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Abstract

Cocaine dependence is defined by a loss of inhibitory control over drug use behaviors, mirrored

by measurable impairments in laboratory tasks of inhibitory control. The current study tested the

hypothesis that deficits in multiple sub-processes of behavioral control are associated with reliable

neural processing alterations that define cocaine addiction. While undergoing fMRI, 38 cocaine-

dependent men and 27 healthy control men performed a stop-signal task of motor inhibition. An

independent component analysis (ICA) on fMRI time courses identified task-related neural

networks attributed to motor, visual, cognitive and affective processes. The statistical associations

of these components with five different stop-signal task conditions were selected for use in a linear

discriminant analysis to define a classifier for cocaine addiction from a subsample of 26 cocaine-

dependent men and 18 controls. Leave-one-out cross validation accurately classified 89.5%

(39/44; chance accuracy = 26/44 = 59.1%) of subjects (with 84.6% (22/26) sensitivity and 94.4%

(17/18) specificity. The remaining 12 cocaine-dependent and 9 control men formed an

independent test sample, for which accuracy of the classifier was 81.9% (17/21; chance accuracy

= 12/21 = 57.1%) with 75% (9/12) sensitivity and 88.9% (8/9) specificity. The cocaine addiction

classification score was significantly correlated with a measure of impulsiveness as well as the

duration of cocaine use for cocaine-dependent men. The results of this study support the ability of

a pattern of multiple neural network alterations associated with inhibitory motor control to define

a binary classifier for cocaine addiction.
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INTRODUCTION

Cocaine addiction is associated with a diminished ability to exert inhibitory control over

behavior. Deficits in behavioral inhibition processes identified in laboratory studies reflect

clinical diagnostic criteria for drug dependence and include longer stop-signal reaction times

(Fillmore and Rush, 2002; Li et al., 2006b), greater errors of commission (Fillmore and

Rush, 2002; Kaufman et al., 2003; Verdejo-Garcia et al., 2007), poor error awareness

(Hester et al., 2007), and decreased post-error adaptive behavior (Hester et al., 2007; Li et

al., 2006b). Neural processing alterations underlying these behavioral impairments have

been separately identified by functional neuroimaging studies of cocaine-dependent

individuals for response inhibition (Hester and Garavan, 2004; Kaufman et al., 2003; Li et

al., 2007) and errors of commission (Kaufman et al., 2003). These studies suggest that

cocaine addiction is defined by a complex set of neural processing deficits related to

multiple sub-processes of the inhibitory control of behavior. We sought to test this

hypothesis using the stop-signal task (Logan, 1994). A test of the ability of such deficits to

define cocaine addiction is the extent to which the patterns of task-related activation reliably

and accurately classify an individual as being drug-addicted versus non-drug abusing.

A common approach to the identification of group differences in brain activation involves a

two sample t-test on spatial maps of statistical values representing the association of each

voxel with a given task condition or contrast. Although voxel clustering thresholds are

frequently applied to results, these group-level statistical analyses are performed

independently for each voxel. Such univariate tests fail to account for activity in the rest of

the brain that may contribute to group differences but would not independently differentiate

groups. Furthermore, the tens of thousands of independent tests involved in voxel-wise

analyses require extensive correction for multiple comparisons that can increase type-II error

rates. The more recent application of multivariate statistical techniques for functional

neuroimaging data analysis overcomes these limitations (O’Toole et al., 2007; Rowe and

Hoffmann, 2006). Dimensionality reduction approaches such as principal component

analysis and independent component analysis seek to attribute variance in the data to a

reduced number of sources, thereby requiring fewer independent tests. Additional

multivariate approaches, including support vector machines (Fu et al., 2008; LaConte et al.,

2005; Mourão-Miranda et al., 2005) and linear discriminant analysis (Carlson et al., 2003;

Dai et al., 2012; Ford et al., 2003), have also been successfully applied to classification and

prediction for neuroimaging data. Classification analyses utilize these approaches to

discriminate task conditions (Carlson et al., 2003; Mourao-Mirãnda et al., 2005) or to

optimally discriminate patient groups with disorders such as Alzheimer’s disease or

depression (Dai et al., 2012; Ford et al., 2003; Fu et al., 2008) to enable accurate

classification of independent cases. In the context of fMRI research, the objectives of

classification often focus on identifying and validating neural markers of cognitive or

disease states.

