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Differential evolution algorithm (DE) is one of the novel stochastic optimization methods. It has a better performance in the
problem of the color image quantization, but it is difficult to set the parameters of DE for users. This paper proposes a color image
quantization algorithm based on self-adaptive DE. In the proposed algorithm, a self-adaptive mechanic is used to automatically
adjust the parameters of DE during the evolution, and a mixed mechanic of DE and K-means is applied to strengthen the local
search.Thenumerical experimental results, on a set of commonly used test images, show that the proposed algorithm is a practicable
quantizationmethod and is more competitive thanK-means and particle swarm algorithm (PSO) for the color image quantization.

1. Introduction

Color image quantization, one of the common image pro-
cessing techniques, is the process of reducing the number of
colors presented in a color image with less distortion [1]. The
main purpose of color quantization is reducing the use of
storagemedia and accelerating image sending time [2]. Color
image quantization consists of two essential phases. The first
one is to design a colormap with a smaller number of colors
(typically 8–256 colors [3]) than that of a color image. The
second one is tomap each pixel in the color image to one color
in the colormap. Most of the color quantization methods
focus on creating an optimal colormap. For being an NP-
hard problem, it is not feasible to find the optimal colormap
without a prohibitive amount of time [4]. To address this
problem, researchers have applied several stochastic opti-
mization methods, such as GA and PSO. In particular, the
literature [5–8] has compared the color image quantization
algorithm using PSO (PSO-CIQ) and several other well-
known color image quantization methods. The experimental
results show that PSO-CIQ has higher performance.

Differential evolution algorithm (DE) [9–11] is a pop-
ulation-based heuristic search approach. DE has been applied
to the classification for gray images [12–14]. In the literature

[12–14], DE and PSO show similar performance. However,
due to simple operation, litter parameters, and fast conver-
gence, DE is the better choice to use than PSO [12]. However,
few researches have been done for using DE to solve the
color image quantization. This paper applies DE to solve the
color image quantization. However, the performance of DE
is decided by two important parameters, the scaling factor
𝐹 and the crossover rate CR. In practice, it is difficult to set
the two parameters. For this difficulty, this paper proposes
a color image quantization algorithm based on self-adaptive
DE (SaDE-CIQ). In SaDE-CIQ, the self-adaptive mechanics
in the literature [15, 16] are used to automatically adjust
the parameters of DE during the evolution, and 𝐾-means is
mixed into DE with a little probability for strengthening the
local search. SaDE-CIQ starts with an initialized population,
in which each individual represents a candidate colormap.
A small number of candidate colormaps are adjusted by 𝐾-
means. Then the adjusted candidate colormaps and the rest
ones are repeatedly updated by DE operations, in which the
parameters are automatically adjusted. The optimal solution
is the optimal colormap, by which the quantized image
is generated. By some commonly used color images, the
performance of SaDE-CIQ in the color image quantization
is compared with that of 𝐾-means and PSO.
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This paper is organized as follows. Section 2 introduces
the classical DE briefly. In Section 3, a self-adaptive mechanic
of DE parameters and a mixedmechanic of DE and𝐾-means
are introduced. In Section 4, SaDE-CIQ is proposed. In
Section 5, numerical experiments are performed to compare
the color image quantization qualities of SaDE-CIQ, 𝐾-
means, and PSO. Section 6 concludes this paper.

2. Classical Differential Evolution

DE is a simple and powerful stochastic global optimization
algorithm, and several DE variants or strategies have been
presented. In this paper, we focus on the classical DE, which
applies the simple arithmetic operations: mutation, cross-
over, and selection to evolve the population. Before the intro-
duction of the classical DE, the following symbols used
throughout this paper are defined:

(i) 𝑔(𝑥): objective function or fitness function,
(ii) 𝐷: the dimension of an optimization problem,
(iii) 𝑁𝑃: population size,
(iv) 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁𝑃
}: population,

(v) 𝑥𝑗 = (𝑥
𝑗

1
, 𝑥
𝑗

2
, . . . , 𝑥

𝑗

𝐷
): the 𝑗th individual in the pop-

ulation𝑋, 𝑗 = 1, 2, . . . , 𝑁𝑃,
(vi) 𝐹: scaling factor,
(vii) CR: crossover rate.

