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Abstract

Next-Generation-Sequencing is advantageous because of its much higher data throughput and much lower cost compared
with the traditional Sanger method. However, NGS reads are shorter than Sanger reads, making de novo genome assembly
very challenging. Because genome assembly is essential for all downstream biological studies, great efforts have been made
to enhance the completeness of genome assembly, which requires the presence of long reads or long distance information.
To improve de novo genome assembly, we develop a computational program, ARF-PE, to increase the length of Illumina
reads. ARF-PE takes as input Illumina paired-end (PE) reads and recovers the original DNA fragments from which two ends
the paired reads are obtained. On the PE data of four bacteria, ARF-PE recovered .87% of the DNA fragments and achieved
.98% of perfect DNA fragment recovery. Using Velvet, SOAPdenovo, Newbler, and CABOG, we evaluated the benefits of
recovered DNA fragments to genome assembly. For all four bacteria, the recovered DNA fragments increased the assembly
contiguity. For example, the N50 lengths of the P. brasiliensis contigs assembled by SOAPdenovo and Newbler increased
from 80,524 bp to 166,573 bp and from 80,655 bp to 193,388 bp, respectively. ARF-PE also increased assembly accuracy in
many cases. On the PE data of two fungi and a human chromosome, ARF-PE doubled and tripled the N50 length. However,
the assembly accuracies dropped, but still remained .91%. In general, ARF-PE can increase both assembly contiguity and
accuracy for bacterial genomes. For complex eukaryotic genomes, ARF-PE is promising because it raises assembly
contiguity. But future error correction is needed for ARF-PE to also increase the assembly accuracy. ARF-PE is freely available
at http://140.116.235.124/,tliu/arf-pe/.
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Introduction

Next-generation-sequencing has transformed recent biological

studies [1], including genome assembly. Compared with the

traditional Sanger method [2], the throughput of NGS data is

much higher and the cost is much lower [3]. Because of these

advantages, the number of genome projects has been increasing

significantly [4].

NGS, however, poses new computational challenges to de novo

genome assembly [5,6]. One big challenge stems from the short

length of NGS reads. Reads from all NGS platforms (454 [7]:

,400 bp, Illumina [8]: 150 bp, ABI SOLiD [8]: 75 bp) are

shorter than Sanger reads (800,1000 bp). Although the new

version of 454 machine can generate ,800 bp reads, only parts of

the data reach this length. Short read length is problematic with

the presence of repetitive sequences (called repeats) in genomes

[6]. When a read comes from a repeat and is shorter than the

repeat, it is not clear from which repeat copy the read is obtained.

During assembly, mis-joins of genomic regions may occur through

the repeat. Repeats exist in almost all genomes, and the problem is

more serious for complex eukaryotic genomes [9]. For example,

nearly half of the human genome resides in repeats [10]. Because

of repeats, it is rare that current assemblers can assemble NGS

reads into one complete genome at one shot even for small

microbial genomes.

To tackle problems due to short NGS reads, many companies

and laboratories are developing new sequencers to increase read

length while maintaining or raising data throughput [11]. For

example, the single-molecule-real-time sequencer of Pacific

Biosciences produces reads of length ,2000–3000 bp [12,13].

However, this technology is not yet stable in terms of read quality

and the data throughput is still relatively low [3].

Computationally, it is possible to lengthen NGS reads using

paired-end (PE) reads. A PE consists of two reads at the two ends

of a DNA fragment. When the length of a DNA fragment is

shorter than twice the read length, the two reads overlap, which

allows them to be merged into one longer read, corresponding to

the original DNA fragment. This idea has been implemented in

several programs, e.g., SHERA [14], FLASH [15], and COPE

[16]. In these studies, the longer merged reads have been shown to

improve de novo genome assembly. This approach, however, sets a

hard limit on length of the recovered DNA fragments, which must

be less than twice the read length.

We present a computational tool, ARF-PE, an Assembly-

assisted Recoverer of Fragments from Paired-End reads. ARF-PE

recovers DNA fragments from paired reads that do not overlap.

That is, ARF-PE can obtain the unknown sequence in between
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two paired reads. The upper limit on length of the recovered DNA

fragments is thus set by the fragment lengths. Current PE

technology can produce PEs from DNA fragments longer than

twice the read length. For example, the fragment lengths of

Illumina PEs can be ,500 bp, longer than the twice the read

length (e.g., 2*150 = 300 bp). On the overlapping paired reads,

ARF-PE outperformed current tools in terms of both quantity and

accuracy. On the non-overlapping PE reads of four bacteria and

three eukaryotes, the DNA fragments recovered by ARF-PE

improved assembly contiguity in almost all cases.

In this work, we demonstrate ARF-PE’s ability to increase

Illumina read length from 100 bp to 300,500 bp, in the range of

454 read lengths. As 454 reads are more expensive than Illumina

reads, ARF-PE is economical in obtaining long NGS reads for

improving genome assembly. ARF-PE contributes to the field of

genome assembly by enhancing assembly completeness, which

benefits various downstream biological studies.

Materials and Methods

Illumina PE Data and Genomic Sequences
For comparing tools, we obtained the PE libraries simulated at

error rates 0, 1, 2, 3, and 5% from the FLASH study [15]. The

fragment lengths of these libraries are short (,180 bp) and the

majority of the paired reads (read length 100 bp) overlap.

For testing ARF-PE on PEs of median (,300 bp) and long

(,500 bp) fragment lengths, we used both simulated and real

data. From NCBI Genome and Sequence Read Archive (SRA)

databases [17], we downloaded four bacterial genomes (Cyclobac-

terium marinum, Escherichia coli, Planctomyces brasiliensis, and Spirochaeta

smaragdinae) and their real PE data (Table 1), respectively, for

simulation (see below) and analysis.

For testing ARF-PE on PEs of eukaryotic genomes, we

downloaded the real PEs of two fungi (Neurospora crassa and

Saccharomyces cerevisiae) from NCBI SRA (Table 1). Besides, we

simulated PE reads from human chromosome 22 (Table 1) using

PIRS [18] (see below). The chromosome sequence was broken into

segments at consecutive N’s for simulating PE reads. For each real

dataset, we removed reads containing any N and took PEs of

100X coverage, starting from the file head, for analysis.

PE Read Simulation
Our simulation captured three features of real PE data: (1) non-

uniform read coverage across genome, (2) variation of fragment

lengths, and (3) position-dependent error rates on reads. To mimic

the non-uniform coverage of reads across genome of real data, we

mapped reads to the reference genome using SOAP2 [19]

(options: -m 100 -x 500 -l 40–v 4 for the three bacterial SRR

datasets, and -m 300 -x 700 -l 40–v 4 for the ERR dataset in

Table 1) and counted the number of reads starting at each base.

The read-start profile set the probability of generating fragments

starting at each base. Given a starting position, we determined a

fragment length following a normal distribution with a mean at

300 bp or 500 bp and a standard deviation 10% of the mean

fragment length. We then extracted paired reads from the two

ends of the fragment and introduced errors to the reads. We

calculated average quality score at each base position of real

sequences, which was converted into an error rate. The position-

dependent error rates were multiplied by a factor for controlling

the overall error rate at 1%. We randomly introduced substitution

errors according to these error rates. In this procedure, we

simulated PE reads of length 76 bp for the three bacterial SRR

datasets and 100 bp for the ERR dataset to 100X coverage.

We used PIRS [18] to simulate PE reads from human

chromosome 22. PIRS also renders the three features mentioned

above. PIRS sets non-uniform read coverage according to local

GC content. We used the position-dependent error profile

(humNew.PE100.matrix.gz), GC-depth profile (humNew.gc-

dep_100.dat), and insert-deletion error profile (phixv2.InDel.ma-

trix) provided by the PIRS package to simulate PE reads of length

100 bp (with a mean fragment length 500 bp and standard

deviation 50 bp) to 100X coverage.

ARF-PE Workflow
ARF-PE runs in three steps (Figure 1). First, it assembles PE

reads into contigs using Velvet (v1.2.03) and obtains the contig

graph, which describes the connections between contigs. Second, it

maps all the PE reads to the assembled contigs using SOAP2 [19].

The PEs are then split into four categories according to the

mapped loci. The four categories are (1) regular: both reads

mapped on the same contig, (2) bridging: two reads mapped on

different contigs, (3) single-mappable-end: only one read mapped,

and (4) unmapped: both reads not mapped. Third, ARF-PE

searches the contig graph for a path connecting the two mapped

loci of each PE. If a path is found, the corresponding sequence is

extracted as the recovered DNA fragment. We describe below the

searching details for the first three types of PEs.

Table 1. Genomic sequences and NGS data used in this study.