The goal of this study was to define a neurophenotype of cocaine addiction based upon

altered patterns of neural network activity during a motor response inhibition task. We

hypothesized that cocaine addiction is associated with specific and consistent deficits in

multiple neural processing networks in response to demands for inhibitory control with the
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expected outcome that the pattern of deficits enables the accurate classification of cocaine

dependence. To test this hypothesis, 38 cocaine-dependent males and 27 healthy control

males performed a stop-signal task while undergoing fMRI. We employed independent

component analysis in conjunction with linear discriminant analysis to identify, in a

multivariate approach, neural networks that are differentially engaged in cocaine-dependent

versus healthy control men across five stop-signal task conditions.

METHODS

Subjects

Thirty-eight cocaine-dependent men [40.8 ± 8.0 (mean ± standard deviation) years of age]

and 27 healthy control men [30.9 ± 7.7 (mean ± standard deviation) years of age]

participated in the study. Due to sex differences in neural processing correlates of the

inhibition of prepotent motor responses (Li et al., 2009; Li et al., 2006a) and sex differences

in affective, cognitive and treatment aspects of cocaine addiction (Brady and Randall, 1999;

Cotto et al., 2010; Najavits and Lester, 2008), we chose to focus this study on males as the

sex representing the majority of cocaine abuse cases (Office of Applied Studies, 2004).

Participants responded to local newspaper advertisements, flyers, and advertisements

displayed in Little Rock city buses. Subjects provided informed consent to participate in the

study following a thorough explanation of study procedures. This study was approved by the

Institutional Review Boards at Emory University and the University of Arkansas for

Medical Sciences (UAMS). All subjects were assessed for DSM-IV Axis I disorders by an

experienced Masters-level psychologist using the Structured Clinical Interview for DSM-IV

(SCID-1; First et al., 2007).

Inclusion/Exclusion criteria—For the Emory University site, men between the ages of

18–60 years were eligible for study participation. Cocaine-dependent men enrolled at this

site had been enrolled in an abstinence-based treatment program for 2–4 weeks. At the

UAMS site, cocaine-dependent males were non-treatment-seeking and between the ages of

18–45 years. All cocaine users met DSM-IV criteria for current cocaine dependence

according to SCID interview. Comorbid alcohol and marijuana abuse or dependence were

permitted for cocaine-dependent subjects only, enabling the generalization of results to the

“real world” problem of comorbidity associated with cocaine dependence. Cocaine-

dependent and healthy control subjects did not meet criteria for any other DSM-IV Axis I

disorders with the exception that past histories of mood or anxiety disorders were not

excluded. Recent drug use (cocaine, methamphetamine, amphetamine, opiate, and cannabis)

was detected by urinalysis on the day of the fMRI scan in all study subjects. A positive test

for any drug of abuse was a criterion for exclusion for healthy comparison subjects, as well

as cocaine-dependent subjects from the Emory University site. Participants were free of

psychotropic medication use for at least 30 days and reported no major medical disorders.

fMRI task

Subjects performed a stop-signal task while undergoing fMRI. Go stimuli were letters of the

alphabet to which subjects responded by pressing a single button with the index finger of

their dominant hand. The stop signal was a white square presented around the go stimulus
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after a short delay [“stop signal delay” (SSD)] in 75 of the 300 trials. The SSD was initially

250 ms and was performance-adjusted by 50 ms after each stop trial to achieve a successful

stopping rate of approximately 50% (Aron and Poldrack, 2006). The fixed inter-trial interval

was 2000 ms. Three rest periods lasting 20 seconds each were presented during the task.

Behavioral and clinical measures

Stop-signal reaction times (SSRT) were calculated as the percentile go trial reaction time

corresponding to the percentage of errors of commission minus the mean SSD. To

compensate for the possibility that a small percentage of successful stops were achieved by

subject inattention, calculation of successful stopping rate in this equation was adjusted for

the number of errors of omission on go trials (“misses”). Post-error slowing (PES) was

calculated as the percent change in mean reaction time for go trials following an error of

commission on stop trials relative to mean reaction for go trials not following a stop trial.

