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Abstract

Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the
antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA)-low hepcidin show a
pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response
associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole
genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional
pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In
the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the
genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to
immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines
production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related
to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO
mice, Hfe2/2 mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of
Hfe2/2 deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of
Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target
pathways/genes of Tmprss6.
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Introduction

Epidemiological studies suggest that iron modulates the

susceptibility to infections/inflammation, but the molecular

mechanisms underlying this phenomenon are incompletely

understood. The iron/inflammation relationship is reciprocal,

since several iron-related molecules (TfR1, Fpn, ferritin, Lcn2,

etc.) are transcriptionally modulated by inflammation [1]. Among

them the anti-microbial peptide hepcidin, the main regulator of

systemic iron homeostasis, is an acute phase protein expressed and

secreted by the liver, which provides a critical connection with the

immune response [2]. Hepcidin expression in inflammation is

activated by IL6 and IL22 [3] through phosphorylated Stat3 (P-

Stat3) binding to the hepcidin promoter, in a region closed to the

Bone Morphogenetic Protein (BMP) Responsive Elements (BRE)

binding sites [4]. Hepcidin binds the sole cellular iron exporter

ferroportin triggering its internalization and degradation, reducing

iron flux from duodenal enterocytes and macrophages and

resulting in hypoferremia, a protective response against microbial

growth [5]. Hepcidin-ferroportin interaction in macrophages has

been reported to cause JAK2-related transcriptional changes that

negatively modulate the cytokine-induced inflammatory response

[6], although recently the phosphorylation of JAK2 as a result of

hepcidin-ferroportin interaction has been disputed [7].

The type II transmembrane liver serine protease TMPRSS6/

matriptase-2 is the main negative regulator of hepcidin, since

in vitro it cleaves membrane hemojuvelin, the liver-specific BMP-

coreceptor in the hepcidin-activating pathway. Genetic inactiva-

tion of Tmprss6 both in mice and human causes severe, atypical

iron deficiency, characterized by microcytic anemia and inability

to respond to oral iron treatment, because of inappropriately high

hepcidin levels [8,9,10].

We have previously demonstrated that modulation of hepcidin

in mice influences the inflammatory response. The production of

pro-inflammatory cytokines is increased upon LPS challenge in

iron- and hepcidin-deficient animals and the effect can be

abrogated by a short pre-treatment with exogenous hepcidin

before LPS injection [11]. In line with this observation, Tmprss6

KO animals, characterized by chronic iron deficiency with high

hepcidin, show a blunted production of inflammatory cytokines

and of liver acute phase proteins and reduced tissue macrophages

recruitment after LPS, when compared with iron deficient (low
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hepcidin) mice. These findings suggested that in vivo lack of

hepcidin and not lack of iron induces a proinflammatory

condition, when body iron is low [11]. However, the molecular

pathway/s that account for the anti-inflammatory phenotype

observed in Tmprss6 KO mice remain undefined.

The liver plays a crucial role in the response to systemic

inflammation, via secretion of acute phase proteins and hepcidin

production. For this reason we investigated the whole genome

transcriptional profiling of the liver and the expression of selected

genes in the spleen in Tmprss6 KO mice, which are iron deficient

with high hepcidin, in comparison with iron deficient (IDA)

animals, with low hepcidin levels. The latter approach was

performed with the aim of identifying signaling pathway/s

activated by chronic hepcidin overexpression and/or Tmprss6

deficiency, irrespective of the iron status. Here we show that in the

absence of Tmprss6 and in the presence of high hepcidin genes

encoding inflammatory molecules are down-regulated, whereas

genes connected with the anti-inflammatory response are up-

regulated.

Materials and Methods

Animals, Diet and Tissue Collections
Mice were maintained in the animal facility of San Raffaele

Scientific Institute in accordance with the European Union

guidelines. The study was approved by the Institutional Animal

Care and Use Committee (IACUC) of San Raffaele Scientific

Institute, Milan, Italy. To study the liver gene expression profiling

in the absence of Tmprss6, we used Tmprss6 KO mice and iron

deficiency anemia (IDA) control littermates, as described by

Pagani et al. [11]. Briefly, four weeks old KO male mice, on a

mixed 129/Ola 6 C57BL/6 background [9], were fed an iron-

balanced diet (carbonile iron 200 mg/kg, SAFE, Augy, France).

Four weeks old IDA animals were maintained on an iron-deficient

diet (,3 mg iron/kg; SAFE) for 3 weeks. Inflammation was

induced by intra-peritoneal injection of lipopolysaccharide (LPS)

(from E.coli O26:B6; 0.1 mg/kg, i.p., Sigma-Aldrich, Sydney,

Australia). Animals were sacrificed 6 hours later.

To investigate the role of exogenous hepcidin in the modulation

of liver gene expression, seven weeks IDA mice were i.p injected

with 100 micrograms/animal of recombinant hepcidin or sterile

PBS as vehicle. Mice were sacrificed 8 hours later.

To study liver gene expression modulation by dietary iron, four

weeks old male mice were maintained an iron balanced, iron

deficient and iron loaded (8.3 g/kg iron, SAFE, Augy, France) diet

for 3 weeks. Livers and spleen used for RNA isolation were stored

in RNALater (Qiagen, Mississauga, ON, Canada) and processed

for quantitative real-time PCR. Livers were also analyzed for total

liver iron content (LIC) [11].