Species
NCBI accession of reference
genome (genome size)

SRA accession of Illumina PE library
(read and mean fragment length)

Cyclobacterium marinum DSM 745 NC_015914 (6,221,273 bp) SRR407687 (76 bp and 300 bp)

Escherichia coli K12 sub-strain MG1655 NC_000913 (4,639,675 bp) ERR022075 (100 bp and 500 bp)

Planctomyces brasiliensis DSM 5305 NC_015174 (6,006,602 bp) SRR090599 (76 bp and 300 bp)

Spirochaeta smaragdinae DSM 11293 NC_014364 (4,653,970 bp) SRR407537 (76 bp and 300 bp)

Saccharomyces cerevisiae S288c NC_001133,148 and NC_001224
(12,157,105 bp)

SRR452441 (101 bp and 230 bp)

Neurospora crassa OR74A NC_001570 (38,047,924 bp) SRR018172,177 and SRR018184,186
(37 bp and 335 bp)

Homo sapiens chr22 NT_028395 (35,717,164 bp) Simulated reads of length 100 bp;
mean fragment length 500 bp

Note that the mean fragment lengths of real data are obtained from the NCBI SRA records.
doi:10.1371/journal.pone.0069503.t001

Lengthen NGS Reads to Improve Genome Assembly
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a. Regular
For each regular PE, ARF-PE checks whether the two reads are

correctly oriented and separated by a proper distance. A regular

PE is considered authentic when its two reads are on the opposite

strands of the same contig. In addition, the distance between the

two mapped loci (i.e., fragment length) should be within a range.

The range is set via the distribution of fragment lengths of all

regular PEs. We set the minimum and maximum when the

frequency of fragment length drops below a cutoff value (five by

default). When an authentic regular PE is found, ARF-PE extracts

the sequence between the two mapped loci (including the mapped

loci) on the contig as the recovered DNA fragment (Figure 1). It is

rare that a regular PE is authentic on more than one contig. In

such cases, ARF-PE selects the one with the highest mean

coverage of reads.

b. Bridging
For each bridging PE, ARF-PE searches the contig graph for

paths of contigs connecting the two mapped contigs with a

modified depth-first-search (DFS) algorithm. The modified DFS

algorithm considers contig orientations and stops a search when

the traversed path exceeds the fragment length maximum. If only

one path of contigs is found, the sequence along the corresponding

contig path is extracted as the recovered DNA fragment (Figure 1).

Otherwise, ARF-PE selects the path with the highest mean

coverage of reads.

c. Single-mappable-end
When only one read of a PE is mapped, the other read may

not be mapped because it locates at the junction of two contigs

or it contains more errors than allowed. SOAP2 allows at most

two mismatches in the seed region of a read; the maximal

number of mismatches in the whole read is user-defined. By

default, ARF-PE sets the seed length as 40 and maximal

number of mismatches as 5. To align the unmapped read of a

single-mappable-end, ARF-PE searches the contig graph for all

possible sequences extending out from the mapped locus with a

similar modified DFS algorithm. It then checks whether the

unmapped read can be aligned to these sequences. Specifically,

it scans each sequence for a perfect match to the head (10 bases

by default) of the unmapped read (Figure 1). Once found, ARF-

PE determines the locus of the unmapped read, and extracts the

sequence between the two mapped loci as the recovered DNA

fragment. Again, if more than one path is found, the path with

the highest mean read coverage is selected.

ARF-PE Options: Read Filtering and Error Correction
ARF-PE offers two options: filtering low complexity reads and

correcting assembly errors. By default, a read is considered lowly

complex when "80% of the bases are identical or when it

contains a stretch of 30 identical bases. Low-complexity reads are

filtered before Velvet assembly. To correct errors in Velvet

assembly, ARF-PE maps PE reads to the assembled contigs using

SOAP2. It then collects the reads of authentic regular PEs that are

uniquely mapped for building consensus sequences. When a

consensus base differs from that on the contig, ARF-PE replaces

the contig base with the consensus base if either following criterion

is met. First, the base on the contig is not reliable, i.e., in lower-

case. Second, the consensus bases constitute at least 60% of the

"10 covering bases. Note that all the parameter values here are

user-adjustable.

Figure 1. Workflow of ARF-PE. ARF-PE runs in three steps at its kernel (in brown rectangles). First, ARF-PE assembles PE reads into contigs using
Velvet and obtains the contig graph. Second, PE reads are re-aligned to the contig sequences. ARF-PE then splits the PEs into four categories based
on the mappings of the two reads. Third, ARF-PE extracts the sequences between the two mapped loci as the recovered DNA fragments of PEs.
Besides the kernel, ARF-PE offers two options (in green rectangles): filtering low-complexity reads before assembly and correcting errors in contigs
after assembly. See main text for details.
doi:10.1371/journal.pone.0069503.g001

Lengthen NGS Reads to Improve Genome Assembly
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FLASH, and COPE
For comparing tools, we ran FLASH (v1.0.3) and COPE

(v1.1.2) on the PE libraries simulated in the FLASH study. For

FLASH, we applied default parameters and additionally adjusted

the mismatch ratio (option -x) as in the FLASH study. We ran

COPE in its full mode (option -m 3), in which read connections

were assisted by k-mer frequency. Except setting the quality score

offset as 33, we used default parameters.

De novo Genome Assembly
Four assemblers, CABOG (v6.1), Newbler (v2.6), SOAPdenovo

(v1.05), and Velvet (v1.2.03), were used to assess the benefits of

recovered DNA fragments to de novo genome assembly. We used

these assemblers to treat three types of data: (1) original PE reads,

(2) recovered DNA fragments and the remaining PEs (i.e., whose

DNA fragments were not recovered), and (3) recovered DNA

fragments and original PEs.

For CABOG, we converted the fastq data and the recovered

fragments into fragment format using the command ‘‘fastqToCA’’

and ‘‘convert-fasta-to-v2.pl’’, respectively, while setting the quality

score as 40 for all bases of the recovered DNA fragments. We used

the unitigger ‘‘bog’’ and ran the assembly in multi-threads (see

below for the full spec file).

doOverlapBasedTrimming = 0; unitigger = bog; bogBreakAtIn-

tersections = 0; bogBadMateDepth = 1000; merylThreads = 8;

merOverlapperThreads = 8; merOverlapperExtendConcur-

rency = 8; merOverlapperSeedConcurrency = 8; ovlThreads = 2;

ovlConcurrency = 4; ovlCorrConcurrency = 8; frgCorrTh-

reads = 2; frgCorrConcurrency = 4; merylMemory = 24576; ovl-

StoreMemory = 24576; doExtendClearRanges = 0; cnsConcur-

rency = 8.

To run Newbler, we applied the default parameters for

assembly. Because Newbler requires quality scores to be in a

separate file if there is any, we converted the fastq data

accordingly. Recovered DNA fragments were input into Newbler

without quality information.

For SOAPdenovo, we scanned possible k-mer values, e.g., from

31 to 81 with a step size 2, and picked the k-mer value resulting in

the largest contig N50 length. GapCloser package (v1.12) was

applied to further close the gaps between contigs. The results of

GapCloser were discussed separately. During assembly, the

recovered DNA fragments were used only for building contigs,

and all PE data were used for additional scaffolding. We used

default parameters of SOAPdenovo except adding an option -d,

which removed low-frequency k-mers with single occurrence (see

below for a sample configuration file). The maximal read length

was set as 400 bp and 600 bp for the PE libraries with an insert

size 300 bp and 500 bp. For original PE libraries, the maximal

read lengths were set as the read length. For GapCloser, we used

default parameters except setting the overlap parameter -p as 21.

max_rd_len = 400.

[LIB].

reverse_seq = 0.

asm_flags = 3.

rank = 1.

avg_ins = 300.

q1 = SRR090599_100X_1.fastq.

q2 = SRR090599_100X_2.fastq.

[LIB].

asm_flags = 1.

f = Merge_All1_new.fa.

We also optimized Velvet assembly via scanning possible k-mer

values. By default, Velvet finds the expected coverage and

fragment length automatically. Because Velvet outputs scaffolds,

we broke the scaffolds into contigs at one or more consecutive N’s.

Note that the GAGE script [20] checks only contigs of length at

least 200 bp for assembly metrics.

Results

Comparison of ARF-PE and Related Tools on Simulated
PEs of Short Fragment Lengths

We applied FLASH, COPE, and ARF-PE to the simulated PE

libraries of short fragment length (,180 bp) from the FLASH

study (Methods). These data were simulated from the genome of

bacterium Rhodobacter sphaeroides (size 4.6 Mb). Each library

contained 1,000,000 PEs and the read length was 100 bp,

accounting for 43.5X read coverage. Note that the majority of

the paired reads overlapped. Five simulated PE libraries, with

overall error rates 0, 1, 2, 3, and 5%, were used for comparison. In

addition, we incorporated the results of SHERA from the FLASH

study.

At a zero or low (1 or 2%) error rate, ARF-PE correctly merged

more PE reads than SHERA, FLASH, and COPE did (Table 2).

As defined in the FLASH study, two paired reads were considered

as correctly merged when the length of the merged read equaled

that of the corresponding DNA fragment. Note that some bases of

a correctly merged read might differ from those of the true DNA

fragment. At a zero or low error rate, ARF-PE correctly merged

.91% of the PEs while SHERA, FLASH, and COPE correctly

merged at most 64%, 70%, and 79% of the PEs, respectively. The

number of incorrectly merged PEs by ARF-PE (!570) was lower

than those by SHERA ("19,044), FLASH ("1,649), and COPE

("660). In terms of perfect DNA fragment recovery, ARF-PE was

more accurate than FLASH and COPE at low error rates

(Table 3). For example, at a 1% error rate, ARF-PE correctly

merged 997,136 PEs, among which 993,123 (99.6%) were perfect.

In contrast, 17.7% and 55.3% of PEs were perfectly merged by

FLASH and COPE, respectively.