The 30-item Barratt Impulsiveness Scale (Patton et al., 1995) was administered to each

subject to provide a measure of inhibitory control ability in daily functioning. Three second-

order factor scores related to attentional, motor, and non-planning impulsiveness were

calculated.

fMRI acquisition

Twenty-nine cocaine-dependent men and 13 control subjects were scanned at the Brain

Imaging Research Center (BIRC) at UAMS with a Philips Achieva 3T MRI. Nine cocaine-

dependent men and 14 control subjects were scanned in the Biomedical Imaging

Technology Center (BITC) at Emory University with a Siemens Trio 3T MRI. The

following parameters were used to acquire functional T2*-weighted echo-planar images

(EPIs) on both scanners: 3×3×3 mm3 voxels, 34 slices, TR=2000 ms, TE=30 ms,

FOV=192×192 mm2, flip angle=90°, matrix=64×64.

Anatomical images were acquired using a T1 MPRAGE sequence for the purpose of

functional image registration and tissue segmentation (BIRC: matrix=256×256, 160 slices,

TR=2600 ms, TE=3.02 ms, FA=8°, final resolution=1×1×1 mm3; BITC: matrix=256×240,

176 slices, TR=2300 ms, TE=3.02 ms, FA=8°, final resolution=1×1×1 mm3).

fMRI data preprocessing

Images were preprocessed in Analysis of Functional Neuroimages software (AFNI; Cox,

1996). Preprocessing steps for functional images included slice time correction, deobliquing,

motion correction, despiking, alignment to the subject’s anatomical image, warping to MNI

standardized space, removal of signal fluctuations in white matter and cerebral spinal fluid

from voxel time courses, Gaussian smoothing at 6 mm full-width at half-maximum, and

scaling to percent signal change.

ICA

A group ICA on stop-signal task fMRI time courses was performed to reduce the

dimensionality of the dataset from hundreds of thousands of individual voxels to thirty

independent components of activation. The ICA was conducted on all 65 subjects using the
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infomax algorithm in the Group ICA of fMRI Toolbox version 2 (GIFT; Calhoun et al.,

2001) implemented in Matlab, solving for 30 components. The ICASSO tool within GIFT

provided estimates of the iterative consistency of the component estimates (Correa et al.,

2007). Of analyses performed with 20, 30, and 35 components, the 30-component ICA

demonstrated the best ICASSO estimates, provided predicted canonical neural processing

networks, and separated out artifacts from putative neural networks. In addition to group

spatial maps, the group ICA also provides time courses associated with each of the 30

components for each subject. In this regard, components are comparable to individual voxels

and can be similarly subjected to general linear model analysis. For each subject, linear

regression of the task design [successful stop trials, errors of commission (failed stop trials),

post-successful stop go trials, post-error go trials, go trials (not following a stop trial), and

misses] convolved with the SPM hemodynamic response function and controlling for six

directions of head motion identified the relationship of each of these six stop-signal task

conditions to each component time course (Calhoun et al., 2001). Beta estimates for each

task condition, with the exception of misses, were retained for use as variables in

discriminant analysis. Estimates from components attributed to head motion, physiological

noise and other artifacts were omitted from further analyses. The fifteen components

contributing to discriminant analysis demonstrated anatomical correspondence to brain

activations associated with stop-signal task performance (Aron and Poldrack, 2006) and to

components previously defined by ICA applications to fMRI stop-signal tasks data

(Congdon et al., 2010; Zhang and Li, 2012).

Discriminant Analysis

Because age and race significantly differed between the cocaine-dependent and control

subjects, a subsample of 26 cocaine-dependent men and 18 controls were matched on these

demographic variables and composed the training set (Table 2). Matching on these variables

allowed for the development of a discriminant function for cocaine addiction that was not

influenced by these factors. The remaining 12 cocaine-dependent men and 9 controls were

set aside to test the ability of the discriminant function to classify an independent sample.

Step-wise variable selection to identify the subset of beta estimates for stop-signal task

conditions from components of activation that best differentiated the 26 cocaine-dependent

males and 18 healthy controls of the training set was performed with the Stepdisc function in

SAS 9.3. At each step, any variables in the subset no longer meeting a significance level of

0.15 (Costanza and Afifi, 1979) for differentiating between the groups (analysis of

covariance), covarying for the other variables in the subset, were removed; variables

meeting a significance level of 0.15, covarying for the other variables in the subset, were

added. When no other variable could be added or removed, the subset of variables selected

by this process was used in discriminant analyses.