Consider the following optimization problem:

min𝑔 (𝑥) , 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
) ∈

𝐷

∏

𝑖=1

[𝐿
𝑖
, 𝑈
𝑖
] ,

𝑖 = 1, 2, . . . , 𝐷,

(1)

where 𝐿
𝑖
and 𝑈

𝑖
are the lower bound and upper bound of

variable 𝑥
𝑖
and ∏

𝐷

𝑖=1
[𝐿
𝑖
, 𝑈
𝑖
] is the feasible domain of this

problem.
An initial population 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁𝑃
} including

𝑁𝑃 individuals is generated randomly, where each individual
𝑥
𝑗
= (𝑥
𝑗

1
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𝑗

2
, . . . , 𝑥

𝑗

𝐷
), 𝑗 = 1, 2, . . . , 𝑁𝑃.

The following mutation operation is performed to gener-
ate a donor vector for each individual 𝑥𝑗:

𝑢
𝑗
= (𝑢
𝑗

1
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𝑗
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, . . . , 𝑢
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𝐷
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𝑗

2
, . . . , 𝑦
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) , 𝑗 = 1, 2, . . . , 𝑁𝑃,

(2)

where 𝑦𝑗 is donor vector, 𝑟
1
, 𝑟
2
, and 𝑟

3
are three uniformly

different integers on [1,𝑁𝑃], and the scaling factor 𝐹 is a
parameter on [0, 1].

Then, the following crossover operation is performed to
obtain a trial vector for each individual 𝑥𝑗:

𝑧
𝑗
= (𝑧
𝑗

1
, 𝑧
𝑗

2
, . . . , 𝑧

𝑗

𝐷
) , 𝑗 = 1, 2, . . . , 𝑁𝑃,

𝑧
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𝑖
=
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{{
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𝑦
𝑗

𝑖
, if (rand

𝑖
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𝑗
)

𝑥
𝑗

𝑖
, if (rand

𝑖
> CR and 𝑖 ̸= rnbr

𝑗
) ,

𝑖 = 1, 2, . . . , 𝐷,

(3)

where 𝑧𝑗 is trial vector, the crossover rateCR is a parameter on
[0, 1], rand

𝑖
is a uniformly random value on [0, 1], and rnbr

𝑗

is a uniformly random integer on [1, 𝐷] for each different 𝑗
to assure that at least one component of 𝑧𝑗 is taken from the
donor vector.

Finally, according to the fitness values of the fitness
function, the population is updated by the following selection
operation:

𝑥
𝑗󸀠

=

{{

{{

{

𝑥
𝑗
, if (𝑔 (𝑥𝑗) ≤ 𝑔 (𝑧𝑗))

𝑧
𝑗
, if (𝑔 (𝑥𝑗) > 𝑔 (𝑧𝑗)) ,

𝑗 = 1, 2, . . . , 𝑁𝑃,

(4)

where 𝑥𝑗󸀠 is the updated individual for the next generation
population𝑋󸀠 = {𝑥1󸀠, 𝑥2󸀠, . . . , 𝑥𝑁𝑃󸀠}.

As stated previously, for obtaining the best solution of the
fitness function 𝑔(𝑥), DE starts with a randomly generated
initial population and repeatedly updates the populationwith
the mutation, crossover, and selection operations until the
stopping condition is satisfied.

3. A Self-Adaptive Mechanic and a Mixed
Mechanic of DE

The scaling factor 𝐹 and the crossover rate CR can influence
the convergence and stability of DE. In practice, it is more
difficult to set right 𝐹 and CR for user. One of the effective
methods to solve this difficult problem is to self-adaptively
control the parameters in DE during evolution. In the fol-
lowing SaDE-CIQ, 𝐹 and CR are automatically updated for
each individual in each generation by the self-adaptive me-
chanics of the literature [15, 16]:

𝐹
𝑗
= {

0.1 + rand ∗ 0.9, if rand < 0.1,
𝐹
𝑗
, otherwise,

(5)

CR𝑗 = {rand, if rand < 0.1,
CR𝑗, otherwise.

(6)

Generally, self-adaptively adjusting parameters maybe
have negative effect on the performance ofDE. For improving
the color quantization quality of self-adaptive DE, a mixed
mechanic is used in the following SaDE-CIQ. 𝐾-means is a
quickly cluster algorithm with better local search ability. In
the mixed mechanic, a small number of individuals from a
population are selected by a little probability 𝑝. Before being
updated by DE, the selected individuals are adjusted by 𝐾-
means quickly. The mixed operation can simplify the search
space of DE and improve its convergence speed.
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Input color image 𝐼 = {𝑧}
Set parameters𝑁𝑃, 𝑡max, 𝑝

