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Abstract
Ionic size effects are significant in many biological systems. Mean-field descriptions of such
effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in
such descriptions are not available for the dependence of the ionic concentrations on the
electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins
with a variational formulation of the continuum electrostatics of an ionic solution with such non-
uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method
is then developed and implemented to numerically solve the underlying constrained optimization
problem. The method is shown to be accurate and efficient, and is applied to ionic systems with
non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests
demonstrate that the mean-field model and numerical method capture qualitatively some
significant ionic size effects, particularly those for multivalent ionic solutions, such as the
stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio
is found to be the key physical parameter in the stratification of concentrations. All these are not
well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann
theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation
of the continuum model, and generalization of this work to molecular solvation are discussed.

Keywords
ionic solution; ionic size effects; non-uniform ionic sizes; ionic valence-to-volume ratios;
electrostatic free energy; Poisson–Boltzmann theory; constrained optimization; augmented
Lagrange multiplier method; Newton’s iteration

1 Introduction
Electrostatic interactions between macromolecules and mobile ions in the surrounding
solvent play a key role in many important biological processes such as protein folding [1, 2],
membrane stabilization [3], gating in ion channels [4], hydrophobic interactions [5], and
protein association [6, 7]. In such interactions, ionic sizes or excluded volumes, particular
non-uniform ionic sizes of multiple ions, can affect many of the detailed chemical and
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physical properties of an underlying biological system. For instance, the monovalence cation
size can influence the stability of RNA tertiary structures [8]. Differences in ionic sizes can
also affect how mobile ions bind to nucleic acids [9, 10, 11]. The ionic size effect is more
profound in the ion channel selectivity, see, e.g., [4, 12]. Detailed Monte Carlo simulations
and integral equations calculations also confirm some of these experimentally observed
properties due to the non-uniformity of ionic sizes [13, 14, 15].

The classical Poisson–Boltzmann (PB) equation is perhaps the most widely used mean-field
model of the electrostatics of ionic solutions [16, 17, 18, 19, 20, 21]. It has been successful
in many applications, particularly in the biomolecular modeling with an implicit solvent [22,
23, 24, 25, 26]. The PB equation is Poisson’s equation for the electrostatic potential with the
charge density including that of mobile ions whose equilibrium concentrations are given by
the Boltzmann distributions via the potential. In a variational setting, such distributions are
the conditions for equilibrium concentrations that minimize a mean-field electrostatic free-
energy functional of ionic concentrations where the potential is determined by Poisson’s
equation [27, 28, 29, 30, 31]. Despite its success in many applications, the classical PB
theory is known to fail in capturing well the ion-ion correlations and ionic size effects [32,
33, 13, 14, 15].

Recently, there has been a growing interest in incorporating the ionic size effect in a PB-
like, simple and efficient, mean-field model [34, 35, 36, 37, 38, 39, 40, 30, 31, 41]. The key
idea has been to introduce the local concentration c0 = c0(x) of solvent molecules, in
addition to those c1(x), …, cM(x) of ions of multiple species (M of them assumed), and their
corresponding linear sizes a0, a1, …, aM in the electrostatic free energy

(1.1)

Here

is the charge density with f a fixed charge density, zi the valence of an ion of the ith species,
and e the elementary charge, ψ is the electrostatic potential determined by Poisson’s
equation, kB is the Boltzmann constant, and T is the temperature. Notice that the
concentration of the solvent molecules is not an independent variable in this functional,
since it is defined by