A linear discriminant function was calculated with the Discrim procedure in SAS to

maximize the generalized squared distance between the cocaine-dependent and control

groups. Prior probabilities were set to be equal. A cocaine addiction classification score and

a control group classification score were calculated for each subject by inserting the

subject’s beta estimates as independent variables in the equations for the linear discriminant
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function. The larger of these two scores determined group allocation in classification.

Leave-one-out cross validation tested the ability of the variables to correctly classify the

training sample. To test the generalizability of the classifier across image acquisition sites,

an additional independent cross validation was performed in which the sample from the

UAMS site was used to classify the subjects from the Emory University site. Because

variable selection was conducted on the training set, cross validation provides a biased

estimate of classification accuracy. To obtain an unbiased estimate of classification

accuracy, we tested the ability of the linear discriminant function to classify the sample of

12 cocaine-dependent men and 9 controls which were not included in either the variable

selection or the computation of the discriminant function.

To explore the functional and clinical significance of the binary classifier, individual

classification scores were tested in correlational analyses to explore whether the classifier

was associated with task performance measures (SSRT, PES), impulsiveness (BIS), or

number of years of cocaine use.

RESULTS

Subject demographics, clinical variables, and task performance variables are summarized in

Table 1. Overall, cocaine-dependent subjects were older (t=−4.98, p<0.001), less educated

(t=6.02, p<0.001), more likely to be African-American (χ2=16.2, p=0.001), and more likely

to have been scanned at UAMS (χ2= 4.22, p=0.04) compared with controls; there was no

difference between these groups in SCID diagnoses of past depression or PTSD. Cocaine-

dependent and control subjects did not differ in stop-signal reaction time, go trial reaction

time, stop signal delay, post-error slowing, or successful stopping rate. Table 2 provides

demographic, clinical, and task performance variables for the subsample of subjects that

made up the training set, for which cocaine-dependent and control men did not differ in age,

race, or MRI site, but still differed in education, depression symptomatology and

impulsiveness. Following careful matching of variables within the training set, the test set

and training set were not matched on age for the cocaine-dependent men (training: 38.0

years; test: 46.8 years; t = 3.58, p = 0.001) or control men (training: 34.1 years; test: 24.4

years; t = 3.77, p < 0.001). However, the training and test sets of subjects did not

significantly differ in race or education for either group.

Of the thirty components identified by ICA, 15 were noise components attributed to motion

and other artifacts, whereas the other 15 represented a diverse array of networks of

distributed brain activation (Supplemental Figure 1), including those attributed to motor,

visual, cognitive, and emotional processing based on their spatial maps. For each subject,

beta estimates were obtained for the five different stop-signal task conditions (i.e., go trials,

successful stop trials, post-successful stop go trials, errors of commission, post-error go

trials,) for each of these 15 non-noise components (75 variables total).

Of these 75 variables, the step-wise variable selection procedure conducted with the training

set identified 12 variables derived from 9 different components with potential to

discriminate cocaine-dependent and control subjects (Table 3). Six variables were associated

with the successful stop condition, one variable with the error condition, three variables with
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the go condition (not following a stop trial), and two variables with post-error go trials.

Mean beta estimates for control subjects for each of the nine components across all five stop

signal task conditions are depicted in Figure 1.

The linear discriminant function (classification function coefficients) for cocaine

dependence produced in the training set is presented in Table 3. Group allocation was

determined by the larger of the control or cocaine-dependent classification scores, obtained

by adding the intercept to the sum of the products of the coefficients and the corresponding

independent variables. Leave-one-out cross validation (LOOCV) correctly classified 89.5%

(39/44) of subjects with 84.6% (22/26) sensitivity and 94.4% (17/18) specificity (Table 4).

The LOOCV estimate of classifier sensitivity exceeded that attributed to chance accuracy

(59.1%). To assess an effect of site on classifier performance, cross validation of the linear

discriminant function defined in the 30 subject training set subsample from UAMS correctly

classified 91.7% (13/14) of the training set subsample from Emory University with 83.3%

(5/6) sensitivity and 100% (8/8) specificity.

The classification accuracy of the linear discriminant function in the independent test set

was 81.9% (17/21) with 75% (9/12) sensitivity and 88.9% (8/9) specificity (Table 4). The

independent estimate of classifier sensitivity exceeded that attributed to chance accuracy

(57.1%).