At a higher error rate (3 or 5%), the performance of ARF-PE

with default parameters dropped significantly (Table 2). This

might be explained by the more fragmented Velvet assembly when

reads contained more errors. At a 2% error rate, Velvet assembled

the PEs into 302 scaffolds, whose N50 length was 38,225 bp. At a

3% error rate, the number of scaffolds increased to 2,761, and the

N50 length dropped to 2,651 bp. The low performance could be

rescued by tuning the parameter, k-mer length, for Velvet

assembly. By default, ARF-PE sets the k-mer length as 60% of

read length. At a higher error rate, a smaller k-mer length usually

raises assembly contiguity. For example, at a 5% error rate, a k-

mer length of 31 raised the scaffold N50 length from 238 bp to

345,382 bp. This enabled ARF-PE to correctly merge 81% of the

PEs while SHERA, FLASH, and COPE correctly merged 56%,

64%, and 39% of the PEs, respectively. At a higher error rate,

ARF-PE also recovered more perfect DNA fragment than FLASH

and COPE did (Table 3).

Performance of ARF-PE on Simulated PEs of Median and
Long Fragment Lengths

We applied ARF-PE to the simulated paired reads that did not

overlap. PE libraries of median (,300 bp) and long (,500 bp)

fragment lengths were simulated from three bacterial and E. coli

genomes, respectively (Methods). These species were selected

because their real PE data were also available. Our simulation

captured three features of real PE data: non-uniform coverage of

reads across genome, variation in fragment lengths, and position-

dependent error rates (Methods). To mimic the real data, we

simulated reads of lengths 76 bp and 100 bp for the libraries of

Lengthen NGS Reads to Improve Genome Assembly
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median and long fragment lengths, respectively. For each genome,

we generated reads of 100X coverage.

Table 4a shows the results of ARF-PE on the simulated PEs of

median fragment lengths of P. brasiliensis. Of the 3,951,712 PEs,

ARF-PE recovered 3,941,755 (99.8%) DNA fragments. Among

the recovered DNA fragments, 3,936,750 (99.9%) were correct

and 3,912,759 (99.3%) were perfect. Most (97.5%) of the

recovered DNA fragments were derived from regular PEs. This

was reasonable since most (97.3%) of the PEs were regular. The

accuracy of the DNA fragments recovered from regular PEs was

higher than from bridging PEs or single-mappable-ends (Table 4a).

ARF-PE performed similarly on the two other simulated PE

libraries of median fragment lengths (Table S1). In both cases,

ARF-PE recovered .98% of the DNA fragments. Among the

recovered DNA fragments, ARF-PE achieved .98% of perfect

recoveries. Other features remained similar, e.g., more DNA

fragments were recovered from regular PEs than from bridging

PEs or single-mappable-ends (Table S1).

The performance of ARF-PE on the PEs of long fragment

lengths was similar to that of median fragment lengths. ARF-PE

recovered 2,291,387 (98.6%) DNA fragments from the 2,319,838

simulated PEs of the E. coli genome (Table 4b). Among those, the

percentage of correctly and perfectly recovered DNA fragments

were 99.6% and 96.5%, respectively.

Genome Assembly Including Recovered DNA Fragments:
Simulated Data

For each bacteria, we used SOAPdenovo and Newbler to

assemble three types of simulated data: (1) original PE reads, (2)

recovered DNA fragments and the remaining PEs, and (3)

recovered DNA fragments and original PEs (Methods). SOAPde-

novo takes a de-Bruijn graph approach for assembly, while

Newbler takes an overlap-layout-consensus (OLC) approach. The

assembled contigs were then compared to the reference sequences

by the GAGE script [20]. Briefly, the GAGE script aligns contigs

to the reference genome and detects assembly errors, e.g., SNPs,

INDELs, translocation, etc. It breaks contigs at every mis-join and

INDEL longer than 5 bp, which were considered as errors in this

work. It then outputs several metrics of the original and corrected

contigs. Among those, N50 length is a common measure of

assembly contiguity, defined so that 50% of the assembled bases

are in the contigs of this length or longer. We additionally defined

assembly accuracy as the ratio of N50 length of the corrected

contigs to that of original contigs.

Table 2. Performance of SHERA, FLASH, COPE, and ARF-PE on merging paired reads.

Error rate Tool Correct merge (%) Incorrect merge (%) Non-merge (%)

0% SHERA 637,541 (63.75%) 21,250 (2.13%) 341,199 (34.12%)

FLASH 700,347 (70.03%) 2,644 (0.26%) 297,009 (29.70%)

COPE 793,059 (79.31%) 1,208 (0.12%) 205,733 (20.57%)

ARF-PE 997,834 (99.78%) 388 (0.04%) 1,778 (0.18%)

1% SHERA 629,166 (62.92%) 20,106 (2.01%) 350,728 (35.07%)

FLASH 699,177 (69.92%) 2,017 (0.20%) 298,806 (29.88%)

COPE 678,554 (67.86%) 882 (0.09%) 320,564 (32.06%)

ARF-PE 997,136 (99.71%) 443 (0.04%) 2,421 (0.24%)

2% SHERA 617,247 (61.72%) 19,044 (1.9%) 363,709 (36.37%)

FLASH 686,169 (68.62%) 1,649 (0.16%) 312,182 (31.22%)

FLASH-0.3 695,797 (69.58%) 4,984 (0.50%) 299,219 (29.92%)

COPE 618,003 (61.80%) 660 (0.07%) 381,337 (38.13%)

ARF-PE 919,162 (91.92%) 570 (0.06%) 80,268 (8.03%)

ARF-PE-k49 994,005 (99.40%) 2,387 (0.24%) 3,608 (0.36%)

3% SHERA 602,232 (60.22%) 18,138 (1.81%) 379,630 (37.96%)

FLASH 649,094 (64.91%) 1,393 (0.14%) 349,513 (34.95%)

FLASH-0.35 690,561 (69.06%) 7,650 (0.77%) 301,789 (30.18%)

COPE 567,772 (56.78%) 497 (0.05%) 431,731 (43.17%)

ARF-PE 325,664 (32.57%) 381 (0.04%) 673,955 (67.40%)

ARF-PE-k39 964,283 (96.43%) 22,705 (2.27%) 13,012 (1.30%)

5% SHERA 563,706 (56.37%) 17,032 (1.7%) 419,732 (41.97%)

FLASH 480,145 (48.01%) 1,214 (0.12%) 518,641 (51.86%)

FLASH-0.35 641,346 (64.13%) 5,733 (0.57%) 352,921 (35.29%)

COPE 390,206 (39.02%) 282 (0.03%) 609,512 (60.95%)

ARF-PE 1,505 (0.15%) 6 (0.00%) 998,489 (99.85%)

ARF-PE-k31 811,263 (81.13%) 27,548 (2.75%) 161,189 (16.12%)

The four tools are applied to merge paired reads simulated from the R. sphaeroides genome at various error rates. Following the definition in the FLASH study, a merged
read is correct when its length equals the corresponding fragment length. Note that the two categories ‘‘correct non-merge’’ and ‘‘incorrect non-merge’’ in the FLASH
study are combined together. Because ARF-PE can merge paired reads with little or no overlap, the two categories do not apply for ARF-PE. For each error rate, the best
results are shown in bold.
doi:10.1371/journal.pone.0069503.t002

Lengthen NGS Reads to Improve Genome Assembly
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Table 5 shows the statistics of SOAPdenovo and Newbler

assemblies of the P. brasiliensis data. To simplify the following texts,

claimed changes in assembly metrics were relative to the results of

the original PEs unless specified. For SOAPdenovo, the recovered

DNA fragments increased the N50 length from 124,055 bp to

193,636 bp and 162,063 bp when being assembled with the

remaining and original PEs, respectively. The increment was

greater in the Newbler assemblies as the N50 length increased

from 45,745 bp to 193,388 bp and 165,897 bp on the second and

third types of data, respectively. For all three other bacteria, the

recovered DNA fragments also increased the N50 length of both

SOAPdenovo and Newbler contigs (Table S2). For all four

bacteria except E. coli, the increments in N50 length were greater

in the Newbler assemblies (2.6,4.2 fold) than in the SOAPdenovo

assemblies (1.3,1.7 fold).

In the Newbler assemblies of all four bacteria, the numbers of

errors were reduced when the recovered DNA fragments and the

original PEs were assembled (Table S2). For C. marinum, P.

brasiliensis, and S. smaragdinae, the number of errors dropped from

54, 40, and 52 to 3, 4, and 8, respectively. Consistently, the

Table 3. Percentage of perfect DNA fragment recoveries by FLASH, COPE, and ARF-PE.