If all a0, a1, …, aM are the same, this mean-field approximation of the free energy can then
be derived from a lattice gas model, cf. [34, 40]. Moreover, there are explicit formulas, the
generalized Boltzmann distributions, relating equilibrium concentrations and the
corresponding electrostatic potential. These distributions, together with Poisson’s equation,
lead to the generalized PB equation for the case of a uniform ionic size [34, 35, 40]. See [38,
39, 41] for some applications of this equation. When the ionic sizes are not the same, the
situation is quite different. For a system of three ionic species with two different ionic sizes,
Chu et al. [37] derived a different size-modified PB equation from a similar lattice gas
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model and applied this equation to study the ionic size effect in the binding of ions to DNA.
For a general system, Tresset [40] derived an expression of the free energy similar to (1.1)
with an effective volume fraction of free space, under the assumption that the ionic excluded
volumes are dispersed from each other to a reasonable extent. For a general system of
multiple ions with different sizes modeled by (1.1), Li [31] derived the equilibrium
conditions

(1.2)

where μi is the chemical potential of the ith ionic species, and proved that this system of
algebraic equations has a unique solution (c1, …, cM). However, an explicit formula of this
solution, and hence Boltzmann-like distributions for the equilibrium concentrations, seem
unavailable. Therefore, there is no PB-like equation of the electrostatic potential in the
general case.

To obtain the equilibrium ionic concentrations and the corresponding electrostatic potential,
we propose in this work to minimize numerically the free-energy functional (1.1), using
Poisson’s equation as a constraint. Following [42], we reformulate the electrostatic free-
energy functional using both the potential ψ and concentrations c = (c1, …, cM), the (ψ, c)-
formulation, or using both the electric field E and the concentrations, the (E, c)-formulation,
coupled with Poisson’s equation or Gauss’s law, respectively. To solve our constrained
optimization problems, we construct a Lagrange multiplier method for the case without the
size effect and an augmented Lagrange multiplier method for the general case with the size
effect. In order to compare the efficiency of our approaches, we also generalize the local
constrained optimization method developed in [43, 42] to the general case including the
ionic sizes. We perform extensive numerical tests to demonstrate the efficiency and
accuracy of our methods, and to study how surface charges, ionic size differences, and ionic
valences, affect the ionic concentration profiles near a charged surface. We recover many
detailed properties of ionic concentrations, including the stratification of concentrations, that
have been predicted by other refined models. We also find that the ionic valence-to-volume
ratio is the key parameter in the stratification.

The rest of the paper is organized as follows: In Section 2, we describe in details the general
electrostatic free-energy functional with or without the ionic size effect, using the (ψ, c) and
(E, c)-formulations. In Section 3, we develop various kinds of global and local constrained
optimization methods for solving numerically our underlying variational problems. In
Section 4, we report our numerical results to demonstrate the accuracy and efficiency of our
method, and to describe various ionic size effects in an ionic solution. Finally, in Section 5,
we draw conclusions and discuss various issues such as the close packing, limitation of the
continuum model, and generalization of this work to molecular solvation.

2 Electrostatic Free Energy
We consider an ionic solution that occupies a bounded region Ω in ℝ3.We assume there are
M ionic species in the solution, and denote by zi and Ni the valence and the total number,
respectively, of ions of the ith species. Let ci(x) denote the local ionic concentration at a
spatial point x ∈ Ω of the ith ionic species. Then

(2.1)
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Moreover, the local density at x ∈ Ω of charges of ions is , where e the
elementary charge.

We assume that there are fixed volume charges and surface charges distributed in the
interior and on the boundary of the solution region Ω, respectively. We denote by f(x) the
local density of the fixed volume charges at an interior point x ∈ Ω. Similarly we denote by
σ(x) the local density of the fixed surface charges at a boundary point x ∈ Γ, where Γ = ∂Ω
denotes the boundary of Ω. The charge neutrality of the entire solution is given by

(2.2)

In equilibrium, the electrostatic free energy of the solution can be expressed in terms of the
equilibrium ionic concentrations c = (c1, …, cM) as

(2.3)

Here the potential energy Fpot[c] is given by

(2.4)

where ψ = ψ(x) is the electrostatic potential. It is determined by Poisson’s equation and the
boundary condition

(2.5)

(2.6)

where ε0 and εr are the vacuum permittivity and relative permittivity (dielectric coefficient),
respectively, and ∂/∂n denotes the normal derivative along the unit exterior normal n at Γ.
Here and below we use the SI units. Notice that by Eqs. (2.5) and (2.6) and an integration by
parts

Here the dependence on the equilibrium concentrations c = (c1, …, cM) is implicit through
the potential ψ. Notice also that Eqs. (2.5) and (2.6) determine the potential ψ uniquely up
to an additive constant but the potential energy Fpot[c] is unique.