Microarray Analysis
The gene expression profile was determined using the

MouseWG-6 v2 Expression BeadChips (IlluminaH). On a single

BeadChip it is possible to simultaneously profile six samples for

more than 45,200 transcripts for each sample. In the first phase of

the experiment, cDNA and cRNA synthesis was performed using

the Illumina Total Prep RNA Amplification Kit (Ambion),

according to the manufacture’s protocol; briefly, 500ng of total

RNA, isolated from liver tissue by using the RNeasy Mini Kit

(QIAGEN), were reverse transcribed to cDNA with T7 Oligo(dT)

Primer, then the double strand cDNA was in vitro transcribed to

synthesize cRNA using a biotin-NTP mix. The resulted cRNA was

quantified by three replicate measurements using Nanodrop-2000

spectrophotometer and the quality assessed using the Agilent

Bioanalyzer. 750 ng of cRNA (150 ng/ml) were then hybridized to

the BeadChip at 58uC overnight and the fluorescent signal was

developed with streptavidin-Cy3. BeadChips were then imaged

using the IlluminaH BeadArray Reader, a two-channel 0.8 mm
resolution confocal laser scanner and the IlluminaH GenomeStu-

dio software. This software was used to elaborate the fluorescence

signal to a value, whose intensity corresponds to the quantity of the

respective transcript in the original sample. The same software was

used to assess the system quality control, including biological

specimen, hybridization, signal generation controls and negative

controls.

Gene expression data were normalized using the cubic spline

algorithm implemented in the IlluminaH GenomeStudio software.

More than 30,000 genes were investigated with the array

experiment, of those a selection of ‘‘expressed’’ genes was done

by filtering on the ‘‘detection P-Value’’ parameter. The transcripts

whose intensity value was significantly different from that of

background (detection P-Value ,0.01) in at least one sample of

the entire series were considered ‘‘expressed’’ genes in the

experiment and on those the following analyses were performed.

More than 10,000 genes were appointed as ‘‘expressed’’ in the

experiment. PCA (Principal Component Analysis) was done on

that group of genes using scripts in Rstudio [12]. LIMMA

Bioconductor package [13] was used extract of differentially

expressed genes considering a factorial design model and pair-wise

comparisons. A post test was used to select putative differentially

genes considering genes and comparisons (i.e. ‘‘contrasts’’) taking

into account Benjamini Hochberg multiple comparison correction.

The genes passing a cut-off of adjusted P-Value ,0.05 and

|log2ratio| .1 were retained as differentially expressed. The

selection of differentially expressed genes considered the following

comparison (KO: Tmprss6 KO; IDA: Iron Deficiency Anemia;

UT: untreated; LPS: LPS treatment).

Figure 1. Principal component analysis of microarray data. PCA
was made over normalized expression levels of expressed genes in the
array (detection P-Value ,0.01 in at least one sample). The first 3
principal components accounted for the 85% of explained variance and
clustered apart samples coming from the different genotypes and
treatments. Black: IDA. Red: IDA+LPS. Green: Tmprss6 KO. Blue: Tmprss6
KO+LPS.
doi:10.1371/journal.pone.0069694.g001
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Figure 2. Heat map of clustered biological terms highlighted by differentially expressed genes in the ‘‘Genotype contrasts’’. The
heat map represents semantic similarity among gene ontology (GO) Biological Process (BP) terms. Rows and columns show the list of enriched GO BP
terms derived from term enrichment analysis of Genotype significant genes. The colors represent the semantic distances calculated using GOSemSim
Bioconductor package. Yellow-red clusters identify groups of terms sharing semantic similarity about biological processes.
doi:10.1371/journal.pone.0069694.g002
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Figure 3. Representations of Kegg pathways enriched in the ‘‘Genotype contrast’’. A) KEGG pathways derived from term enrichment
analysis. Bars represent210*log10(P-Value). The dotted line shows significance cut-off at enrichment analysis, which corresponds to a P-Value of 0.05.
B) Representation of the KEGG Toll-Like Receptor Signaling Pathway, showing up-regulated (red boxes) and down-regulated (green boxes) genes.
doi:10.1371/journal.pone.0069694.g003
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KO.UT-IDA.UT.

KO.LPS-IDA.LPS.

IDA.LPS-IDA.UT.

KO.LPS-KO.UT.

(KO.LPS-KO.UT)-(IDA.LPS-IDA.UT) = Interaction.

(KO.LPS+KO.UT)-(IDA.LPS+IDA.UT) =Genotype.

(KO.LPS+IDA.LPS)-(KO.UT+IDA.UT) =Treatment.

A biological term enrichment analysis using Gene Ontology

biological process database was performed using DAVID tool [14]

[15] considering the background list of ‘‘expressed’’ genes and the

single lists deriving from the differentially expressed genes in

specific contrasts i.e.: Genotype, Interaction and the single

pairwise comparisons in basal and stimulated conditions

(KO.UT-IDA.UT, KO.LPS-IDA.LPS).

The enriched categories were selected for being enriched in

comparison under investigation and not in the background of

‘‘expressed’’ genes. GoSemSim package [16] was used to calculate

semantic distances among Gene ontology biological process terms

and the results used to cluster the biological terms so grouping

related categories using hierarchical clustering.