Error rate Tool Correct merge (%) Perfect merge (%) Non-perfect merge (%)

0% FLASH 70,0347 700,347 (100.00%) 0 (0.00%)

COPE 793,059 793,059 (100.00%) 0 (0.00%)

ARF-PE 997,834 994,002 (99.62%) 3,832 (0.38%)

1% FLASH 699,177 123,907 (17.72%) 575,270 (82.28%)

COPE 678,554 375,518 (55.34%) 303,036 (44.66%)

ARF-PE 997,136 993,123 (99.60%) 4,013 (0.40%)

2% FLASH 686,169 33,648 (4.90%) 652,521 (95.10%)

FLASH-0.3 695,797 33,684 (4.84%) 662,113 (95.16%)

COPE 618,003 208,167 (33.68%) 409,836 (66.32%)

ARF-PE 919,162 914,278 (99.47%) 4,884 (0.53%)

ARF-PE-k49 994,005 989,208 (99.52%) 4,797 (0.48%)

3% FLASH 649,094 8,282 (1.28%) 640,812 (98.72%)

FLASH-0.35 690,561 8,318 (1.20%) 682,243 (98.80%)

COPE 567,772 127,867 (22.52%) 439,905 (77.48%)

ARF-PE 325,664 321,808 (98.82%) 3,856 (1.18%)

ARF-PE-k39 964,283 957,597 (99.31%) 6,686 (0.69%)

5% FLASH 480,145 0 (0.00%) 480,145 (100.00%)

FLASH-0.35 641,346 0 (0.00%) 641,346 (100.00%)

COPE 390,206 25,530 (6.54%) 364,676 (93.46%)

ARF-PE 1,505 1,351 (89.77%) 154 (10.23%)

ARF-PE-k31 811,263 801,334 (98.78%) 9,929 (1.22%)

On the same data in Table 2, we show the percentage of merged reads that are identical to the corresponding DNA fragments.
doi:10.1371/journal.pone.0069503.t003

Table 4. Statistics of DNA fragments recovered from the simulated PEs of bacteria.

(a)

PE read mappings Regular Bridging Single-mappable-end Unmapped Total

No. (%) of PEs 3,844,542 (97.29%) 21,131 (0.53%) 83,820 (2.12%) 2219 (0.06%) 3,951,712 (100%)

No. (%) of recovered fragments 3,844,542 (100.00%) 16,436 (77.78%) 80,777 (96.37%) N.A. 3,941,755 (99.75%)

No. (%) of correctly recovered fragments 3,842,518 (99.95%) 16,302 (99.18%) 77,930 (96.48%) N.A. 3,936,750 (99.87%)

No. (%) of perfectly recovered fragments 3,828,589 (99.59%) 11,875 (72.25%) 72,295 (89.50%) N.A. 3,912,759 (99.26%)

(b)

No. (%) of PEs 2,214,677 (95.47%) 32,804 (1.41%) 65,033 (2.80%) 7,324 (0.32%) 2,319,838 (100%)

No. (%) of recovered fragments 2,214,677 (100.00%) 28,015 (85.40%) 48,695 (74.88%) N.A. 2,291,387 (98.77%)

No. (%) of correctly recovered fragments 2,211,883 (99.87%) 27,015 (96.43%) 45,632 (93.71%) N.A. 2,284,530 (99.70%)

No. (%) of perfectly recovered fragments 2,203,123 (99.48%) 19,295 (68.87%) 39,041 (80.17%) N.A. 2,261,459 (98.69%)

On the simulated PE libraries of (a) P. brasiliensis and (b) E. coli, we calculate the percentages of recovered DNA fragments via dividing by the corresponding numbers of
PEs. The percentages of correctly and perfectly recovered fragments are calculated via dividing by the number of the recovered DNA fragments for each category of PEs.
doi:10.1371/journal.pone.0069503.t004
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accuracies of the Newbler assemblies increased respectively from

79.6%, 88.4%, and 71.3% to 100% for the three bacteria. For

SOAPdenovo, the number of errors increased in all cases except in

the P. brasiliensis assemblies of the third type of data. Despite the

larger numbers of errors, the assembly accuracy remained the

same for P. brasiliensis, and S. smaragdinae, and dropped from 100%

to 96.3% for C. marinum. This suggests that the errors occur on

shorter contigs. For E. coli, the assembly accuracy dropped from

100% to 66.6%. Applying the error correction option of ARF-PE

partly rescued the accuracy drop (from 66.6% to 74.7%, data not

shown).

We further closed the gaps between SOAPdenovo contigs using

GapCloser. On data containing original PEs, GapCloser increased

the N50 length for all four bacteria (Table S2). For example, on

the P. brasiliensis data, GapCloser increased the N50 lengths from

124,055 bp to 218,604 bp and from 162,063 bp to 231,275 bp on

the first and third types of data, respectively. On data containing

remaining PEs, the N50 length dropped in three of the four

bacterial assemblies after applying GapCloser. This is reasonable

because GapCloser uses only PEs to close gaps between contigs

and the remaining PEs may be too scarce to improve assembly.

Below, we focused only on the assemblies of original PEs alone and

with the recovered DNA fragments.

With GapCloser, the benefits of recovered DNA fragments to

assembly contiguity were less obvious. That is, the N50 lengths

were only slightly increased or even decreased when including

recovered DNA fragments (Table S2). However, the assembly

accuracies increased or remained comparable for all four bacteria

except E. coli. When we applied the error correction option of

ARF-PE, the accuracy of the E. coli assembly on the third type of

data increased from 71.5% to 98.8% (data not shown).

Performance of ARF-PE on Real PE Libraries of Median
and Long Fragment Lengths

We applied ARF-PE to the real PE libraries of the same four

bacteria, three of which were of median fragments lengths

(,300 bp) and one of long fragment lengths (,500 bp) (Methods,

Table 1). To reduce errors in real data, we asked ARF-PE to filter

low-complexity reads and correct assembly errors (Methods). Note

that the above analyses on simulated data were not subjected to

the two options of ARF-PE. On all four datasets, ARF-PE finished

within two hours (Table S3). To assess the accuracy of the

recovered DNA fragments, we aligned them to the reference

genome using BLAT [21]. For each recovered fragment, we took

the best genomic segment, i.e., with the largest number of

matching bases, as the true DNA fragment.

In general, the percentages of DNA fragments recovered from

the real PE data were lower than those from the simulated data,

but were still high. For P. brasiliensis, the percentage dropped from

99.7% (Table 4a) using simulated data to 87.3% using real data

(Table 6a). For all four datasets, ARF-PE recovered .87% of the

DNA fragments (Table S4). The overall accuracy of the recovered

DNA fragments increased when treating real PE data. For

example, the percentage of perfectly recovered fragments slightly

increased from 98.7% using simulated data to 98.9% using real

data for E. coli (Table 6b). In all cases, we observed a higher

accuracy of recovered DNA fragments in all three categories of

PEs (Table S4). These suggested that the two error correction

options enhanced the accuracy of DNA fragment recoveries.

Without error correction, the percentage of perfectly recovered

DNA fragments indeed dropped in the majority of cases (data not

shown).

Genome Assembly Including Recovered DNA Fragments:
Real Data

We repeated the above assembly and analysis procedures for

real data. Besides, we included two more assemblers, Velvet and

CABOG, which are another de-Bruijn graph and OLC assembler,

respectively. When inferring the benefits of recovered DNA

fragments to assembly, we took the better results of the second and

third types of data because both contained recovered DNA

fragments.

Table 7 shows the assembly statistics of P. brasiliensis by four

assemblers. For all four assemblers, including the recovered DNA

fragments increased assembly contiguity, i.e., the N50 length. The

increment was greater for Newbler as the N50 length increased

from 80,655 bp to 193,388 bp (2.4 fold) than for other assemblers

(1.1,2.1 fold). Including the recovered DNA fragments also

reduced the number of errors from 19 to 6 in the Newbler

assemblies. Consistently, the accuracy of Newbler assembly

increased from 79.5% to 93.3%. For CABOG, although the

number of errors decreased from 23 to 13, the assembly accuracy

dropped slightly from 68.6% to 63.5%. For SOAPdenovo, the

number of errors increased from one to five after including the

recovered DNA fragments, leading to a lower (84.5% v.s. 95.2%)

assembly accuracy. The number of errors in the Velvet assemblies

increased slightly, but the assembly accuracy increased.

For all three other bacteria, most of the above observations held

true. For example, the N50 lengths increased after including the

recovered DNA fragments in all four bacterial assemblies by all

four assemblers except the S. smaragdinae assembly by Velvet (Table

S5). For all four bacteria, Newbler achieved a greater improve-

ment in N50 length (1.5,2.7 fold) than SOAPdenovo (1.3,2.1

Table 5. Statistics of SOAPdenovo and Newbler assemblies on three types of simulated data of P. brasiliensis.

Assembler Data
Total contig
length (bp)

No. of
contigs

N50
(bp)

No. of
errors

N50 corr.
(bp)

Accuracy
(%)

SOAPdenovo original PEs 5,985,166 214 124,055 0 124,055 100.00

recovered fragments+remaining PEs 5,985,261 146 193,636 4 156,863 81.01

recovered fragments+original PEs 6,191,559 204 162,063 0 162,063 100.00

Newbler original PEs 5,931,886 299 45,745 40 40,444 88.41

recovered fragments+remaining PEs 5,956,969 102 193,388 3 166,027 85.85

recovered fragments+original PEs 5,953,302 104 165,897 4 165,897 100.00

Assembly accuracy is defined as the ratio in N50 length after error correction by GAGE. For each assembler and metric, the better results among the three types of data
are shown in bold.
doi:10.1371/journal.pone.0069503.t005
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fold) and Velvet (,1.1 fold). The increments in N50 length of the

CABOG assemblies (1.4,4.1 fold) fluctuated more. For all four

bacteria, including recovered DNA fragments decreased the

number of errors in the Newbler assemblies (Table S5).