The entropic part Fent[c] is given in the form

(2.7)
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The integrand Q(c) is commonly defined for the case without the ionic size effect and that
with the ionic size effect as follows:

(2.8)

For the case without the size effect, the parameter Λ is the de Broglie wavelength. For the
case with the size effect, the summation starts from i = 0 and c0(x) is the local concentration
of the solvent at the point x ∈ Ω. For each i with 1 ≤ i ≤ M, the parameter ai > 0 is the linear

size, or more precisely,  is the volume, of an ion of the ith species. The parameter a0 > 0 is
the linear size of a solvent molecule. The local concentration of solvent c0 = c0(x) is defined
by the relation

Thus c0(x) is not an independent field. See [34, 35, 44, 40, 31].

All the properties described above are for the equilibrium concentrations and the
corresponding potential. To find analytically and numerically such equilibrium
concentrations and potential, and the minimum electrostatic free energy, we use a variational
approach. We define an electrostatic free-energy functional

for all possible concentrations c = (c1, …, cM) and the electrostatic potential ψ that are not
necessary in equilibrium. We minimize this functional under the following constraints:

a. Eq. (2.1) of mass conservation;

b. Eq. (2.2) of charge neutrality;

c. Poisson’s equation (2.5); and

d. The boundary condition (2.6).

Notice that we do not need to assume that ci(x) ≥ 0 since the term Q(c) involves log ci(x).

Mathematically, one can prove by the direct method in the calculus of variations that there
exist a unique set of concentrations c = (c1, …, cM) and a potential ψ, unique up to an
additive constant, that minimize the function F[ψ, c] under all the constraints. See [30, 31].
The minimum value of the functional is exactly that given by (2.3), supplemented by (2.4)
and (2.7).

Often the electric field E = E(x) is a useful quantity. If the potential ψ is known, then E =
−∇ϕ. In general, we define the electrostatic free-energy functional of all possible pairs of
concentrations c = (c1, …, cM) and electric field E
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where we use the same letter F. Our underlying problem is then equivalent to finding the
minimizer of this functional under the following constraints:

(a’) Eq. (2.1) of mass conservation;

(b’) Eq. (2.2) of charge neutrality;

(c’) Gauss’s law

(d’) The boundary condition

(e’) The compatibility condition

Introduce the Bjerrum length lB = e2/(4πεrε0kBT). Define , Λ′ =
(4πlB)−1/3 Λ, , f′ = 4πlBf/e, and σ′ = 4πlBσ/e. Define also ψ′ = eψ/(kBT)
and E′ = eE/(kBT). Then for the (ψ, c)-formulation

where

with Q′(c′) defined same as that in (2.8) except all quantities ci, Λ, and ai are replaced by
their primed counterparts. The constraints and side conditions on (ψ, c) are rescaled to

Similarly, for the (E, c)-formulation,

where

Zhou et al. Page 6

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(2.9)

The constraints and side conditions on (E, c) are rescaled to

Since the integral of each  over Ω is a constant by the mass conservation, we can replace Q
′(c′) in the functionals F′[ψ′, c′] and F′[E′, c′] by a simpler one:

where we keep  for convenience in later calculations. Note that the sizes 

are hidden in . Now the solutions to the free-energy minimization problems are the same
but the minimum values of the free-energy functional are changed by a multiplicative and an
additive constants that depend only on the input data εr, T, Λ, zi, ai, and Ni. For simplicity,
we will drop all the primes in the rest of this paper.