The same procedure of enrichment was done considering the

KEGG pathway database [17] [18] and the DAVID server [14].

The microarray data were deposited in NCBI’s Gene Expres-

sion Omnibus public repository and are accessible through GEO

Series accession number GSE46287 [19]. As additional validation

of the functional profiling, a repeat analysis was carried out using

Gene Set Enrichment Analysis (GSEA) [20] (GSEA Analysis S1).

qRT-PCR
Two/three micrograms of total RNA were retro-transcribed

with the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystem), using Random Examers and RNase Inhibitor. Gene

expression levels were measure by quantitative real-time PCR

using the ABI7900 Real-Time PCR System (Applied Biosystem)

using TaqMan Gene Expression Master Mix (Applied Biosystem).

Primers used for qRT-PCR are in Table S4. The unpaired 2-

tailed Student t test was used to analyze significant changes in gene

expression levels (GraphPad Prism Version 5.0a). P-Values ,0.05

were considered statistical significant.

Mouse Immune Array v2.1
RNA isolated from the spleen of IDA and Tmprss6 KO mice,

treated or not with LPS, were retro-transcribed as described in the

‘‘qRT-PCR’’ section, pooled and analyzed by TaqMan qRT-PCR

using a Mouse Immune Array v2.1 (Applied Biosystem), that

Figure 4. Heat map of selected genes (basal condition). The heat map represents the hierarchical clustering of 49 genes being differentially
expressed according to the ‘‘Interaction contrast’’ (adjusted P-Value ,0.05 and |log2ratio| .1). The expression level of each gene has been
standardized by subtracting the gene’s mean expression and then dividing by the standard deviation across all samples. This scaled expression value,
denoted as the Row Z-score, is plotted in red-blue scale color, with red indicating high expression.
doi:10.1371/journal.pone.0069694.g004

Table 1. Genes differentially regulated under basal
conditions in the liver of Tmprss62/2 vs IDA mice.

Genes Log2ratio
1 Adj P-Value

Hamp 7,472 0,000007

Hamp2 4,585 0,000179

Gdf15 3,83 0,000393

Atf3 3,009 0,02693

LOC223599 2,893 0,043808

Adpn 2,581 0,023763

Efna1 2,448 0,001157

Ccnd1 2,173 0,038212

Cyr61 2,142 0,014522

8430408G22Rik 2,113 0,005684

Idb1 2,071 0,001819

Apoa4 1,914 0,020438

Slc25a25 1,872 0,013536

Id2 1,778 0,00337

Dusp6 1,768 0,000593

Jun 1,75 0,005684

Zfp36 1,723 0,018945

A1bg 1,67 0,027991

Txnip 1,65 0,029919

Hist1h4f 1,612 0,01967

Dusp1 1,61 0,029021

Hist1h4c 1,568 0,025547

9130020G10Rik 1,514 0,012299

Hist1h4a 1,51 0,015287

C9 21,841 0,00606

Tmprss6 21,905 0,00337

1: Log2ratio refers to the contrast KO.UT-IDA.UT.
doi:10.1371/journal.pone.0069694.t001

Figure 5. Analysis of liver BMP-SMAD, STAT3 and NF-kB
proteins activation. Livers were dissociated as described in the
‘‘Material and Methods’’ section; extracts were subjected to SDS-PAGE
and Western Blot performed using anti-Phosphorylated-SMAD1/5/8 (P-
SMAD), anti-Phosphorylated-STAT3 (P-STAT3), anti-NF-kB p100, and
anti-NF-kB p65. Protein levels were quantified by densitometric analysis
of P-SMAD, P-STAT3, NF-kB p100 and NF-kB p65 specific bands,
normalized to actin. 1 and 2 refers to liver extracts from two different
mice. The numbers under the panels indicate arbitrary densitometric
unit.
doi:10.1371/journal.pone.0069694.g005
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allows the evaluation of the expression of about 90 immune-

related genes. Hprt1 was used as the housekeeping gene. Unpaired

2-tailed Student t test was used to analyze significant changes in

gene expression levels (GraphPad Prism Version 5.0a). P-Values

,0.05 were considered statistical significant.

Western Blot Analysis
Livers were lysed in lysis buffer (200 mM Tris-HCl, pH 8;

1 mM EDTA; 100 mM NaCl; 10% glycerol; 0.5% NP-40)

containing a mixture of proteases (Sigma-Aldrich) and phospha-

tases (Roche) inhibitors. Protein extracts (80 mg) were diluted in

Laemmli buffer, boiled 5 minutes, separated onto a 10% SDS-

PAGE and then transferred to Hybond C membrane (Amersham

Bioscience Europe GmbH) by standard Western blot technique.

Blots were blocked with 5% nonfat milk in TBST (0.5 M Tris-

HCl, pH 7.4; 0.15 M NaCl and 0.1% Tween 20), incubated

overnight with anti-phospho-SMAD1/5/8 (1:1000; Cell signaling;

Millipore), anti-phospho-STAT3 (1:1000; Cell Signaling), anti-

NF-kB p100 (1:1000; Cell Signaling), anti-NF-kB p65 (1:200;

Santa Cruz Biotechnology Inc.), anti-actin (1:5000; Sigma-

Aldrich). After washing with TBST, blots were incubated 1 hour

with relevant HRP-conjugated antisera and developed using a

chemoluminescent detection kit (ECL; Amersham Biosciences).