The classification score for controls was positively correlated with the BIS motor

impulsiveness score for control subjects (r=0.48, p=0.02), but not for cocaine-dependent

subjects (r=0.09, NS). Conversely, the classification score for cocaine dependence was

correlated with the motor impulsiveness score for individuals in the cocaine-dependent

group (r=0.43, p=0.01), but not control group (r=0.06, NS). The cocaine dependence

classification score also correlated with the lifetime number of years of cocaine use in the

cocaine-dependent sample (r=0.52 p=0.004). However, years of cocaine use was not itself

associated with BIS motor impulsiveness (r=0.18, NS), and a regression model including

both variables as predictors indicated that they independently predicted the cocaine

addiction classification score (R2 adjusted=0.50; BIS motor: t=3.28, p=0.003; years of use:

t=3.57, p=0.002). BIS nonplanning and attentional impulsiveness factor scores, stop-signal

reaction time, and post error slowing were not correlated with either classification score for

cocaine dependent or control men.

DISCUSSION

This study provides a novel, comprehensive analysis of cocaine addiction-related neural

network alterations associated with multiple sub-processes involved in inhibitory control of

motor behavior. We used ICA as a dimensionality reduction tool to address the complex

feature space of fMRI datasets and identified spatially-independent networks of neural

activation associated with performance of a stop-signal task. The statistical association of

components of brain activation, rather than individual voxels, was defined for each task

condition. We incorporated component beta coefficients for stop-signal task conditions into

a multivariate group-level analysis using stepwise variable selection, linear discriminant

analysis and binary classification approaches. The result was a pattern classifier for cocaine
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addiction with high sensitivity and specificity in both cross-validation and for an

independent sample. The twelve variables contributing to the classifier were derived from

nine independent components and from four different stop-signal task conditions.

Successful Stop trials

The variable with the greatest discriminant power was for activation during successful stop

trials of a component of activation (#11) centered in the precuneus and involving activations

in the bilateral middle occipital gyri, bilateral supramarginal gyri, bilateral dorsal superior

frontal gyri, and anterior cingulate cortex. This network was less deactivated during

successful stop trials for cocaine-dependent compared with control men. Hypoactivity

related to cocaine dependence during response inhibition trials for either go/no-go or stop-

signal tasks has previously been reported for some of the regions of this network (bilateral

supramarginal gyrus, left superior frontal gyrus, and anterior cingulate cortex) (Hester and

Garavan, 2004; Kaufman et al., 2003; Li et al., 2007). Decreased activation of the precuneus

has been associated with practice effects (Goldstein et al., 2007; Sakai et al., 1998), and

cocaine addiction was associated with diminished task habituation-related deactivation of

the precuneus in a go/no-go task with monetary incentives (Goldstein et al., 2007). These

results suggest that cocaine dependence is associated with the impaired ability to transition

to more efficient and automated task performance processes.

A frontal-parietal component (#1) associated with predominantly right hemisphere activity

in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, middle temporal

gyrus, dorsomedial prefrontal cortex, precuneus, and right inferior parietal cortex also

significantly differentiated the groups. For this component, activation during successful stop

trials was greater in control than cocaine-dependent men, perhaps reflecting the association

of cocaine dependence with deficits in the cognitive regulation of motor, motivational,

interoceptive, or attentional responses (Kober et al., 2010; Li et al., 2006b; Zhang and Li,

2012). Cocaine-dependent men also demonstrated relatively diminished activity during

successful stop trials for a dorsomedial prefrontal cortex component (#9) that included

activation of the bilateral inferior frontal gyri, angular gyri, middle temporal gyri, and

posterior cingulate cortex. Activity in both of these networks during successful stop trials

was significantly negatively correlated with SSRTs (component 1: r =−0.33, p=0.007;

component 9: r =−0.36, p=0.003), corroborating the importance of these networks for

inhibitory control and the inference of deficits in their functional engagement associated

with cocaine dependence.