We remark that one can also use the Dirichlet boundary condition ψ = ψ0 on the boundary Γ
for some given function ψ0. In this case, we can derive similarly our variational formulation.
Sometimes, the periodic boundary condition can be also used as an approximation when the
ionic solution is considered in a confined domain. In addition, we can approximate the
surface charge density by a function that is defined on the region so that only the volume
charge density appears in our formulation. These approximations can simplify our numerical
computations.

3 Numerical Methods
3.1 A Lagrange multiplier method for the case without the size effect

We consider the problem of minimizing F(E, c) defined in (2.9), with Q(c) corresponding to
the case without the size effect, under all the constraints listed below Eq. (2.9). The
Lagrange multiplier method converts this problem into the following unconstrained
optimization problem:

where λ = (λ1, …, λM) and
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(3.1)

(3.2)

Here ψ = ψ(x) is a function on Ω and −ψ is the Lagrange multiplier for the (scaled) Gauss’s
law. Each λi (1 ≤ i ≤ M) is a real number and is the Lagrange multiplier for the mass
conservation constraint for the ith ionic species.

The necessary conditions for (E, c, ψ, λ) to be a saddle point of L are

(3.3)

(3.4)

(3.5)

(3.6)

where the first three derivatives are the variational derivatives. By Eq. (3.3), E = −∇ψ in Ω,
i.e., the Lagrange multiplier ψ is an electrostatic potential. Moreover, the constraint ∇ × E =
0 is satisfied automatically. By Eq. (3.5),

By Eqs. (3.6) and (3.2),

It then follows that

The ultimate unknown variable is ψ. By Eqs. (3.3) and (3.4), ψ is determined by the
following nonlocal PB equation
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together with some boundary conditions. We choose to use the periodic boundary conditions
for efficiency. We solve this boundary-value problem by the fixed-point iterations.

Algorithm.

Step 0. Initialize ψ0. Set l = 0. Choose ω ∈ (0, 1). Choose an error tolerance tol > 0.

Step 1. Find the solution ψ* by solving

with the periodic boundary condition.

Step 2. If |ψ* − ψl| < tol in Ω, then stop. Otherwise, set ψl+1 = ωψl+ (1 − ω)ψ* and l ←
l + 1, and go to Step 1.

3.2 An augmented Lagrange multiplier method for the case with the size effect
We again consider the problem of minimizing F(E, c) defined in (2.9), with Q(c) now
corresponding to the case with the size effect, under all the constraints listed below Eq.
(2.9). Our augmented Lagrange multiplier method is to solve the following unconstrained
optimization problem [45, 46]:

where r = (r1, …, rM) and

Here K and Hi are defined in (3.1) and (3.2), respectively, and all ri ≥ 0 in the last term of
summation are the penalty parameters. We add all the penalty terms (1/2)ri[Hi(ci)]2 to
stabilize and accelerate our numerical iterations.

The necessary conditions for (E, c, ψ, λ, r) to be a saddle point of L̂ are

(3.7)

(3.8)
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(3.9)

(3.10)

As in the previous case we have by (3.7) that E = −∇ψ and ∇ × E = 0. Also, Eqs. (3.7) and
(3.8) imply that

(3.11)

Since the linear sizes a0, a1, …, aM can be all different, it does not seem to be possible to
solve (3.9) analytically to get Boltzmann-like distributions for the dependence of all the
concentrations ci on the potential ψ and parameters λ [40, 31]. Therefore we design an
iteration algorithm to solve the coupled system (3.9), (3.10), and (3.11), with, e.g., the
periodic boundary condition.

Algorithm.

Step 0. Initialize c(0), ψ(0), , and . Fix a parameter β
> 1. Set l = 0.

Step 1. Solve by the fast Fourier transform Eq. (3.11) with ci replaced by , with the
periodic boundary condition, to obtain the solution ψ(l+1). Set

Step 2. Use Newton’s method to solve Eq. (3.9) with ψ, λ, and r replaced by ψ(l+1),
λ(l), and r(l), respectively, to obtain the solution c(l+1).