Results

To study the role of Tmprss6 in hepatic gene regulation, we

performed whole genome expression profiling on individual livers

of untreated and LPS-injected Tmprss6 KO vs control IDA mice.

Although Tmprss6 KO mice show a more severe iron deficiency

anemia than control mice (Hb 97+/21.5 vs 126+/24.4 g/L

[11]), liver iron content is comparable in the two groups (106.8+/
214.4 in Tmprss6 KO mice vs 101.8+/211.6 mg iron/g liver in

IDA animals) and does not significantly change after LPS

treatment, as already reported for iron deficient animals [11].

Principal Component Analysis [21] was performed on the

subset of expressed genes in the experiment (see materials and

methods for working definition of expressed genes). A tridimen-

sional visualization of the first 3 principal components of the

various mice groups (Figure 1) show that Tmprss6 KO mice

formed a distinct group, illustrating the strong impact of Tmprss6

deletion on liver gene expression. A similar situation is maintained

also in LPS treated animals, suggesting a different LPS response in

the two groups of mice.

Figure 6. Genes differentially expressed under basal condi-
tions. Total liver RNA was isolated from Tmprss6 KO and IDA mice.
mRNA expression was quantified by TaqMan qRT-PCR. Hprt1 was used
as the housekeeping gene. mRNA expression ratio was normalized to
an IDA mean value of 1. Error bars indicate Standard Error.; ns, not
significant; *P,0.05; **P,0.01; and ***P,0.001. White bar: IDA mice;
grey bar: Tmprss6 KO mice.
doi:10.1371/journal.pone.0069694.g006

Figure 7. Genes differentially expressed after LPS treatment. Total liver RNA was isolated from Tmprss6 KO and IDA mice treated with LPS to
induce acute inflammation (3 mice each group). TaqMan qRT-PCR was used to quantify mRNA expression and Hprt1 was used as the housekeeping
gene. mRNA expression ratio was normalized to an IDA mean value of 1. Error bars indicate Standard Error.; ns, not significant; *P,0.05; **P,0.01;
and ***P,0.001. White bar: IDA mice; grey bar: Tmprss6 KO mice.
doi:10.1371/journal.pone.0069694.g007
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Genes Differentially Regulated in the Absence of Tmprss6
To identify genes differentially expressed in the absence of

Tmprss6 we used the LIMMA Bioconductor package [13]. The

"Genotype contrast’’ identifies genes differentially expressed in

Tmprss6 KO mice compared to wild-type animals, independently

of the LPS treatment. The ‘‘Treatment contrast’’ recognizes genes

differentially regulated by the LPS treatment, independently of the

genotype, whereas the ‘‘Interaction contrast’’ identifies genes

whose expression levels are influenced by both the absence of

Tmprss6 and LPS treatment (Table S1).

Genes selected using a cut-off of adjusted P-Value ,0.05 and

|log2ratio| .1 applying the ‘‘Genotype contrast’’ are shown in

Dataset S1. The reliability of the method was confirmed by the

selection of BMP-Son of Mother Against Decapentaplegic

(SMAD) target and Tmprss6 genes. The term enrichment analysis

of the genes emphasized the biological processes affected by the

loss of Tmprss6; these comprise genes related to cytokine

production, immune response to microorganisms, regulation of

innate immune response and proliferation and differentiation of

inflammatory cells (Figure 2). Enriched signaling pathways are

shown in Figure 3A and include pathways involved in Toll like

receptor signaling (KEGG pathway: mmu04620; Figure 3B),
cytokine-cytokine receptor interaction (KEGG pathway:

mmu04060; Figure S1) and nitric oxide metabolism (KEGG

pathway: mmu00910; not shown). More in detail, loss of Tmprss6

modulates genes of the cytochrome-dependent drug metabolism

Table 2. Genes differentially regulated by LPS in the liver of Tmprss62/2 vs IDA mice.

