4,2), (0,3), (1,3),
(2,3), (3,3), (4,3)

repulsion o 0.4, 0.2, 0, −0.2, −0.4, −0.6, −0.8, −1

electrostatic x 1, 2

hydrogen_bond b 0, 0.2, 0.4

hydrophobic b 1, 1.5, 2, 3

ad4_solvation q 0, 0.01097
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Table 3

Coefficients of terms when fit using linear regression to the entire CSAR training set for (a) terms choosen by
forward selection and for (b) the manually optimized terms. Terms are shown with the sign of typical values.
Coefficients were trained against pK binding affinities so larger, more positive values are desirable. For
instance, negative vdw values are preferred and the corresponding coefficient is also negative resulting a
positive contribution to binding affinity.

Term Regression Coefficient

gauss(o=1.5,w=0.3) (+) 0.01727

ad4_solvation(q=1) (+) −0.03179

repulsion(o=0.4) (+) 0.09099

#torsions2 (+) −0.288426

#hydrophobic_atoms (+) 0.06194

constant 2.72787

(a)

Term

Regression Coefficient

Docked Crystal

vdw (−) −0.00990 −0.01002

ad4_solvation(q=1) (+) −0.04893 −0.04999

hydrogen_bond(b=0) (+) 0.15305 0.14281

#torsions2 (+) −0.31726 −0.32854

constant 2.46902 2.52622

(b)
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Table 4

The details of our independent test set derived from the CSAR 2012 November Release. We include only
those ligands with both affinity and structure information. The CDK2/CyclinA target is omitted since only one
ligand for this target meets these criteria.

Name Structures Affinity Measure

cdk2 14 pKd (OctetRed)

chk1 16 pKi (if available), pIC50

erk2 12 pKi

lpxc 5 pKd (Thermofluor)

urokinase 7 pKi

J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Koes et al. Page 27

Ta
bl

e 
5

T
he

 r
el

at
iv

e 
ra

nk
in

g 
of

 c
ro

ss
-m

in
im

iz
ed

 p
os

es
 c

om
pa

re
d 

to
 d

oc
ke

d 
po

se
s.

 M
os

t c
ro

ss
-m

in
im

iz
ed

 p
os

es
 r

em
ai

n 
w

ith
in

 2
Å

 R
M

SD
 o

f 
th

e 
cr

ys
ta

l p
os

e 
an

d
ha

ve
 a

 p
re

di
ct

ed
 a

ff
in

ity
 th

at
 is

 e
ith

er
 h

ig
he

r 
th

an
 th

e 
do

ck
ed

 p
os

es
 o

r 
in

 th
e 

sa
m

e 
ra

ng
e 

(l
ow

er
 h

al
f 

of
 ta

bl
e)

. S
co

ri
ng

 a
nd

 d
oc

ki
ng

 a
re

 a
ll 

pe
rf

or
m

ed
 u

si
ng

th
e 

in
di

ca
te

d 
sc

or
in

g 
fu

nc
tio

n.

cd
k2

ch
k1

er
k2

lp
xc

ur
ok

in
as

e

V
in

a
C

us
to

m
V

in
a

C
us

to
m

V
in

a
C

us
to

m
V

in
a

C
us

to
m

V
in

a
C

us
to

m

A
bo

ve
 2

Å
 R

M
SD

1
0

1
0

3
2

0
0

0
0

L
ow

er
 s

co
re

 th
an

 d
oc

ke
d 

po
se

s,
 <

2Å
0

0
0

0
1

2
0

0
0

0

Si
m

ila
r 

sc
or

e 
to

 d
oc

ke
d 

po
se

s,
 <

2Å
7

14
13

16
7

8
5

5
6

7

H
ig

he
r 

sc
or

e 
th

an
 d

oc
ke

d 
po

se
s,

 <
2Å

6
0

2
0

1
0

0
0

1
0

J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Koes et al. Page 28

Ta
bl

e 
6

T
he

 r
oo

t m
ea

n 
sq

ua
re

d 
er

ro
r 

(R
M

SE
) 

be
tw

ee
n 

pr
ed

ic
te

d 
an

d 
ex

pe
ri

m
en

ta
l a

ff
in

iti
es

.

R
M

SE
T

ot
al

cd
k2

ch
k1

er
k2

lp
xc

ur
ok

in
as

e

D
oc

ke
d 

T
ra

in
ed

0.
89

3
1.

03
4

1.
10

1
0.

72
9

0.
27

0
0.

53
7

C
ry

st
al

 T
ra

in
ed

0.
89

6
1.

08
0

1.
05

8
0.

75
3

0.
27

2
0.

52
3

V
in

a
1.

03
1

0.
82

7
1.

17
0

0.
86

9
1.

30
7

1.
09

1

J Chem Inf Model. Author manuscript; available in PMC 2014 August 26.