Step 3. Update the Lagrange multipliers

Update the penalty parameters

Step 4. Test convergence. If not, set l ← l + 1 and go to Step 1.

We now detail Newton’s method in Step 2 of our algorithm for solving Eq. (3.9) with a
fixed i (1 ≤ i ≤ M). Let us discretize our computational box with a uniform grid of N grid

points. We denote by ΔV the volume of each grid cell. Let us also denote by  and
ψ1, …, ψN the approximate values at these grid points of the concentration ci and those of
the potential ψ, respectively. Denote
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For each m,  is an approximation at the mth grid point of the left-hand side of Eq. (3.9).
We need to solve the system of N nonlinear equations

(3.12)

to obtain , provided that all a0, …, aM, λi, ri, zi, ψ1, …, ψN, and ΔV are known.

Denote the vectors  and , where T denotes the matrix
transpose. In a vector form, the system of nonlinear equations (3.12) is simply Θ(c) = 0.

The gradient of Θ with respect to c, denoted ∂Θ/∂c, is a matrix with its (m, n)-entry given by
. Simple calculations lead to

where e is the N-component column vector with all its components equal to 1 and

Therefore

Hence the matrix ∂Θ/∂c is invertible. By the Sherman–Morrison formula [47],

where ξ = (ξ1, …, ξN)T.

Our Newton’s iteration scheme is now

where γ > 0 is a numerical parameter. Component-wise, this iteration is

Zhou et al. Page 11

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We choose γ by using a trial-and-error method to avoid the concentrations  going outside

the range (0, ) for i = 1, …, M. It should be noted that matrix-vector multiplications are
avoided in this Newton’s iteration scheme and the complexity of each iteration is O(N).

3.3 A local constrained optimization method
In this subsection, we extend a local optimization method developed in [43, 42] to treat the
case with the size effect. We assume that our computational domain is a rectangular
parallelepiped (0, L1) × (0, L2) × (0, L3) and discretize it using a uniform grid with the grid
spacing h1, h2, and h3 in the three coordinate directions. We denote by ΔV = h1h2h3 the
volume of each grid cell. A typical grid associated with n = (n1, n2, n3) is

For such a grid we also denote

We discretize each of the concentrations ci on all the grid points r0(n) and the three
components E1, E2, and E3 of the electric field E at rj,+(n) (j = 1, 2, 3). The functional F(E,
c) defined in (2.9) with the size effect is now approximated by

(3.13)

Gauss’s law is approximated as

The mass conservation is approximated by

The local method developed in [42] (cf. also [43]) is based on local moves or updates of the
electric field and ionic concentrations. Let us first consider the update of electric field. Fix a

grid cell and one of its two faces perpendicular to the x3-axis. Let , E2, E1 and  be the
four electric field components on the face. We update these values by
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Corresponding changes in fluxes are

In order for Gauss’s law to be satisfied, the flux changes should be the same, i.e.

The resulting change in the functional is

This change is minimized if

We now consider the update of the concentrations. Let  and  be two adjacent grid points

linked by an edge of length Δl. We denote by  and  the approximations of the
concentration cj at these two grid points, respectively, for all j = 1, …, M. Fix i (1 ≤ i ≤ M).

We update the values  and  by

By Gauss’s law, the flux related to the link between two nodes should be correspondingly
changed with the amount ΔE = −Δlziδc. Hence the associated change in the functional is
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Notice that this change is different from that for the case without the size effect [42]. The
optimal value δc that minimizes this expression is the solution to the following equation:

(3.14)

Notice from the logarithmic terms in (3.13) that the perturbation δc should be in the interval
(Il, Ir), where

We solve Eq. (3.14) by Newton’s iteration with the initial guess (Il + Ir)/2.