Consistently, the assembly accuracy increased in all cases using

Newbler. For CABOG, the number of errors decreased for all four

bacteria, but the assembly accuracy dropped slightly except for E.

coli, where the accuracy increased from 14.6% to 90.2%. For

SOAPdenovo, the number of errors increased in most cases,

leading to lower assembly accuracies. The number of errors also

increased in most Velvet assemblies, but the assembly accuracy

increased for three of the four bacteria. This again suggests that

the errors occurred on shorter contigs.

We summarized these results using corrected N50 length, which

took into account both assembly contiguity and accuracy. Figure 2

shows the corrected N50 length of assembling the three types of

data of all four bacteria. The corrected N50 length increased in

fourteen of the sixteen cases (four species assemblies by four

assemblers) when recovered DNA fragments were included. The

improvements by the two OLC assemblers were greater than by

the two de-Bruijn graph assemblers.

Similar to the results of simulated data, GapCloser increased the

N50 length of all SOAPdenovo assemblies (Table S5). Comparing

with the assemblies of original PEs, and with the recovered DNA

fragments, the recovered DNA fragments increased the N50

length only for S. smaragdinae. However, the assembly accuracy

increased for all four bacteria except S. smaragdinae, in which

assembly the accuracy remained as 100%. Taken together,

including the recovered DNA fragments increased the corrected

N50 length for all four bacteria except C. marinum.

Effects of Parameters on the Performance of ARF-PE
On the real PE data of the four bacteria, we ran ARF-PE with

several combinations of parameter values: filtering low-complexity

reads or not, minimal number of consecutive identical bases in a

low-complexity read (if filtering was applied), correcting errors in

the initial Velvet assembly or not, minimal fraction of consensus

base for error correction (if applied), and number of mismatches

allowed during read alignment by SOAP2. Figure 3 shows the

percentage of recovered DNA fragments, and among which the

percentages of correctly and perfectly recovered fragments.

Table 6. Statistics of DNA fragments recovered from the real PEs of bacteria.

(a)

PE read mappings Regular Bridging Single-mappable-end Unmapped Total

No. (%) of PEs 3,319,754 (84.13%) 178,443 (4.52%) 245,865 (6.23%) 201,715 (5.11%) 3,945,777 (100%)

No. (%) of recovered fragments 3,319,754 (100.00%) 9,969 (5.59%) 113,627 (46.22%) N.A. 3,443,350 (87.27%)

No. (%) of correctly recovered fragments 3,318,586 (99.96%) 9,949 (99.80%) 113,010 (99.46%) N.A. 3,441,545 (99.95%)

No. (%) of perfectly recovered fragments 3,317,156 (99.92%) 8,207 (82.33%) 111,167 (97.84%) N.A. 3,436,530 (99.80%)

(b)

No. (%) of PEs 2,181,071 (94.04%) 37,679 (1.62%) 81,922 (3.53%) 18,656 (0.80%) 2,319,328 (100%)

No. (%) of recovered fragments 2,181,071 (100.00%) 28,368 (75.29%) 43,147 (52.67%) N.A. 2,252,586 (97.12%)

No. (%) of correctly recovered fragments 2,176,742 (99.80%) 21,237 (74.86%) 38,351 (88.88%) N.A. 2,236,330 (99.28%)

No. (%) of perfectly recovered fragments 2,173,678 (99.66%) 16,809 (59.25%) 36,223 (83.95%) N.A. 2,226,710 (98.85%)

On the real PE libraries of (a) P. brasiliensis and (b) E. coli, we obtain the statistics of the recovered DNA fragments in the same definitions as in Table 4.
doi:10.1371/journal.pone.0069503.t006

Table 7. Statistics of P. brasiliensis assemblies by four assemblers on three types of real data.

Assembler Data
Total contig
length (bp)

No. of
contigs

N50
(bp)

No. of
errors

N50 corr.
(bp)

Accuracy
(%)

Velvet original PEs 5,966,809 108 158,581 6 121,638 76.70

recovered fragments+remaining PEs 5,965,863 131 189,520 10 156,596 82.63

recovered fragments+original PEs 5,966,059 97 178,598 8 166,495 93.22

SOAPdenovo original PEs 5,989,326 232 80,524 1 76,637 95.17

recovered fragments+remaining PEs 5,982,458 135 166,573 5 140,796 84.53

recovered fragments+original PEs 5,982,458 135 166,573 5 140,796 84.53

Newbler original PEs 5,941,846 189 80,655 19 64,086 79.46

recovered fragments+remaining PEs 5,957,736 93 193,388 6 156,799 81.08

recovered fragments+original PEs 5,955,141 96 193,388 6 190,871 98.70

CABOG original PEs 5,958,614 71 204,964 23 140,673 68.63

recovered fragments+remaining PEs 5,975,578 49 280,361 13 177,912 63.46

recovered fragments+original PEs 5,979,373 45 281,920 15 178,146 63.19

doi:10.1371/journal.pone.0069503.t007
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For all four bacteria, the percentages of recovered DNA

fragments were affected the most by the allowed number of

mismatches during read alignment. When fewer mismatches were

allowed, more regular PEs became either single-mappable-ends or

unmapped PEs (data not shown), which explained the lower

percentages of recovered DNA fragments. The effects of the

allowed number of mismatches were stronger for C. marinum, E.

coli, and S. smaragdinae than for P. brasiliensis. For the three bacteria,

all other parameters made relatively small changes in the

percentage of recovered DNA fragments. For all four bacteria

except E. coli, the percentages of correct and perfect DNA

fragment recoveries remained relatively constant throughout all

the explored combinations of parameters. For E. coli, the

percentages were higher when no error correction was applied,

indicating false error corrections.

For each parameter combination, we assembled the recovered

DNA fragments with the remaining and original PEs respectively.

Figure 4 shows the corrected N50 lengths of the SOAPdenovo and

Newbler assemblies. For all four bacteria, SOAPdenovo assem-

blies were less affected by parameters than Newbler assemblies.

The effects also depended on whether the remaining or original

PEs were assembled. The differences between data types were

greater in the Newbler assemblies than in the SOAPdenovo

assemblies. For all four bacteria except E. coli, the assemblies

without error correction resulted in the smallest corrected N50

length. This held for both assemblers on both data types. The

effects of all other parameters were species-, assembler-, and data

type-dependent; no consistent trend could be observed. For all

explored parameters, the recovered DNA fragments increased the

corrected N50 lengths of the SOAPdenovo and Newbler

assemblies.

ARF-PE on the Real Data of Two Fungi
We obtained real Illumina PE libraries of S. cerevisiae and N.

crassa from NCBI SRA (Methods), whose fragment lengths of were

about 230 bp and 335 bp, respectively (Table 1). Again, we asked

ARF-PE to filter low-complexity reads and correct errors in the

initial Velvet assembly. ARF-PE recovered 1,668,173 (75.4%) and

24,973,506 (49.0%) DNA fragments from the 2,212,208 and

50,961,378 PEs of the two fungi, respectively (Table 8). Compared

with the results of bacteria, larger fractions of PEs were unmapped

(16.4% and 26.0% v.s. ,5.2%). Single-mappable-ends constituted

9.0% and 31.4% of the PEs of the two fungi, among which the

majority (61.9% and 78.7%, respectively) were not recovered. PEs

Figure 2. Metrics of four bacterial assemblies by four assemblers. We show the corrected N50 lengths (y-axis) and accuracies (numbers on
top of bars) of the four bacterial assemblies by four assemblers: (a) Velvet, (b) SOAPdenovo, (c) Newbler, and (d) CABOG. The accuracy of an assembly
is defined as the ratio of the corrected N50 length to the N50 length before correcting assembly errors, and ranges from 0 to 100%. The four species
are C. marinum, E. coli, P. brasiliensis, and S. smaragdinae. For each species, each assembler treats three types of data: original PE reads, recovered DNA
fragments and the remaining PEs, and recovered DNA fragments and original PEs.
doi:10.1371/journal.pone.0069503.g002
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in these two categories explained most of the non-recovered

fragments. For regular PEs, the percentages of correctly (99.2%

and 96.1%) and perfectly (99.0% and 95.8%) recovered DNA

fragments of the two fungi were slightly lower than those of the

four bacteria (.99.8% and .99.6%, respectively). For S. cerevisiae

and the four bacteria, the percentage of correct and perfect

fragments recovered from bridging PEs was comparable (94.2%

v.s. .95.4% and 80.3% v.s. 58.6,88.2%). For N. crassa, both the

percentages (27.3% and 13.2%) were significantly lower than those

of bacteria.

We used SOAPdenovo and Newbler to assess the benefits of

recovered DNA fragments to assembly because their performances

were more stable than two other assemblers (Figure 2). For S.

cerevisiae, the recovered DNA fragments reduced the number of

SOAPdenovo contigs from 2,282 to 2,006, and increased the N50

length from 10,871 bp to 12,973 bp (Table 9a). With only two

more errors, the assembly accuracy went from 99.9% to 99.5%.

For Newbler, we showed only the assemblies involving recovered

DNA fragments because Newbler could not finish assembling the

original PEs in a month. Newbler further reduced the number of

contigs to 1,049 and raised the N50 length to 30,652 bp. The

accuracy of the Newbler assembly (96.1%) was slightly lower, and

the corrected N50 length almost tripled (29,470 bp v.s.

10,860 bp).