𝑥
𝑗,0

𝑖
= rand(0, 1) ⋅ 255, 𝑖 = 1, 2, . . . , 𝐷

𝑥
𝑗,0
= (𝑥
𝑗,0

1
, 𝑥
𝑗,0

2
, . . . , 𝑥

𝑗,0

𝐷
) , 𝑗 = 1, 2, . . .,𝑁𝑃 //population initialization

𝐹 = 0.5,CR = 0.6

for 𝑡 = 0 to 𝑡max
Select a small number of individuals from current population according to 𝑝, and adjust them by 𝐾-means.
for 𝑗 = 1, 2, . . . , 𝑁𝑃
𝑟𝑛𝑏𝑟
𝑗
= rand(1, 𝐷)

if 𝑥𝑟2 ,𝑡 − 𝑥𝑟3 ,𝑡 ≤ 100
𝑢
𝑗,𝑡
= 𝑥
𝑟1 ,𝑡 + 𝐹 ⋅ (𝑥

𝑟2 ,𝑡 − 𝑥
𝑟3 ,𝑡)

else 𝑢𝑗,𝑡 = 𝑥𝑟1 ,𝑡 + 𝐹 ⋅ [(𝑥𝑟2 ,𝑡 − 𝑥𝑟3 ,𝑡)%100]
Update 𝐹 by formulas (5)
for 𝑖 = 1, 2, . . . , 𝐷

if 𝑢𝑗,𝑡
𝑖
< 0 then 𝑦𝑗,𝑡

𝑖
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𝑖
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𝑖
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𝑗,𝑡

𝑖

end if
end if // mutation
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//crossover
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, 𝑧
𝑗,𝑡
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, . . . , 𝑧
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)

Update CR by formulas (6)
Calculate 𝑔 (𝑥𝑗,𝑡) and 𝑔 (𝑧𝑗,𝑡)
if 𝑔 (𝑥𝑗,𝑡) > 𝑔 (𝑧𝑗,𝑡) then 𝑥𝑗,𝑡+1 = 𝑧𝑗,𝑡

else 𝑥𝑗,𝑡+1 = 𝑥𝑗,𝑡 //selection
Find the global optimal solution 𝑥best = (𝑥best

1

, 𝑥
best
2
, . . . , 𝑥

best
𝐷
)

Output the optimal colormap {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝐾
} , 𝑐
𝑘
= (𝑥

best
1+3(𝑘−1)

, 𝑥
best
2+3(𝑘−1)

, 𝑥
best
3+3(𝑘−1)

) , 𝑘 = 1, 2, . . . , 𝐾

Construct the quantized image 𝐼󸀠

Pseudocode 1: The pseudocode of the SaDE-CIQ.

4. Color Image Quantization Algorithm Based
on Self-Adaptive DE

In RGB color space, each color pixel of a color image is a
combination of red, green, and blue (RGB). For color images,
the data space is [0, 255]3. For a given color image 𝐼, the color
number of the image 𝐼 is set to be𝑁, and the set of all colors
belonging to 𝐼 is set to be 𝑆. 𝑆󸀠, called a colormap, is a subset
with 𝐾 colors in [0, 255]

3, where 𝐾 < 𝑁. The color image
quantization is to design a colormap 𝑆󸀠 and to create a map
𝑓 : 𝑆 → 𝑆

󸀠, by which each color pixel in 𝑆 is replaced by
one of the colors in 𝑆󸀠. Thus, a new color image 𝐼󸀠, called the
quantized image of 𝐼, with the 𝐾 colors in 𝑆󸀠 is constructed.
The objective to quantize the color image 𝐼 is to minimize the
color error between the color image 𝐼 and its quantized image
𝐼
󸀠.

The color image quantization consists of two major
phases:

(i) design a better colormap with a reduced number of
colors (typically 8–256);

(ii) create the mapping relationship between the color
image and the colormap by which a quantized image
is obtained.

In the process of color image quantization, it is most
important to design an optimal colormap. To address this
problem, researchers have applied some heuristic techniques
for color image quantization.These techniques can bemainly
categorized into preclustering approaches and postclustering
approaches. Although being time consuming, the postclus-
tering approaches are superior to the preclustering approach-
es in the quantization quality. Postclustering approaches per-
form clustering of the color space [17]. A postclustering
algorithm startswith an initial colormap concluding𝐾 colors.
Each color pixel of the image 𝐼 is mapped to the color
in the colormap with the minimal color distance from the
color pixel. Thus, all the color pixels in image 𝐼 are clustered
into 𝐾 clusters whose centers are separately the 𝐾 colors
in the colormap. Then the colormap and the 𝐾 clusters are
iteratively modified to improve the optimum.