4 Numerical Results
We now report results of our numerical calculations. We set the Bjerrum length to be lB =
7Å. We choose our computational domain to be a cube Ω = (0, L) × (0, L) × (0, L) for some
L > 0. We assume that this cube contains a spherical colloidal particle, denoted by Bc, of
radius R with its center the same as that of the cube. We also assume that a total Z e of fixed
surface charges are uniformly distributed over the spherical surface. As in [42], we
interpolate the surface charges into their nearest grids. Since the mobile ions cannot
penetrate the interface between the solution region and the colloidal particle, all the ionic
concentrations are assumed to vanish inside the sphere. This means that the region of the
ionic solution is Ω \ Bc, the cube Ω minus the sphere Bc.

4.1 Example 1
In this example, we demonstrate that our method captures qualitatively the essential features
of ionic solution. Moreover we show that our method is accurate and is more efficient than
some previously proposed local methods.

We consider an ionic solution of sodium chloride occupying the region Ω \ Bc. The number
of ionic species M, their valences z1 and z2, their linear sizes a1 and a2, and the linear size of
the solvent molecule a0 are given by

The total number of sodium ions N1, the total number of chloride ions N2, the total amount
of surface charges Ze, the radius R of the sphere Bc, and the linear size of the computational
box L are

Our numerical grid consists of a total of 256 × 256 × 256 grid points.

We use our augmented Lagrange multiplier method to numerically minimize the
electrostatic free-energy functional (2.9) with the size effect, together with all the
corresponding constraints listed below (2.9). Figure 1 shows a two-dimensional cross
section of our computed equilibrium concentration of counterions (a) and that of coions (b)
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in the plane z = 40Å, which is in the middle of the computational box. Due to the presence
of surface charges, the counterions—chloride ions—accumulate around the colloidal sphere.
In contrast, the coions—sodium ions—are repelled away from the colloidal sphere. Note
that the concentration of counterions reaches a saturation value, rather than becoming too
high and unphysical as often predicted by the classical PB theory that does not include the
ionic size effect.

Figure 2 shows the convergence of our numerical iterations of the total number of
counterions (a), that of coions (b), and the total charge in the system (c) to their respective
values N1 = 120, N2 = 60, and 0. This demonstrates that our augmented Lagrange multiplier
method preserves very well the constraints of mass conservation (2.1) and charge neutrality
(2.2).

To compare the efficiency of various methods that we described in Section 3, we also
performed the following computations:

a. minimize numerically the free-energy functional (2.9) without the size effect,
together with the corresponding constraints, using the local constrained
optimization method developed in [42]. This method will be abbreviated as
“PBmove”;

b. minimize numerically the free-energy functional (2.9) without the size effect,
together with the corresponding constraints, using the Lagrange multiplier method
described in Subsection 3.1. This method will be abbreviated as “LagMulti”;

c. minimize numerically the free-energy functional (2.9) with the size effect, together
with the corresponding constraints, using the local constrained optimization method
described in Subsection 3.3. This method will be abbreviated as “SMPBmove”.
(SMPB means Size Modified Poisson–Boltzmann.)

We shall abbreviate our augmented Lagrange multiplier method as “AugLagMulti”.

We run our “PBmove” and “LagMulti” codes and stop at a point at which the two numerical
solutions of the concentrations and those of the electric field are close enough. Similarly, we
run our “SMPBmove” and “AugLagMulti” codes and stop when the two numerical solutions
of the concentrations and those of the electric field are close enough. Table 4.1 shows the
maximum and relative maximum differences of these solutions with a grid of size 128 × 128
× 128. With the same solution accuracy, we compare the computational time of these
methods in Table 4.2. It is clear that the Lagrange multiplier method and augmented
Lagrange multiplier method are much more efficient than the corresponding local
constrained optimization methods.

In Figure 3, we plot in the log-log scale the CPU time in seconds vs. the total number of
grids N for both “SMPBmove” and “AugLagMulti” applied to the case with the size effect.
We see that the latter has the O(N log N) complexity. This is because we use the fast Fourier
transform in solving our equations. Clearly, our augmented Lagrange multiplier method is
much faster than the local method.