For N. crassa, the recovered DNA fragments reduced the

number of SOAPdenovo contigs from 19,879 to 7,923, raising the

N50 length from 3,420 bp to 7,233 bp (Table 9b). Compared with

the results of S. cerevisiae, the assembly accuracy dropped more

(from 99.1% to 91.3%). Taken together, the corrected N50 length

almost doubled (from 3,388 bp to 6,604 bp). Note that the

assemblies of the recovered DNA fragment with the remaining

and original PEs were the same because the maximal k-mer was

127, a value that skipped all PE reads. We used Newbler to

assemble only the recovered DNA fragments because the PE reads

were too short (37 bp) to be assembled. The statistics of Newbler

assembly on the recovered DNA fragments alone were similar to

those of the SOAPdenovo assemblies involving the recovered

DNA fragments. For example, in the Newbler and SOAPdenovo

assemblies, the numbers of contigs were 8,108 and 7,923, and the

corrected N50 lengths were 6,656 bp and 6,604 bp, respectively.

Figure 3. Effects of ARF-PE parameters on the statistics of DNA fragment recovery. Several combinations of ARF-PE parameter values are
used to recover DNA fragments from the real data of four bacteria. X-axis indicates the parameter values (f: filtering low-complexity reads, l: minimal
number of continuous identical bases for a read to be considered as lowly-complex, ec: error correction to the initial Velvet assembly, r: minimal
fraction of consensus bases required for correcting assembly errors, s: seed length of read alignment by SOAP2, v: maximal mismatches allowed in an
alignment by SOAP2). Y-axis shows the percentage of DNA fragments that are recovered (red), correctly recovered (green), and perfectly recovered
(blue) (the later two values are relative to the number of recovered DNA fragments).
doi:10.1371/journal.pone.0069503.g003
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On both data of S. cerevisiae and N. crassa, GapCloser raised the

N50 length, but reduced assembly accuracy (Table S6). The

accuracy drop was greater for N. crassa. Thus, the overall benefits

Figure 4. Effects of ARF-PE parameters on genome assembly. SOAPdenovo (s) and Newbler (n) are used to assemble the recovered DNA
fragments (r) together with the remaining (u) and original (o) PEs of four bacteria. X-axis indicates the combinations of parameter values defined in
Figure 3. Y-axis shows the corrected N50 length when three types of data are assembled.
doi:10.1371/journal.pone.0069503.g004

Table 8. Statistics of DNA fragments recovered from the PEs of two fungus genomes.

(a)

PE read mappings Regular Bridging Single-mappable-end Unmapped Total

No. (%) of PEs 1,576,567 (71.27%) 73,815 (3.34%) 198,245 (8.96%) 363,581 (16.44%) 2,212,208 (100%)

No. (%) of recovered fragments 1,576,567 (100.00%) 16,047 (21.74%) 75,559 (38.11%) N.A. 1,668,173 (75.41%)

No. (%) of correctly recovered fragments 1,564,628 (99.24%) 15,110 (94.16%) 70,697 (93.57%) N.A. 1,650,435 (98.94%)

No. (%) of perfectly recovered fragments 1,561,066 (99.02%) 12,886 (80.30%) 64,941 (85.95%) N.A. 1,638,893 (98.24%)

(b)

No. (%) of PEs 21,441,937 (42.07%) 257,884 (0.51%) 16,012,678 (31.42%) 13,248,879 (26.00%) 50,961,378 (100%)

No. (%) of recovered fragments 21,441,937 (100.00%) 116,554 (45.20%) 3,415,015 (21.33%) N.A. 24,973,506 (49.00%)

No. (%) of correctly recovered fragments 20,612,163 (96.13%) 31,768 (27.26%) 3,121,911 (91.42%) N.A. 23,765,842 (95.16%)

No. (%) of perfectly recovered fragments 20,533,023 (95.76%) 15,418 (13.23%) 3,018,306 (88.38%) N.A. 23,566,747 (94.37%)

The statistics are for (a) S. cerevisiae and (b) N. crassa.
doi:10.1371/journal.pone.0069503.t008
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of the recovered DNA fragments to SOAPdenovo+GapCloser

assembly were not clear.

ARF-PE on the Simulated Data of a Human Chromosome
From human chromosome 22, we used PIRS to simulate a PE

library whose read length and mean fragment length were 100 bp

and 500 bp, respectively (Method). We optimized ARF-PE on this

dataset by setting the k-mer value as 81, and applied only the option

that corrected assembly errors. From the 17,858,578 PEs, ARF-PE

recovered 17,598,427 (98.5%) DNA fragments (Table 10). Among

those, 17,306,319 (98.3%) were correct and 16,633,617 (94.5%) were

perfect. Most (96.2%) of the PEs were regular, and the percentages of

correct and perfect DNA fragments recovered from regular PEs were

99.0% and 96.2%, respectively. Compared with the simulated data

of the bacteria, ARF-PE closed a smaller fraction of bridging PEs

(66.0% v.s. .73.2%). In this category, the percentages of correctly

recovered DNA fragments (81.6% v.s. .95.1%) and the perfect ones

(30.8% v.s. .58.7%) were also smaller. A similar trend could be

observed for the single-mappable-ends.

Again, we used SOAPdenovo and Newbler to assess the benefits

of recovered DNA fragments to the assembly. The total contig

lengths of all assemblies (34.1,35.7 Mb, Table 1) were close to the

chromosome size (35.7 Mb). The recovered DNA fragments

reduced the number of SOAPdenovo contigs from 7,635 to 3,685

and more than tripled the N50 length (from 15,534 bp to

50,886 bp) (Table 11). Similar to the fungus assemblies, the

recovered DNA fragments introduced more errors and the

assembly accuracy dropped (from 99.9% to 91.9%). But the

corrected N50 length still more than tripled. When only original

PEs were assembled, GapCloser raised the N50 length by ,34

folds (Table S7). But the number of errors increased from one to

209, and the assembly accuracy dropped from 99.9% to 33.6%.

With GapCloser, the recovered DNA fragments slightly increased

the N50 length (from 526,386 bp to 5,342,034 bp), slightly

reduced the number of errors (from 209 and 205), and slightly

increased the assembly accuracy (from 33.6% to 37.0%) and the

corrected N50 length (from 176,720 bp to 200,383 bp).

The Newbler assemblies involving the original PEs could not be

finished in one month. In contrast, assembling the recovered DNA

fragments and the remaining PEs finished in one day. Compared

with the SOAPdenovo assembly on the same data, Newbler

further reduced the number of contigs from 3,685 to 1,643 and

increased the N50 length from 50,886 bp to 77,012 bp (Table 11).

The assembly accuracy was lower (81.5% v.s. 91.9%), but the

corrected N50 length was longer (62,597 bp v.s. 46,785 bp). In

addition to assembling all the recovered DNA fragments, we

randomly sampled 20% of them three times for assembly by

Newbler. The results of all the three Newbler assemblies were

similar to those when all the recovered DNA fragments were

assembled (Table S7). For example, the number of contigs ranged

from 1,634 to 1,643 and the corrected N50 length ranged from

62,602 bp to 65,882 bp.

Discussion

Selection of Data Sets
We selected the four bacteria unbiasedly. First, we searched the

Genomes Online Database [4] for all isolated and completed

Table 9. Statistics of SOAPdenovo and Newbler assemblies on three types of real data of two fungi.

(a)

Assembler Data
Total contig
length (bp)

No. of
contigs

N50
(bp)

No. of
errors

N50 corr.
(bp)

Accuracy
(%)

SOAPdenovo original PEs 11,660,407 2,282 10,871 11 10,860 99.90

recovered fragments+remaining PEs 11,683,977 2,075 12,416 13 12,343 99.41

recovered fragments+original PEs 11,725,403 2,006 12,973 13 12,901 99.45

Newbler recovered fragments 11,496,825 1,388 16,240 35 15,693 96.63

recovered fragments+remaining PEs 11,696,153 1,049 30,652 30 29,470 96.14

recovered fragments+original PEs 11,695,170 1,059 30,652 32 29,470 96.14

(b)

SOAPdenovo original PEs 37,837,899 19,879 3,420 150 3,388 99.06

recovered fragments+remaining PEs 34,462,815 7,923 7,233 1,095 6,604 91.30

recovered fragments+original PEs 34,462,815 7,923 7,233 1,095 6,604 91.30

Newbler recovered fragments 34,515,973 8,108 7,291 1,125 6,656 91.29

doi:10.1371/journal.pone.0069503.t009

Table 10. ARF-PE statistics on three types of simulated data of human chromosome 22.

PE read mappings Regular Bridging Single-mappable-end Unmapped Total

No. (%) of PEs 17,173,887 (96.17%) 430,632 (2.41%) 236,972 (1.33%) 17087 (0.10%) 17,858,578 (100%)

No. (%) of recovered fragments 17,173,887 (100.00%) 284,044 (65.96%) 140,596 (59.33%) N.A. 17,598,527 (98.54%)

No. (%) of correctly recovered fragments 16,998,715 (98.98%) 231,900 (81.64%) 75,704 (53.85%) N.A. 17,306,319 (98.34%)

No. (%) of perfectly recovered fragments 16,517,966 (96.18%) 87,514 (30.81%) 28,137 (20.01%) N.A. 16,633,617 (94.52%)

doi:10.1371/journal.pone.0069503.t010

Lengthen NGS Reads to Improve Genome Assembly

PLOS ONE | www.plosone.org 12 July 2013 | Volume 8 | Issue 7 | e69503



bacterial genomes. When starting this work, we found 1,766

bacteria with a complete genome. For each bacterium, we queried

NCBI SRA for corresponding Illumina PE data and found 340

bacteria with at least one such data. We retained the PE libraries

whose read length was 76 bp and fragment length was ,300 bp.