A limbic-striatal component (#30) of activation of the amygdala, hippocampus, caudate, and

putamen was more engaged during successful stopping for cocaine-dependent compared

with control men. Additionally, a component (#5) of activation of the bilateral posterior

insula and superior temporal gyrus was also more active in cocaine dependent men during

successful response inhibition. These regions have also been implicated in craving responses

to drug cues (Kilts et al., 2001; Potenza et al., 2012; Volkow et al., 2010) and may represent

a general marker of impaired control of emotional and motivational responses in addiction.
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Go trials

During go trials not following a stop trial, motor regulation network activity most

differentiated the groups, a finding consistent with the role of motor pathways in go trials

(Congdon et al., 2010). A motor network of activation (#4) involving the lateral primary

motor cortex and pre-supplementary motor area (pre-SMA), likely associated with executing

motor plans, exhibited greater activation in cocaine-dependent men versus controls during

go trials. For the same task condition, a supplementary motor area (SMA) network of

activation (#7) of areas involved in motor planning was more deactivated in cocaine-

dependent individuals. These group differences suggest that less inhibitory control of

prepotent behaviors in cocaine-dependent men during go trials drives the binary

classification. However, the discriminant function also indicated greater suppression of

primary motor-pre-SMA network (#4) activity in cocaine-dependent versus control men

during successful stop trials, an enhancement which may enable the overcoming of

functional deficits in other networks and preserve inhibitory control ability.

Errors of commission

As with the successful stop condition, cocaine-dependent men also demonstrated greater

activity in the posterior insula network (#5) relative to controls during errors on stop trials.

The increased activity of this network across both errors and successful stop trials may

reflect an enhanced sensory salience of the stop signal.

Post-error go trials

Cocaine-dependent participants demonstrated less deactivation compared to controls of a

spatial attention network (#19) involving the bilateral intraparietal sulci, posterior inferior/

middle frontal gyri, superior frontal gyri, and posterior cingulate cortex for go trials

following an unsuccessful stop trial. In addition, a network of activation involving bilateral

orbital/inferior frontal gyri (#25) was less active in cocaine-dependent men for post-error go

trials. These group differences corroborate evidence for reduced response to errors of

commission in cocaine dependence, perhaps reflecting a lesser awareness of errors (Hester

et al., 2007).

In contrast to prior response inhibition studies (Ersche et al., 2012; Fillmore and Rush, 2002;

Li et al., 2006b) the sample of cocaine-dependent men demonstrated motor inhibition ability

similar to controls, although cocaine dependence was associated with the utilization of

different neural processing strategies to achieve this outcome. Neural processing differences

in the absence of stop-signal task performance deficits have previously been reported for

cocaine-dependent individuals (Li et al., 2007), corroborating the improved sensitivity of

functional neuroimaging over behavioral measures of underlying processes (Costafreda et

al., 2011; Rose and Donohoe, 2012). Furthermore, the neural processing differences

identified by this study may translate to practical individual or group differences not readily

detected by task performance, such as treatment outcome or compulsive drug use behavior.

The correlation of the BIS motor impulsiveness factor score with the classification score for

cocaine dependence supports this contention.
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The motor impulsiveness factor of the BIS encompasses items related to acting without

thinking or living in the moment (Patton et al., 1995). Thus, the selective association of

classification scores with this measure indicates that the classifier reflects the impact of

cocaine dependence on these specific decision processes and that deficits in neural

processing networks underlying impulsive behavior represent biomarkers of cocaine

addiction and addiction-related behavioral impairments. For example, follow-up and

treatment studies have demonstrated that greater impulsivity predicts poorer treatment

retention for cocaine-dependent individuals (Moeller et al., 2001; Patkar et al., 2004). High

impulsivity has also been associated with a genetic predisposition for drug addiction (Ersche

et al., 2010).

The extent to which the derived classifier reflects patterns of altered functional brain

organization that preceded drug use – and therefore could identify individuals at risk for

cocaine dependence – cannot be addressed by this cross-sectional study. However, previous

work has identified adolescent inhibitory control-related behavioral (Nigg et al., 2006;

Tarter et al., 2004) and neural processing (Norman et al., 2011) deficits as predictors of

future drug use problems, as well as response inhibition-related deficits in brain structure as

familial risk factors for stimulant addiction (Ersche et al., 2012). On the other hand, there is

also evidence that a greater extent of cocaine exposure is associated with worse inhibitory

control ability (Colzato et al., 2007). This latter association is consistent with the finding

that, for drug-dependent subjects, the cocaine dependence classification score was positively

correlated with years of cocaine use. An integrated theory proposes that chronic drug use

exacerbates preexisting deficits in inhibitory control and impulsivity (Ersche et al., 2010;

Garavan and Stout, 2005; Verdejo-García et al., 2008), and thus these cognitive impairments

both increase susceptibility to drug use problems and serve to maintain drug addiction.