4.2 Example 2
We now investigate the influence of ionic sizes and surface charges on the concentration of
counterions in the vicinity of the charged spherical surface which carries uniformly a total of
Ze charges with Z > 0. We recall that the spherical colloid of radius R is located in the
center of our computational box Ω = (0, L) × (0, L) × (0, L). We use the following
parameters:
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We also use the numerical grid size 256 × 256 × 256. The parameter Z and the linear sizes
a0 of the solvent molecules, a1 of the counterions, and a2 of the coions are given for two
different cases.

In the first case, we study how ionic sizes affect the equilibrium counterion concentration
profile. We fix Z = 60 and choose four sets of the values of linear sizes (a0, a1, a2):

In Figure 4, we plot the concentration profiles for counterions with these choices of the
linear sizes. For comparison, we also plot the profile obtained by the classical PB theory.
Clearly, the counterion concentration when the size effect is included deviates largely from
that of the classical PB solution. The identical profiles of group I and group II indicate that
the change of the coion size has very little influence on the distribution of counterions close
to the charged surface, since almost all of the coions are distributed away from the surface.
A comparison between group II and group III demonstrates clearly that the larger size of the
solvent molecule results in a wider saturation region, implying that the solvent molecules
present in the saturation region. This verifies the conclusion made in [36] that entropy drives
solvent molecules into the saturated region. It should be noted that the saturation
concentrations of group II and group III are the same. A comparison between group IV and
the other groups implies that the value of the saturation concentration mainly depends on the
size of the counterions, rather than the size of solvent molecules or coions. Furthermore, as

expected, the counterions accumulate to the close packing concentration , i.e., 1.666 M
for a1 = 10 Å, and 3.254 M for a1 = 8 Å, in the saturation region.

In the second case, we study the relationship between counterion concentrations and the
surface charge density. We fix the linear sizes

We vary the total fixed surface charge Ze to be

which correspond to the surface charge density

respectively. As depicted in Figure 5, the surface charge densities σ = 0.0081 e/Å2 and σ =
0.0162 e/Å2 are not high enough to attract the counterions to form a saturation region. In
contrast, higher charged surfaces with charge densities σ = 0.0244 e/Å2 and σ = 0.0325 e/Å2

make the counterions come to a saturation concentration, 1.666 M, which is determined by
the same linear size a1 = 10Å of counterions. Also, it is easy to see that a higher charged
surface density yields a wider saturation region.
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4.3 Example 3
We now consider a system with the same geometrical setting but with a highly negatively
charged surface of the spherical colloidal particle and with multiple ionic species in the
solution occupying the region Ω \ Bc. We assume again that the total surface charge is Z e.
Our parameters are

Our numerical grid size is 128 × 128 × 128.

We first use our Lagrange multiplier method described in Subsection 3.1 to minimize the
electrostatic free-energy functional that does not include the ionic size effect under the
respective constraints to obtain the equilibrium concentrations and the electric field. These
are the classical PB solutions of our underlying problems. The resulting concentrations of
these multivalent ions are plotted in Figure 6 (a), where +i with i = 1 or 2 or 3 means the
concentration of the counterion with the valence +i. We then use our augmented Lagrange
multiplier method described in Subsection 3.2 to solve the same constrained optimization
problem that includes the ionic size effect. We denote by a+i the linear size of the counterion
with valence +i (i = 1, 2, 3) and consider the following three groups of linear sizes of
counterions:

We plot our computed concentrations of the three counterions in Figure 6 (b) for Group I,
(c) for Group II, and (d) for Group III.

From Figure 6, we see that the concentration profiles for the counterions predicted by the
classical PB theory are monotonically decreasing. They deviate significantly from those
predicted by size modified mean-field models. When the ionic size effect is included,
concentrations of the counterions are quite moderate, and counterions of different species
become stratified, cf. Figure 6 (b)–(d). Notice that the difference between (b), (c), and (d) in
Figure 6 is only in the linear size a0 of the solvent molecule. From Figure 6 (d), we see that,
with a smaller size a0 = 2 Å of the solvent molecule, a stronger stratification occurs in the
vicinity of the charged surface. It is also very interesting to observe that, with the same
linear size of all the counterions, the counterions with higher valences are easier to be
attracted to the charged surface. For instance, the trivalent counterions are attracted first to
compensate the surface charge, and then are divalent counterions, and then are monovalent
ions. This agrees with some initial predictions in [40] with a Poisson–Fermi formalism.