Note that the read length and fragment length of the rest PE

libraries were shorter. From the remaining 25 bacteria, we selected

those also containing a 454 dataset because we assumed a higher

assembly quality when two types of data were involved. Under

these criteria, we were left with four bacterial species: C. marinum,

P. brasiliensis, S. smaragdinae, and Streptomyces violaceusniger (S. vio). The

initial Velvet assembly of the S. vio PE data was much poorer than

those of three other species (data not shown). This is reasonable

because the S. vio genome is of high GC content (70.9%), resulting

in highly biased read coverage across the genome. Thus, we did

not include the S. vio data in our analyses. To find Illumina PE

libraries of longer fragment lengths, we queried NCBI SRA with

the keywords ‘‘whole genome Illumina paired end 500 bacteria’’

and found the E. coli data.

Among the fungi with a complete genome in NCBI, only N.

crassa OR74A and Saccharomyces cerevisiae S288c have Illumina PE

data of the corresponding strain in SRA. Requiring genome and

data being of the same strain eliminates uncertainty in evaluating

assembly accuracy. For human chromosome 22, we resorted to

simulated data because the reference sequence and the Illumina

PE data in NCBI SRA were likely from different individuals.

Assembly Optimization
Optimizing assembly is essential for assessing the real benefits of

recovered DNA fragments to genome assembly. Data coverage is

crucial for assembly performance. Insufficient data clearly lowers

assembly contiguity. On the other hand, too much data may

deteriorate assembly because errors accumulate. SOAPdenovo

assemblies of various amount of real data revealed that N50 length

usually saturated when the amount of data reached 100X

coverage (Figure S1). Thus, 100X coverage of data avoids a clear

fragmented assembly because of scarce data. Except for the data

from the FLASH study (used for tool comparison only), all datasets

in this study contain reads equal to 100X coverage.

We further optimized the two de-Bruijn graph assemblers by

scanning possible k-mer values. Figure S2 shows the impact of k-

mer values on the contiguity of Velvet and SOAPdenovo

assemblies. The N50 length could drop by an order of magnitude

upon a different k-mer value. For CABOG, we used the spec file

optimized in the GAGE study. Note that we optimized assembly to

render the largest N50 length of contigs. Although not ideal, this

strategy is commonly used because longer contigs are usually

preferred [20]. In addition to N50 length, we checked assembly

accuracy for a more comprehensive evaluation. The N50 length

after error correction is used as the major assembly metric because

it considers both assembly contiguity and accuracy.

Figure S2 shows that N50 length drops more quickly as k-mer

deviates from the best value when original PEs were assembled

than when the recovered DNA fragments were included. This

indicates another advantage of ARF-PE in assembly optimization.

That is, with recovered DNA fragments, one does not need to scan

many k-mer values for optimization, which saves computational

time. Of course, this requires spending time on ARF-PE and

depends on how long each assembly takes. Note that for all

organisms in this study except human, we did not optimize ARF-

PE by scanning k-mer values for the initial Velvet assembly. Thus,

it is possible to further enhance the benefits of recovered DNA

fragments to genome assembly.

To fully use recovered DNA fragments by SOAPdenovo, setting

maximal read length is important. Without this option, the

benefits of recovered DNA fragments to assembly contiguity

decreased. That is, on the data containing recovered DNA

fragments, the N50 lengths were smaller without setting the

maximal read length in almost all cases (Figure S2). When

maximal read length was set, N50 length usually plateaued as k-

mer value increases. When recovered DNA fragments were

assembled, a k-mer value set as the read length or the maximum,

127, gave near optimal assembly in general.

Simulated and Real Data
We started with simulated data because the true DNA

fragments could be readily obtained. To mimic real data, we

simulated reads to yield non-uniform coverage similar to that of

the real data. Variation in GC content has been known to bias

read coverage [22] at library preparation and amplification steps

[23]. This often lowers the completeness of genome assembly [24].

Note that we used a different tool, PIRS, to simulate PEs from the

human chromosome because we could not find appropriate data

for generating non-uniform read coverage profile. PIRS can

generate non-uniform coverage of reads based on GC content.

However, even with non-uniform coverage, our simulation did not

capture every respect of the real data. For all four bacteria, ARF-

PE recovered a smaller percentage of DNA fragments using real

data than using simulated data. In the SOAPdenovo and Newbler

assemblies of the four bacteria on the three types of data, simulated

data resulted in a larger N50 length in 22 of the 24 cases (Table

S2, Table S5).

The benefits of recovered DNA fragments to assembly are

rather similar for simulated and real data. For both simulated and

real data, the recovered DNA fragments increased the corrected

N50 lengths of all four bacterial assemblies by SOAPdenovo and

Newbler. However, the degrees of improvement were less

comparable in the Newbler assemblies. We define the degree of

improvement as the ratio in corrected N50 length of assembling

recovered DNA fragments and original PEs to that of assembling

only original PEs. In the Newbler assemblies, the improvements

were greater on simulated data (3.2, 1.4, 4.1, and 4.0) than on real

Table 11. Assembly statistics on three types of simulated data of human chromosome 22.

Assembler Data
Total contig
length (bp)

No. of
contigs

N50
(bp)

No. of
errors

N50 corr.
(bp)

Accuracy
(%)

SOAPdenovo original PEs 35,658,342 7,635 15,534 1 15,523 99.93

recovered fragments+remaining PEs 34,660,466 3,685 50,886 123 46,785 91.94

recovered fragments+original PEs 34,660,466 3,685 50,886 123 46,785 91.94

Newbler recovered fragments+remaining PEs 34,085,423 1,687 76,792 132 62,597 81.52

doi:10.1371/journal.pone.0069503.t011
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data (2.4, 1.2, 3.0, and 3.2) for all four bacteria (C. marinum, E. coli,

P. brasiliensis, and S. smaragdinae, respectively) (Table S2, Table S5).

Using SOAPdenovo, the degrees of improvements on simulated

data (1.4, 1.3, 1.3, and 1.7) and on real data (1.5, 1.3, 1.8, and 1.3)

were more comparable for all four bacteria.

Amount of Information and the Utilization
Including recovered DNA fragments for assembly increases the

amount of input data. However, the amount of information is the

same because recovered DNA fragments are derived from original

PEs without extra information. We recommend assembling

recovered DNA fragments with original PEs for de-Bruijn graph

assemblers because this type of data results in a longer corrected

N50 length than other types of data in many bacterial assemblies.

For N. crassa and human chromosome 22, the optimized

SOAPdenovo assemblies skipped PE reads because the optimized

k-mer value, 127, was larger than the read length. Thus, for

complex eukaryotic genomes, the recovered DNA fragments alone

may be enough to optimize assembly. For OLC assemblers, it is

not clear which type of data tend to perform better.

It is reasonable that recovered DNA fragments improve

Newbler and CABOG assemblies more than Velvet and

SOAPdenovo assemblies in general. Newbler and CABOG are

initially designed to treat longer NGS single-end reads like 454

reads. Velvet and SOAPdenovo are initially designed to treat short

NGS paired-end reads like Illumina PEs. The two de-Bruijn graph

assemblers likely have been developed to use PE information

relatively well. However, there is still room for improvement as the

recovered DNA fragments improved the de-Bruijn graph assem-

blies in general.

We also find evidences that the two de-Bruijn graph assemblers

use longer recovered DNA fragments for assembly. For C. marinum,

E. coli, and P. brasiliensis, the Velvet assemblies were optimized at a

longer k-mer value when including recovered DNA fragments

(from 41 to 67, from 57 to 99, and from 49 to 79, respectively,

Figure S2). For SOAPdenovo, assembly optimization occurred at

a longer k-mer value for all four bacteria (from 37 to 61, from 51

to 99, from 53 to 117, and from 41 to 91, respectively) (Figure S2).

GapCloser is developed to close the gaps between contigs using

PEs. On original PEs, the accuracies of the SOAPdenovo

assemblies decreased after applying GapCloser for all four bacteria

except S. smaragdinae, where the assembly accuracy remained the

same (Table S5). In contrast, with the recovered DNA fragments,

GapCloser increased the accuracies of the SOAPdenovo assem-

blies for all four bacteria except C. marinum. Thus, we recommend

running GapCloser after assembling the DNA fragments recov-

ered by ARF-PE to improve the SOAPdenovo assemblies of

bacteria.

For more complex eukaryotic genomes, GapCloser can reduce

assembly accuracy significantly. On the original PEs of the human

data, GapCloser lowered the assembly accuracy from 99.9% to

33.6% (Table S7). This is consistent with the general impression of

the aggressiveness of GapCloser, especially on complex genomes

[20]. With GapCloser, although the recovered DNA fragments

raised the assembly accuracy from 33.6% to 37.0%, the accuracy

was still low. Thus, for complex eukaryotic genomes, the

improvement in assembly contiguity by GapCloser can be

questionable whatever type of data is used.