This section describes a new postclustering color image
quantization approach using self-adaptive DE, called the
color image quantization algorithm based on self-adaptive
DE (SaDE-CIQ). A measure is given to quantify the quality
of the resultant quantized image, after which the SaDE-CIQ
is introduced.
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Peppers 

(a)

Baboon

(b)

Lena 

(c)

Airplane

(d)

Figure 1: Test images.

4.1. Measure of Quality. The mean square error (MSE) is the
most general measure of quality of a quantized image [4]. It
represents the color error between image 𝐼 and its quantized
image 𝐼󸀠. In the following SaDE-CIQ, the MSE is set to be the
fitness function, which is defined as follows:

MSE = 1

𝑁
𝑝

{

{

{

𝑁
𝑝

∑

𝑟=1

[

𝐾

min
𝑘=1

𝑑 (𝑝
𝑟
, 𝑐
𝑘
)]

}

}

}

, (7)

where the symbols used in (7), which will be used in the
remaining parts of this paper, are explained as follows:

(i) 𝑁
𝑝
: the number of image pixels,

(ii) 𝐾: the color number in the colormap,
(iii) 𝑝

𝑟
= (𝑝
𝑟1
, 𝑝
𝑟2
, 𝑝
𝑟3
): the 𝑟th pixel of the color image 𝐼,

𝑟 = 1, 2, . . . , 𝑁
𝑝
,

(iv) 𝑐
𝑘
: the 𝑘th color triple in the colormap, 𝑘 = 1, 2, . . . ,

𝐾.

4.2. Description of the SaDE-CIQ. In the SaDE-CIQ, the clas-
sical DE with the previously mentioned self-adaptive me-
chanic andmixedmechanic is used for the color image quan-
tization. A population 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁𝑃
} represents a

set of candidate colormaps. Each individual represents a
candidate colormap with 𝐾 color triples in the RGB color
space [0, 255]3. The𝑗th individual is denoted by

𝑥
𝑗
= (𝑐
𝑗

1

, 𝑐
𝑗

2

, . . . , 𝑐
𝑗

𝐾
)

= (𝑥
𝑗

1
, 𝑥
𝑗

2
, 𝑥
𝑗

3
, 𝑥
𝑗

4
, 𝑥
𝑗

5
, 𝑥
𝑗

6
, . . . , 𝑥

𝑗

3𝐾−2
, 𝑥
𝑗

3𝐾−1
, 𝑥
𝑗

3𝐾
) ,

𝑗 = 1, 2, . . . , 𝑁𝑃,

(8)

where 𝑐𝑗
𝑘
= (𝑥
𝑗

1+3(𝑘−1)
, 𝑥
𝑗

2+3(𝑘−1)
, 𝑥
𝑗

3+3(𝑘−1)
), 𝑘 = 1, 2, . . . , 𝐾.

Thus, the dimension of each individual is𝐷 = 3 ×𝐾, and the
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(a1) SaDE-CIQ (MSE = 17.4682) (a2) K-means (MSE = 18.1086) = 36.3436)(a3) PSO-CIQ (MSE

(a)

(b1) SaDE-CIQ (MSE = 22.7496) (b2) K-means (MSE = 22.9532) (b3) PSO-CIQ (MSE = 35.8892)

(b)

(c1) SaDE-CIQ (MSE = 12.9709) (c2) K-means (MSE = 15.6401) (c3) PSO-CIQ (MSE = 29.6644)

(c)

(d1) SaDE-CIQ (MSE = 8.2482) (d2) K-means (MSE = 9.1141) (d3) PSO-CIQ (MSE = 21.3540)

(d)

Figure 2: The quantized images obtained by SaDE-CIQ, 𝐾-means, and PSO-CIQ.
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Table 1: The MSEs resulting from SaDE-CIQ and PSO-CIQ.

Alg. Peppers Baboon Lena Airplane
min max min max min max min max

SaDE-CIQ 17.4682 18.7266 22.7496 23.3382 12.9709 13.8055 8.2482 8.9740
𝐾-means 18.1086 21.2676 22.9532 24.9563 15.6401 19.1314 9.1141 10.4430
PSO-CIQ 36.3436 40.9532 35.8892 41.9940 29.6644 34.5867 21.3540 24.3200
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Figure 3: The average MSE variations with the number of iterations of SaDE-CIQ and PSO-CIQ.

feasible domain is [0, 255]3×𝐾. The quality of each individual
is measured by the MSE in (7):

𝑔 (𝑥
𝑗
) = MSE (𝑥𝑗) = 1

𝑁
𝑝

{

{

{

𝑁
𝑝

∑

𝑟=1

[

𝐾

min
𝑘=1

𝑑 (𝑝
𝑟
, 𝑐
𝑗

𝑘
)]

}

}

}

=
1

𝑁
𝑝

{

{

{

𝑁
𝑝

∑

𝑟=1

[

[

𝐾

min
𝑘=1

√

3

∑

𝑞=1

(𝑝
𝑟𝑞
− 𝑥
𝑗

𝑞+3(𝑘−1)
)

2

]

]

}

}

}

,

𝑗 = 1, 2, . . . , 𝑁𝑃.