Genes Log2ratio
1 Adj P-Value Genes Log2ratio

1 Adj P-Value

Hamp2 5,96 0,000004 Adamts4 21,52 0,000886

Gbp1 4,613 0,000006 Ets2 21,525 0,000056

Cyp7a1 4,387 0,000115 LOC381941 21,527 0,000029

Cyp2b9 3,953 0,007918 Cxcl10 21,531 0,000112

LOC223599 3,461 0,002313 Gvin1 21,543 0,000457

EG243881 3,387 0,001134 Il1rn 21,605 0,000258

Cyp2b13 3,184 0,025006 Zc3h12a 21,611 0,000004

LOC385280 2,936 0,000009 Pglyrp1 21,63 0,000009

1600032L17Rik 2,776 0,001008 Bcl3 21,666 0,000004

Pte2a 2,598 0,000348 Upp1 21,676 0,000025

G6pc 2,595 0,000322 Mx1 21,69 0,000085

G0s2 2,418 0,000287 Cldn14 21,692 0,000016

Slc40a1 2,222 0,000073 Tyki 21,708 0,002997

Ccnd1 2,14 0,005597 Relb 21,734 0,000006

Cyp2b20 2,102 0,002568 Samhd1 21,741 0,000029

Gpr120 2,013 0,013532 Creld2 21,758 0,000043

A1bg 1,934 0,001607 Gbp2 21,784 0,000243

Hamp 1,908 0,005391 Slpi 21,806 0,0024

D0H4S114 1,88 0,001148 Phlda1 21,825 0,000512

BC056929 1,86 0,000187 T2bp 21,833 0,000004

Slc2a2 1,728 0,000016 Tnfaip2 21,885 0,000045

Cib3 1,699 0,005469 Dscr1 21,892 0,000995

1810054O13Rik 1,659 0,000549 Icam1 21,98 0,000004

Gal3st1 1,658 0,000159 Elf3 22,143 0,00003

Mcc 1,633 0,000054 Cd14 22,204 0,000566

Idb1 1,63 0,000409 IL1RA 22,232 0,000034

Mpra 1,606 0,000081 Ifit2 22,32 0,002581

Cbr3 1,571 0,002616 2410118P20Rik 22,394 0,000006

Spon2 1,567 0,001891 2510004L01Rik 22,465 0,001127

Etnk2 1,559 0,043315 Tlr2 22,481 0,000016

Fbxo21 1,551 0,000049 Cish 22,557 0,000031

2310047C17Rik 1,53 0,000205 Nfkbiz 22,576 0,000004

Esm1 1,522 0,041553 Tnfaip3 22,689 0,000004

Arrdc3 1,515 0,032914 Scara5 22,691 0,000043

0610038K03Rik 1,508 0,000016 Cxcl2 22,79 0,000017

4930572L20Rik 1,506 0,000102 Cxcl1 23,111 0,000862

1: Log2ratio refers to the contrast KO.LPS-IDA.LPS.
doi:10.1371/journal.pone.0069694.t002
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Figure 8. Heat map of clustered biological terms highlighted by differentially expressed genes in the ‘‘Interaction contrasts’’. The
heat map represents semantic similarity among gene ontology (GO) Biological Process (BP) terms. Rows and columns show the list of enriched GO BP
terms derived from term enrichment analysis of Interaction significant genes. The colors represent the semantic distances calculated using
GOSemSim Bioconductor package. Yellow-red clusters identify groups of terms sharing semantic similarity about biological processes.
doi:10.1371/journal.pone.0069694.g008
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(as Cyp1a2, Cyp2b13, Cyp2b20, Cyp2b9, Cyp2c54, Cyp3a25, Cyp4a12,

Cyp4b1, Cyp4f14, Cyp7a1, Cyp7b1; KEGG pathway: mmu00980),

up-regulates extracellular matrix-related genes (as Lamb3, Lama1,

Wnt, Ccnd1, Chd1), whereas down-regulates genes involved in the

response to inflammation, as Lbp, Cd14, Tlr2, Myd88, Nfkb2 (and

target genes), genes encoding for members of the chemokine

ligands (as Cxcl1, Cxcl2, Cxcl9, Cxcl10) and members of the

interleukine receptors (as Il1r2, Il1RA, Il1rn, and Il6RA) (Dataset
S1).

Genes selected according to the ‘‘Genotype contrast’’ and

significantly modulated in Tmprss6 KO mice under basal condition

are shown in Table S1. A selection of genes using a |log2ratio|

.1.5 is depicted in Table 1 and Figure 4.

Up-regulation of BMP-SMAD-target genes, such as Hamp and

Idb1, was previously reported in Pagani et al. [11]. Our

microarray data indicate that also Hamp2, Id2, Atoh8 and Smad6

are up-regulated (Dataset S1). In agreement with the activation

of the BMP-SMAD pathway, phosphorylation of SMAD1/5/8

proteins is increased in Tmprss6 KO livers compared to IDA mice

(Figure 5).

Variation of expression of representative genes (Table 1) was
confirmed by qRT-PCR. Expression of Gdf15, Atf3, Efna1, Ccdn1,

Apoa4 and Jun was increased (Figure 6), and expression of C9,

that participates in the formation of Membrane Attack Complex

and plays a key role in innate and adaptive immune response, was

decreased. Mup3 that encodes for major urinary protein 3, showed

a trend towards reduction in Tmprss6 KO mice (Figure 6).

The expected strong impact of LPS on liver gene expression is

shown in Figure S2. Genes modulated according to the

‘‘Treatment contrast’’ are related to the inflammatory response,

the regulation of defense and innate immune response, cytokines

production, response to DNA damage, antigen presentation and

processing, T cell activation, response to viruses, bacteria and

peptidoglycan, ion transport and hair cycle and follicle develop-

ment.

Fewer genes are modulated by LPS treatment in Tmprss6 KO

mice compared to IDA animals (Table S1). Results of relevant
genes, selected according to the ‘‘Genotype contrast’’ and with a

|log2ratio| .1.5 for LPS treatment are summarized in Table 2
and Figure S3. Selected genes, analyzed by qRT-PCR, are

shown in Figure 7. Although the expression levels of these genes

do not change under basal conditions (data not shown), their LPS-

mediated activation is strongly impaired in Tmprss6 KO mice.