The high classification accuracy in the sub optimally matched independent test set

demonstrates the robustness of the classifier. Furthermore, the ability of the subsample of

the training set from UAMS to classify the subsample from Emory University suggests that

the classifier is reliable across sites as well as across diverse demographics. In addition, this

cross-site validation indicates that the classifier is not influenced by treatment or treatment

motivation, as these were significant differences in the cocaine-dependent samples across

sites. Therefore, the classifier seems to represent consistent differences between cocaine-

dependent men and non-drug using men that supersede the effects of variables such as

treatment or recent drug use.

Limitations

Although we successfully used task-related fMRI data to train a binary classifier with good

sensitivity and specificity for cocaine addiction, the study had several limitations. The

subjects in the test set were included in the group ICA which was used to calculate the

variables (beta coefficients) that were entered into the classifier. Even though the actual beta

coefficients calculated from subjects in the test set were not included in the variable

selection process that built the classifier, the inclusion of these subjects’ data in the

independent component analysis could have indirectly biased the subsequent independent

analyses of binary classification accuracy. In addition, the current dataset only contained
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males; therefore, these linear functions may not accurately classify cocaine dependence in

females. More importantly, the interpretation of neural processing alterations identified in

the current sample of cocaine-dependent men may not apply to cocaine-dependent women.

Future studies should therefore examine response inhibition-related neural network

alterations associated with cocaine dependence in women. Likewise, the generalizability of

these findings to other drugs of abuse is unknown. Although many of the cocaine-dependent

men abused marijuana and alcohol, cocaine was the primary drug in every case. While there

are similarities in inhibitory control deficits across drug addictions (Fillmore and Rush,

2002; Hester et al., 2009; Hester et al., 2007; Kaufman et al., 2003), differences have also

been identified (Verdejo-Garcia et al., 2007). Also, group differences other than cocaine

dependence status may contribute to the pattern classification outcome. In this study, the

samples of cocaine-dependent and control men comprising the training set differed in

education, depression symptoms, and impulsiveness. However, these variables tend to be

concomitant with – if not secondary to – drug addiction (Ersche et al., 2010; Lundqvist,

2010; Swendsen et al., 2009; Verdejo-García et al., 2008). Finally, varying degrees of

orbitofrontal signal dropout and inconsistent coverage of the cerebellum limited the

contribution of these brain regions to the discriminant analysis.

Conclusions

Cocaine addiction is associated with altered recruitment of multiple neural networks that

support inhibitory motor control processes, including response execution, response

inhibition, error processing, and post-error adaptation. Comparative pattern classification of

neural responses during a stop-signal task yielded a binary classifier for cocaine addiction

based upon these collective neural processing differences that exhibited reliable

classification accuracy and was associated with both trait impulsiveness and duration of

cocaine use. These results support the use of pattern classification of brain inhibitory control

processes as a biomarker for cocaine addiction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Independent components discriminating between cocaine-dependent men and healthy
control men
Nine components (A–I) contributed to the classifier. Mean beta coefficients for the control

group for go trials (G), successful stops (SS), post-successful stop go trials (PSSG), errors of

commission on stop trials (E), post-error go trials (PEG) are displayed for each component.

Arrows designate those task conditions for which the component discriminated between the

groups, where β denotes cocaine-dependent < control men and β denotes cocaine-dependent

> control men. A. component 1, right frontal-parietal network; B. component 4, lateral

motor cortex; C. component 5, posterior insula/superior temporal gyrus; D. component 7,

supplementary motor area; E. component 9, dorsomedial prefrontal cortex; F. component

11, precuneus network; G. component 19, inferior frontal junction and intraparietal sulcus;

H. component 25, orbital inferior frontal cortex/insula; I. component 30, amygdala and

striatum.
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Table 1

Characteristics of Entire Sample

Controls
N=27

Cocaine
N=38 p

Age (years) 30.9 (7.7) 40.8 (8.0) <0.001

Race 0.001

 African-American 11 (40.7%) 33 (86.8%)

 Caucasian 13 (48.1%) 5 (13.2%)

 Other 3 (11.1%) 0 (0.0%)