Performance of ARF-PE
The percentage and accuracy of the DNA fragments recovered

from bridging PEs and single-mappable-ends were lower than

from regular PEs. This is reasonable because the bridging PEs and

single-mappable-ends span across the junctions of contig connec-

tions, where the accuracy is often lower. During Velvet assembly, a

contig may be extended in two or more different ways, indicating

the presence of repeats in the genome or sequencing errors. Such

ambiguities stop the contig extension, and connect the contig to

two or more other contigs. As a result, the sequences near contig

connecting junctions are often less accurate.

In general, ARF-PE works well on bacterial and simple

eukaryotic genomes. For more complex eukaryotic genomes,

ARF-PE still enhances assembly contiguity, but lowers the

assembly accuracy, which may be partly explained by the fraction

of non-perfectly recovered DNA fragments. For the four bacteria

and S. cerevisiae, ,2% of the recovered DNA fragments were non-

perfect. In contrast, .5% of the recovered fragments were non-

perfect for N. crassa and human chromosome 22. To validate the

argument, we separated the perfectly recovered fragments from

the non-perfect ones and randomly selected the non-perfect

fragments at different fractions. We then assembled the perfect

fragments with the non-perfect ones at various fractions using

SOAPdenovo. Indeed, the number of errors increased as the

fraction of non-perfect fragments increased (Figure S4). For N.

crassa, 3% of the non-perfect reads resulted in about 154 errors

(Figure S4a), which was close to the 150 errors when the original

PEs were assembled (Table 9). This suggests a threshold in

accuracy of DNA fragment recovery to maintain assembly

accuracy when recovered fragments are involved. Unsurprisingly,

a similar relationship between assembly errors and fraction of non-

perfect fragments was observed for human chromosome 22 (Figure

S4b). Thus, reducing errors in the recovered DNA fragments is

important for ARF-PE to also raise assembly accuracy for complex

eukaryotic genomes. Reducing errors is possible as some recent

tools, e.g., iCORN [25] and SEQuel [26], can been applied to fix

errors in the initial Velvet assembly. However, as correcting

assembly errors is another major topic, we do not explore in detail

how they may enhance the usefulness of ARF-PE in this study.

We also note that all the genomes studied here are haploid

genomes. Although human genome is diploid, we took one haploid

version of chromosome 22 for study. Thus, although ARF-PE can

still be applied to polyploidy genomes, but the benefits are not

clear yet.

Effects of ARF-PE Options and Parameters on Assembly
Figure 3 shows that most ARF-PE parameters do not alter

much the percentage and accuracy of the recovered DNA

fragments. However, assembly accuracy could vary upon various

parameter values (Figure 4). This indicates that small differences in

recovered DNA fragments can be vital for assembly, which is

reasonable because when assembly is done to a certain degree,

further improvements require only the reads at the junctions

between contigs.

Correcting errors in initial Velvet assembly is crucial as it

increased the corrected N50 length in most bacterial assemblies

(Figure 4). Read filtering also affects several assemblies, but the

effects depend on species, assembler, and data type. Note that for

E. coli, the two ARF-PE options lowered the accuracy of DNA

fragment recovery (Figure 3), but the corrected N50 length

increased. We found that the recovered DNA fragments indeed

lowered the assembly accuracy, but they increased the N50 length

even greater, resulting in a larger N50 length. For example,

applying error correction and read filtering lowered the accuracy

of the Newbler assembly of recovered DNA fragments and the

remaining PEs from 92.9% to 77.0%, but the N50 length

increased from 94,926 bp to 123,795 bp (data not shown). As a

result, the corrected N50 length increased from 88,221 bp to

95,347 bp.
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We further compared the bacterial assemblies with and without

error correction and read filtering on the real data of bacteria.

Figure S3 shows the differences in number of assembly errors and

the ratio in corrected N50 length after the two ARF-PE options.

For all four assemblies of the four bacteria, the number of errors

decreased in 26 of the 39 cases (Figure S3a, no difference in two

cases). Consistent with the above observations for E. coli, the

number of errors increased after including recovered DNA

fragments in all SOAPdenovo and Newbler assemblies (data not

shown). The corrected N50 length increased in 34 of the 39 cases

(Figure S3b).

The corrected N50 length shown in the main text can be further

improved by tuning parameters in general. For example, when

error correction was applied without read filtering, the corrected

N50 length of the Newbler assembly on the recovered DNA

fragments and the remaining PEs further increased for C. marinum

and P. brasiliensis. We also emphasize that for all the explored

combinations of parameter values, the recovered DNA fragments

increased the corrected N50 length. Thus, parameter tuning

should not abolish the benefits of recovered DNA fragments to

genome assembly, and only leads to a different degree of

improvement.

Conclusions
In this work, we present a computational tool ARF-PE that

increases the lengths of PE reads. ARF-PE takes Illumina PEs as

input and recovers the DNA fragments from which two ends the

PEs are obtained. On the real data of four bacteria, ARF-PE

recovered .87% of the DNA fragments and achieved a .98%

accuracy of fragment recovery. The recovered DNA fragments

increased the contiguity of all four bacterial assemblies by four

popular assemblers. They also increased the accuracies of most

bacterial assemblies. On the data of two fungi and human

chromosome 22, ARF-PE doubled and tripled the assembly N50

length, respectively, but resulted in slightly lower assembly

accuracies. Because long NGS reads like 454 reads are more

expensive than Illumina reads, ARF-PE is an economical tool for

optimizing Illumina PEs for assembly. Our tool can be run

independently or the idea can be incorporated into current

assemblers to improve genome assembly. ARF-PE is freely

available at http://140.116.235.124/,tliu/arf-pe/under the open

source license BSD.

Supporting Information

Figure S1 Relationship between contig N50 length and
data coverage. The results are for the SOAPdenovo assemblies

(with a k-mer value 51) on the original PE data of P. brasiliensis.

(TIFF)

Figure S2 Relationship between contig N50 length and
k-mer value. For (a) Velvet and (b) SOAPdenovo, we scan

various k-mer values to optimize four bacterial assemblies. The

black and red curves represent the assembly of original PEs and

with recovered DNA fragments, respectively. For SOAPdenovo,

the solid and dashed lines are for the assemblies where the

parameter maximal read lengths are set and not, respectively.

(TIFF)

Figure S3 Effects of error correction and read filtering
on assembly. (a) Histogram of differences in number of errors

after error correction and read filtering by ARF-PE on the real

data of the four bacteria. A negative number stands for a reduction

in number of errors. (b) Histogram of the ratio in corrected N50

length. A ratio greater than one means an increase in corrected

N50 length after applying the two options of ARF-PE. Note that

on real data, the CABOG assembly of recovered DNA fragments

and the original PEs of E. coli aborted without a clear reason, so

there are 39 cases in total.

(TIF)

Figure S4 Assembly errors by various fractions of non-
perfectly recovered DNA fragments. For (a) N. crassa and (b)

human chromosome 22, we separate the perfectly recovered DNA

fragments from the non-perfect ones. Different fractions of non-

perfect fragments (x-axis) and all the perfect ones are assembled by

SOAPdenovo (with kmer = 127), and the number of errors (y-axis)

are computed by the GAGE script. For each fraction, reads are

randomly selected three times for assembly; the mean and

variation in number of errors are shown. Horizontal red lines

indicate the number of errors when the original PEs are

assembled.

(TIF)

Table S1 Performance of ARF-PE on the simulated PE
libraries of four bacteria. The four species are (a) C. marinum,

(b) E. coli, (c), P. brasiliensis, and (d) S. smaragdinae. The definitions of

percentages follow those in Table 4.

(DOCX)

Table S2 Assembly statistics on the simulated data of
four bacteria by three assemblers. We use SOAPdenovo,

SOAPdenovo+GapCloser, and Newbler to assemble three types of

simulated data of four bacteria: (a) C. marinum, (b) E. coli, (c), P.

brasiliensis, and (d) S. smaragdinae. The three types of data are (1)

original PE reads, (2) recovered DNA fragments and the

remaining PEs, and (3) recovered DNA fragments and original

PE reads.

(DOCX)

Table S3 ARF-PE runtime on the PE libraries in this
study. The run times are in wall clock seconds. The data of the

four bacteria and S. cerevisiae are run on a server with four Quad-

Core Intel Xeon CPUs E5520 (2.26 GHz) and one with two

Quad-Core AMD Opteron processors 2378 (800 MHz), respec-

tively. The N. crassa and human data are run on a server with eight

Oct-Core Intel Xeon CPUs E7-4820 (2.00 GHz). Note that for

each dataset, the total amount of time is not equal to the sum of

the section times because ARF-PE spends extra time for data

transformation and re-collection.

(DOCX)

Table S4 Performance of ARF-PE on the real PE
libraries of four bacteria. The four species are (a) C. marinum,

(b) E. coli, (c), P. brasiliensis, and (d) S. smaragdinae.

(DOCX)

Table S5 Assembly statistics on the real data of four
bacteria. We use Velvet, SOAPdenovo, SOAPdenovo+GapClo-

ser, Newbler, and CABOG for assembling three types of real data

of four bacteria: (a) C. marinum, (b) E. coli, (c), P. brasiliensis, and (d)

S. smaragdinae.

(DOCX)

Table S6 Assembly statistics on the real data of two
fungi. The two fungi are (a) S. cerevisiae, and (b) N. crassa.

(DOCX)

Table S7 Assembly statistics on the simulated data of
human chromosome 22.

(DOCX)
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