Cyp2b9, Slc2a2, Fbxo21 and Fos are up-regulated in Tmprss6 KO

animals. Interestingly, the F-box protein family, that includes also

Fbxo21, is involved in Iron Regulatory Protein 2 degradation by

proteasome during iron-replete condition through phosphoryla-

tion-dependent ubiquitination [22,23]. Genes involved in the

regulation of the inflammatory response, as Nfkbiz, Tlr2, Icam1,

Tnfaip2 and Il1rn, are strongly down-regulated in Tmprss6 KO

mice. Due to the blunted LPS response and the reduced leukocytes

recruitment in Tmprss6 KO animals [11] we analyzed the

expression of liver genes involved in these signaling pathways.

As shown in Figure 7, Cxcl1, Irak3, Myd88 and Socs3 are reduced

in LPS-treated Tmprss6 KO animals, confirming the impairment

of the TLR-mediated signaling pathway. This evidence is further

supported by the reduced expression of Cd40, implying the

impairment of NF-kB and Stat signaling in mutant mice [24].

Using anti-P-Stat3, we showed that Stat3 signaling was strongly

decreased in Tmprss6 KO mice both under basal condition and

after LPS injection (Figure 5), whereas no changes were observed

at the mRNA level (Figure 7D). Of the two NF-kB key signaling

molecules (p100 and p65) only p100 is decreased in Tmprss6 KO

animals, suggesting a mild impairment of the pathway (Figure 5).

The ‘‘Interaction contrast’’ was applied to examine to what

extent the genotype influences the inflammatory response and

biological term enrichment analysis highlighted the LPS-related

Figure 9. Heat map of selected genes (‘‘Interaction contrast’’).
The heat map represents the hierarchical clustering of 59 genes being
differentially expressed according to the ‘‘Interaction contrast’’ (adjust-
ed P-Value ,0.05 and |log2ratio| .1). The expression level of each gene
has been standardized by subtracting the gene’s mean expression and
then dividing by the standard deviation across all samples. This scaled
expression value, denoted as the Row Z-score, is plotted in red-blue
scale color, with red indicating high expression.
doi:10.1371/journal.pone.0069694.g009

Tmprss6 and Inflammation

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e69694



Figure 10. Modulation of representative genes by iron/hepcidin. 7 weeks old mice (n = 4 per group) were maintained an iron deficient (IDA,
white bar), iron balanced (IB, light grey bar) and iron loaded (IL, dark grey bar) diet for 3 wks. Liver mRNA expression was measured by TaqMan qRT-
PCR. Hprt1 was used as the housekeeping gene. mRNA expression ratio was normalized to an IB mean value of 1. Error bars indicate Standard Error;
ns, not significant; *P,0.05 and **P,0.01.
doi:10.1371/journal.pone.0069694.g010
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biological processes modified by the absence of Tmprss6

(Figure 8). These include signaling pathways related to innate

immune and defense responses (Relb and Nfkbiz), production of

pro-inflammatory cytokines (as Cxcl2, Cxcl12, Il1r2, Il1RA, Tnfaip2

and Tnfaip3), response to bacteria and peptidoglycan (as Tlr2).

Interestingly, genes specifically modulated in Tmprss6 KOmice are

Hamp, as expected, but also Gdf15, Cyp7a1, the liver specific heme

enzyme that synthetizes bile acid from cholesterol, and Prss8,

which encodes for prostasin, a GPI-anchored serine protease

belonging to the type II transmembrane serine proteases as

Tmprss6 (Figure 9).

Expression of Immune Genes in Total Spleen of Tmprss6
KO and IDA Mice
Together with the liver, spleen macrophages are the principal

mediators of the inflammatory-anti-inflammatory response. We

investigated the expression of immune-related genes in spleen of

IDA and Tmprss6 KO mice, treated or not with LPS by using the

Mouse Immune Array v2.1 (AB) which allows testing .90

immune genes. Results of relevant genes selected using a cut off

value of |log2ratio| .1.5 are shown in Table S2.

Compared to IDA, Tmprss6 KO mice under basal condition up-

regulate transferrin receptor 1 (Tfrc) and the anti-inflammatory

gene Bcl2l1, whereas down-regulate several pro-inflammatory

genes, in particular Il1beta, Tnf alpha, the hematopoietin cytokine

family (Il4 and Il15) and Cd40lg, which belongs to the ‘‘cytokine-

cytokine receptor interaction’’ family. Compatible with a blunted

response to LPS, nitric oxide synthase 2 (Nos2), pro-inflammatory

cytokines (Il6 and Ifng), the chemokine ligand Cxcl11, and

molecules involved in the positive regulation of the inflammatory

response (Ptgs2 or Cox-2), are down-regulated in Tmprss6 KO mice.

On the other hand, few immune genes as Bcl2l1, Hmox1 and Tfrc

are up-regulated after LPS in Tmprss6 KO mice.

To investigate whether the transcriptional changes observed in

KO vs IDA spleens, after LPS challenge, were due to different

basal expression levels, expression fold changes were evaluated in

the two groups of mice. Most of the spleen immune genes were up-

regulated at similar levels in the two groups whereas few were

down-regulated in KO compared to IDA animals (Figure S4A).
Ccr2, Hmox1, Vegfa and Tfrc showed opposite regulation (up in KO

and down in IDA) (Figure S4B).