Education 15.4 (2.1) 12.6 (1.4) <0.001

MRI scan site (Emory, UAMS) 13, 14 9, 29 0.040

Lifetime Major Depressive Disorder 5 (18.5%) 11 (29.0%) NS

Lifetime Post-Traumatic Stress Disorder 0 (0.0%) 2 (5.3%) NS

Alcohol lifetime (abuse, dependence) - 4, 18 -

Marijuana lifetime (abuse, dependence) - 6, 16 -

Alcohol current (abuse, dependence) - 2, 8 -

Marijuana current (abuse, dependence) - 2, 7 -

Years of cocaine use - 12.1 (6.9) -

Method (smoke, snort) - 31, 7 -

Beck Depression Inventory 5.0 (6.3) 12.9 (10.3) <0.001

BIS Attentional Impulsiveness 15.0 (4.1) 16.2 (4.2) NS

BIS Motor Impulsiveness 20.7 (4.6) 24.5 (5.7) 0.009

BIS Nonplanning Impulsiveness 22.3 (6.3) 28.5 (4.8) <0.001

Stop Signal Reaction Time (ms) 202 (48) 204 (55) NS

Mean Go Trial Reaction Time (ms) 645 (240) 741 (175) NS

Mean Stop Signal Delay (ms) 446 (234) 534 (172) NS

Post-Error Slowing (%) 13.5 (12.9) 8.4 (9.0) NS

Successful Stop Rate 46.5 (11.0) 50.2 (10.7) NS

Demographic, psychiatric, personality and stop-signal task behavioral measures for the 27 control men and 38 cocaine-dependent men in the study.
Values displayed as group mean (standard deviation) or number of observations (percentage). Significant p-values (p<0.05) corresponding with the
appropriate t-test or chi-square test of group differences are reported where applicable.

MRI, magnetic resonance imaging; UAMS, University of Arkansas for Medical Sciences; ms, milliseconds; NS, not significant.
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Table 2

Characteristics of Training Sample

Controls
N=18

Cocaine
N=26 p

Age (years) 34.1 (7.3) 38.0 (7.6) NS

Race NS

 African-American 10 (55.6%) 21 (80.8%)

 Caucasian 7 (38.9%) 5 (19.2%)

 Other 1 (5.6%) 0 (0.0%)

Education 15.2 (2.2) 12.1 (1.1) <0.001

MRI scan site (Emory, UAMS) 8, 10 6, 20 NS

Lifetime Major Depressive Disorder 3 (16.7%) 8 (30.8%) NS

Lifetime Post-Traumatic Stress Disorder 0 2 (7.7%) NS

Alcohol lifetime (abuse, dependence) - 3, 11 -

Marijuana lifetime (abuse, dependence) - 4, 10 -

Alcohol lifetime (abuse, dependence) - 2, 7 -

Marijuana lifetime (abuse, dependence) - 1, 5 -

Years of cocaine use - 11.5 (7.2) -

Method (smoke, snort) - 19, 7 -

Beck Depression Inventory 3.9 (4.2) 12.1 (10.1) <0.001

BIS Attentional Impulsiveness 13.9 (3.3) 16.7 (4.2) 0.028

BIS Motor Impulsiveness 20.3 (4.1) 24.7 (5.6) 0.010

BIS Nonplanning Impulsiveness 21.4 (6.2) 28.5 (4.6) <0.001

Stop Signal Reaction Time (ms) 196 (53) 195 (60) NS

Mean Go Trial Reaction Time (ms) 708 (238) 752 (175) NS

Mean Stop Signal Delay (ms) 506 (233) 546 (165) NS

Post-Error Slowing (%) 13.9 (5.2) 8.5 (7.5) NS

Successful Stop Rate (%) 48.4 (11.6) 51.0 (11.0) NS

Demographic, psychiatric, personality and stop-signal task behavioral measures for the 18 control men and 26 cocaine-dependent men in the
training set. Values displayed as group mean (standard deviation) or number of observations (percentage). Significant p-values (p<0.05)
corresponding with the appropriate t-test or chi-square test of group differences are reported where applicable.
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Table 4

Classification Accuracy

Classified Control Classified Cocaine Correctly classified

Training set 89.5%

 Controls 17 1 94.4%

 Cocaine 4 22 84.6%

Test set 81.9%

 Controls 8 1 88.9%

 Cocaine 3 9 75.0%

Total accuracy, specificity and sensitivity for cocaine dependence from leave-one-out cross validation of the training set and classification of the
test set.
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