(9)

The stopping condition of the algorithm is to reach a specified
maximal number of iterations 𝑡max.

In the first phase of the SaDE-CIQ, an optimal colormap
is designed. A set of𝑁𝑃 candidate colormaps are initialized.
Each colormap consists of 𝐾 randomly selected color triples
in the color space [0, 255]3. 𝐾-means is applied to adjust
a small number of colormaps randomly selected from all
the candidate colormaps by a little probability 𝑝. Then the
adjusted colormaps and the rest ones are repeatedly updated
by mutation and crossover operations, where 𝐹 and CR with
the initial values 0.5 and 0.6 are updated by formulas (5) and
(6).The𝐾-means and DE operations are performed until the
stopping condition is satisfied. The last optimal solution is
the optimal colormap. In the second phase of the SaDE-CIQ,
the mapping relationship is created according to the minimal
color distance principle. By replacing each pixel in the color
image 𝐼with its corresponding color in the optimal colormap,
𝐼 is to be reconstructed to obtain the quantized image 𝐼󸀠.

See Pseudocode 1 of the SaDE-CIQ.
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5. Numerical Experiments

In this section, the SaDE-CIQ is tested on a set of four
commonly used test images in the quantization literature. In
addition, the performance of the SaDE-CIQ is comparedwith
that of 𝐾-means and the color image quantization algorithm
using PSO (PSO-CIQ) presented in literature the [5].

5.1. Images and Parameters Set. The set of test images include
Lena, Peppers, Baboon, and Airplane, which have the same
size 512 × 512 pixels. They are shown in Figure 1.

The parameters in the SaDE-CIQ are set as the population
size 𝑁𝑃 = 100, the maximal number of iterations 𝑡max = 200,
and the mixed probability 𝑝 = 0.05.

The PSO-CIQ has more parameters than the SaDE-CIQ.
They are set as the swarm size 𝑁𝑃 = 100, the inertia weight
𝜔 = 0.72, the acceleration constants 𝑐

1
= 𝑐
2
= 1.49, the max-

imum velocity 𝑉max = 0.4, and the maximal number of iter-
ations 𝑡max = 200. These parameters except for the last one
are as same as those in the literature [5].

5.2. Experimental Results. For each algorithm, the test images
are quantized into 16 colors.The colors quantized imageswith
the smallest MSEs over 10 simulations are shown in Figure 2.
The smallest MSEs and the largest MSEs over 10 simulations
are listed in Table 1, and for SaDE-CIQ and PSO-CIQ, the
MSE variations with the number of iterations are exhibited
in Figure 3.

5.3. Analysis of Experimental Results. As shown in Figure 2,
the SaDE-CIQ outperforms 𝐾-means and PSO-CIQ in the
visual quality of the quantized images for all test images. The
quantized images a-1, b-1, c-1, and d-1 have richer layers and
more details than the other quantized images.

As illustrated in Table 1, the SaDE-CIQ generates a
smaller MSEs than 𝐾-means and PSO-CIQ for each test
image.

Shown in Figure 3, the SaDE-CIQ has a smaller average
MSE than the PSO-CIQ at each same number of iterations.
Moreover, the averageMSE resulting from the SaDE-CIQ de-
creases more quickly than that resulting from the PSO-CIQ
with the increasing number of iterations.

The above experimental results can be summarized as
follows:

(i) the SaDE-CIQ is an effective color image quantization
method;

(ii) the SaDE-CIQhas better quantization quality than𝐾-
means and PSO-CIQ;

(iii) the SaDE-CIQ converges more quickly than the PSO-
CIQ.

6. Conclusions

This paper presents a color image quantization algorithm
based on self-adaptive DE (SaDE-CIQ). Numerical experi-
ments are implemented to investigate the performance of the
SaDE-CIQ and to compare it against𝐾-means and PSO-CIQ

presented in the literature [5]. For a set of commonly used test
images, the experimental results demonstrate the feasibility of
the SaDE-CIQ and its superiority to 𝐾-means and PSO-CIQ
in the quantization quality. In addition, the SaDE-CIQ has
simpler operation, litter parameters, and faster convergence
than the PSO-CIQ.
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