Potential Tmprss6 Target Genes
In the attempt to distinguish whether high hepcidin or lack of

Tmprss6 determines the anti-inflammatory phenotype, we used

different approaches. First we injected IDA mice with hepcidin

and analyzed the expression of differentially modulated genes

(Table 1). Acute hepcidin treatment strongly decreases Gdf15, Atf3,

and Efna1 expression 8 hours post-injection. C9 is only slightly

down-regulated, whereas Apoa4 is increased by hepcidin injection

(Figure S5). To investigate the modulation of the same genes in

chronic conditions of low and high hepcidin, we studied their liver

expression in iron deficient (IDA), iron balanced (IB) and iron

loaded (IL) wild type mice. As expected, hepcidin was down- and

up-regulated in iron deficiency and overload respectively, and

genes such as Ccdn1 and Apoa4 were modulated according to the

iron/hepcidin levels (Figure 10), as already reported [25].

However, Gdf15, Atf3, Efna1, Jun and C9 expression remained

unchanged even in IL mice, excluding that high hepcidin is

responsible for variation of these genes in Tmprss6 KO mice

(Figure 10).

Discussion

Hepcidin is a liver ‘‘defensin-like’’ acute phase protein with anti-

microbial activity in vitro and potentially in vivo due to its ability to

decrease plasma iron, a growth factor for invading pathogens. In

response to inflammation, not only liver but also macrophages

strongly increase hepcidin production, amplifying iron retention

through the autocrine effect of hepcidin on macrophage

ferroportin [26]. The inflammation-mediated hepcidin regulation

has clinical relevance, since macrophage iron sequestration results

in iron restricted erythropoiesis and Anemia of Chronic Disease

(ACD), a common type of anemia observed in infections and acute

and chronic inflammatory disorders as an adaptation mechanism.

The anti-inflammatory role of hepcidin might not only be limited

to intracellular iron sequestration. Changes in hepcidin (and/or of

iron levels) might modulate the inflammatory response in vivo.

Although the kinetics and doses of LPS were different in the

different experimental settings, mouse models characterized by

low hepcidin and iron overload, as Hfe2/2 [27] and hepcidin2/2

mice [6], up-regulate inflammatory genes in response to LPS more

actively than wild type animals. Moreover, IL6 treatment of liver

conditional Smad4 deficient mice [28] strongly induced liver acute

phase proteins expression (Crp and Saa-1), compared to control

animals. On the contrary, Tmprss6 KOmice, characterized by iron

deficient anemia and high hepcidin, have a blunted inflammatory

response compared to mice with a diet-induced iron deficient

anemia and low hepcidin [11].

The genome-wide expression profiling of Tmprss6 KO mice

livers, compared to IDA animals, revealed the downregulation of

genes involved in immune response, suggesting that high hepcidin

and/or absence of Tmprss6 are associated with an anti-inflamma-

tory phenotype. The evidence of a decreased STAT3 and NF-kB

signaling, both at RNA and protein levels, further supports this

finding, strengthening the pro-inflammatory role of Tmprss6,

compatible with the finding of a pro-inflammatory condition in

iron deficiency anemia [11], a condition characterized by

TMPRSS6 activation [29] [30]. As additional validation of this

profiling, a further analysis has been carried out using the Gene

Set Enrichment Analysis (GSEA) [20]. Gene sets related to

inflammation and immune response are significantly enriched

among the negative correlated genes (GSEA Analysis S1).

Liver gene expression profile of Tmprss6 KO mouse is available

in the literature [9], however the experiment was performed on a

single animal using a wild type iron replete animal as control, and

thus is not comparable to our analysis.

Due to the genetic loss of the BMP pathway physiological

inhibitor [31], some BMP-SMAD target genes are up-regulated in

Tmprss6 KO mice. Indeed in these mice we show an increased

phosphorylation of SMAD1/5/8, expected to be low in conditions

of iron deficiency. Other up-regulated genes, such as Gdf15, Atf3

and Jun, are linked to an anti-inflammatory response. Gdf15, a

secreted member of the transforming growth factor (TGF)-beta

superfamily highly expressed in liver tissue and in erythroid

precursors, is commonly up-regulated during inflammation and

exerts its function through phosphorylation of SMAD2 and

SMAD3 [32]. Gdf15 inhibits leukocyte integrin activation thus

reducing inflammatory cell recruitment after myocardial infarction

[33], a finding in agreement with the reduced leukocytes

recruitment observed in LPS-treated Tmprss6 KO mice [11].

Although Gdf15 is activated by inflammation, Tmprss6 KOmice do

not show increased inflammatory cytokines, suggesting that in

these mice Gdf15 is up-regulated by an inflammation-independent

mechanism. Gdf15 has been proposed also as a hepcidin inhibitor

[34]. However, the high hepcidin levels suggest that either Tmprss6
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KO mice lack Gdf15 target molecule(s) or that Gdf15 does not

inhibit hepcidin in vivo, as recently proposed [35]. Atf3 is a member

of the Activation Transcription Factor family, which represses IL-

6, IL-12 and other cytokines downstream Toll-like receptor 4

(TLR4) and provides a negative feedback to prevent excessive

inflammation [36]. Atf3 is activated by inflammation and by the

TGF-beta mediator Smad3 [37], suggesting a functional connec-

tion with Gdf15.

The transcription factor Jun participates with other proteins

(Fos, ATF and JDP) in the formation of activator protein 1 (AP-1)

complex, essential in regulating gene expression in response to a

variety of stimuli as cytokines, growth factors, stress, and

infections. Functional cross-talk between TGF-beta, SMAD

proteins and Jun has been demonstrated: the SMAD3/SMAD4

heterodimer acts synergistically with the Jun/Fos heterodimer to

activate transcription in response to TGF-beta [38]. This finding is

of interest since Gdf15, Atf3 and Jun, all participate to the AP-1

complex formation.

In the attempt to distinguish whether the observed transcrip-

tional changes are due to the genetic loss of Tmprss6 and/or to the

differential regulation of the BMP-SMAD-target genes, as hepcidin,

we analyzed the expression of some representative genes

(Figure 10 and Figure S5) in conditions of acute and chronic

high hepcidin. Acute hepcidin injection in IDA mice does not

substantially change the expression of the studied genes, and even

strongly down-regulates Gdf15 and Jun., Dietary iron loaded mice

with chronic high hepcidin do not modulate the expression of the

representative genes, excluding a role for hepcidin in their

regulation.

Our approach of comparing Tmprss6 KO mice with IDA

animals eliminates the contribution of iron deficiency to the

modulation of gene expression. This allows an interesting

comparison with published data on the opposite model of Hfe

hemochromatosis [25]. The liver expression profiling of the Hfe2/

2 mice was analyzed versus iron-loaded animals, excluding

transcriptional changes due to iron overload. Comparing Tmprss6

KO and Hfe2/2 liver transcriptomes reveals interesting opposite

expression of specific genes, as shown in Table S3. First, some

inflammation related genes, such as Il6ra and acute phase proteins

(Mup4, Saa1, Saa2, Saa3), down-regulated or unchanged in Tmprss6

KO mice are up-regulated in Hfe2/2 mice. On the contrary,

Hamp1, genes participating to the stress response (Egr1 and

Gadd45g) and immune genes (suppressors of cytokine signaling

and histocompatibility class II Ag) are down-regulated in Hfe2/2

but not in Tmprss6 KO animals. Considering that the BMP-

SMAD pathway is attenuated in Hfe2/2 [39] and strongly

activated in Tmprss6 KO mice it is tempting to speculate that these

differences are related to the activity of this pathway. Further

studies are needed to verify this hypothesis.

Supporting Information

Figure S1 Representations of KEGG pathways enriched
in the ‘‘genotype contrast’’. Representation of the KEGG

signaling pathway Cytokine-Cytokine Receptor Interaction, show-

ing up-regulated (red boxes) and down-regulated (green boxes)

genes

(TIFF)

Figure S2 Heat map of clustered biological terms
highlighted by differentially expressed genes in the
‘‘Treatment contrast’’. The heat map represents semantic

similarity among gene ontology (GO) Biological Process (BP)

terms. Rows and columns show the list of enriched GO BP terms

derived from term enrichment analysis of Treatment significant

genes. The colors represent the semantic distances calculated using

GOSemSim Bioconductor package. Yellow-red clusters identify

groups of terms sharing semantic similarity about biological

processes.

(TIFF)

Figure S3 Heat map of genes modulated by LPS
treatment. The heat map represents the hierarchical clustering

of 72 genes being differentially expressed according to the

‘‘genotype contrast’’ and the pair-wise comparison KO.LPS-

IDA.LPS (adjusted P-Value ,0.05 and |log2ratio| .1.5). The

expression level of each gene has been standardized by subtracting

that gene’s mean expression and then dividing by the standard

deviation across all samples. This scaled expression value, denoted

as the Row Z-score, is plotted in red-blue scale color, with red

indicating high expression.

(TIFF)

Figure S4 Overlap in immune spleen genes after LPS
treatment. A) Venn diagrams represent overlap in immune

genes significantly up-regulated (left panel) or down-regulated

(right panel) in the spleen of Tmprss6 KO and IDA mice upon

LPS challenge. B) List of immune genes selectively up-regulated

(left panel) or down-regulated (right panel) only in one group of

mice.

(TIF)

Figure S5 Transcriptional modulation of representative
liver genes by acute hepcidin treatment. TaqMan qRT-

PCR was used to analyze gene expression in the liver of 7 wks old

mice IDA mice pretreated with hepcidin (100 mg) or vehicle (n = 4

per group). Hprt1 was used as housekeeping gene to normalize

gene expression. mRNA expression ratio was normalized to an

IDA (-hepcidin) mean value of 1. ns: not significant; **: P,0.01;

***; P,0.001. White bar: vehicle-injected IDA mice; grey bar:

hepcidin-injected IDA mice.

(TIF)

GSEA Analysis S1 Gene Set Enrichment Analysis (GSEA)
analysis of ‘‘Genotype’’ significant genes.

(DOCX)

Table S1 Summary of the differential expression re-
sults.

(DOCX)

Table S2 Analysis of selected immune genes in spleen of
Tmprss62/2 compared to IDA mice.

(DOCX)

Table S3 Comparison between Tmprss6 KO and Hfe2/
2 on the expression of selected liver genes.

(DOCX)

Table S4 List of oligonucleotides primers used for qRT-
PCR.

(DOCX)

Dataset S1 Limma modeling expression data. The table

listed the results obtained by limma modeling and testing for the

differential expression using the following contrasts: KO.UT-

ID.UT; KO.LPS-ID.LPS; ID.LPS-ID.UT; KO.LPS-KO.UT.

(XLSX)
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