To further investigate the role of the ionic valence and ionic size on the distributions of
multiple counterions, we perform a series of more numerical computations with the
following different combinations of ionic valences and sizes:
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For each set of linear sizes, we plot in Figure 7 the concentration profiles of all the three
counterions. After analyzing the differences among the plots, we realize that the
stratification behavior of the counterions in the vicinity of the charged surface is determined
by the ionic valence-to-volume ratios, i.e., by the parameters

Figure 7 (a) and (b) show that the divalent counterions are distributed closest around the
surface, and then are the trivalent counterions, and then are the monovalent counterions,
since in this case

Moreover, we observe that the larger differences of αi the stronger stratification. For
instance, the stratification phenomenon in Figure 7 (b) is stronger than that in Figure (7) (a),
since the differences of the values of αi in Figure 7 (b) are larger than those in Figure 7 (a).
In Figure 7 (c) and (d), we see that the monovalent counterions are distributed closer to the
charged surface than the other two counterions, as α+2 is greater than the other two
counterparts α+3 and α+1. With larger differences among αi, Figure 7 (d) exhibits more
pronounced stratification layers than those in Figure 7 (c) in the vicinity of the charged
surface.

5 Conclusions
In this work, we study numerically the mean-field electrostatic free-energy functional (1.1)
for an ionic solution with multiple ions of possible different valences and ionic sizes. We
develop (ψ, c)-formulation and (E, c)-formulation of the free energy and design an
augmented Lagrange multiplier method for our underlying constrained optimization
problem.

Our numerical tests demonstrate that our method is accurate and efficient. In particular, our
method improves largely the efficiency of a local relaxation method that has been previously
proposed. It is worth to note that the complexity of our iteration method is in fact similar to
that of Newton’s iteration method which is a robust method for treating the nonlinearity in
the PB equation. In both methods, a linear boundary-value problem of Poisson type equation
is solved in each iteration. Therefore, our method is promising in future applications, e.g.,
the level-set variational implicit-solvent modeling of charged biomolecules [48, 49].

We apply the continuum model (1.1) and our numerical method to study how the ionic sizes,
the ionic valences, the size of a solvent molecule, and the surface charge density affect the
counterion concentrations near a charged surface. We find the following:
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1. The classical PB theory that does not include the ionic size effect gives a poor
prediction of the counterion concentration near the charged surface;

2. The counterion concentrations reach saturation values in a region near the charged
surface. As the size of the counterion decreases, the saturation value increases and
the width of the saturation region decreases. This value is not affected much by the
size of coions and that of the solvent molecule;

3. The concentrations of multiple species of counterions with different valences
exhibit stratification layers, resulting from the competition of counterions in
binding to the charged surface. The ionic valence-to-volume ratios

are the key parameters in determining the structure of these layers. For instance, the
counterions with the highest valence-to-volume ratio form the top layer in the
region closest to the charged surface and then becomes the second top layer in the
next region, and so on. Those counterions with the lowest valence-to-volume ratio
form the bottom layer in the region closest to the charged surface but the top in the
region further away.

We note that several physical effects are neglected in the continuum model used here. These
include the Stern layer of counterions surrounding a charged surface due to the ionic steric
hindrance, the image charge effect, and the nonuniformity of the dielectric permittivity.

The current study is clearly in the direction of pushing a continuum model to its maximum
capacity in terms of capturing microscopic details of ionic solutions. But how far can we go
in this direction? To answer this question, we address a number of issues related to our
studies.

The first issue is about the optimal packing of ions in a fixed space. Our current model and
method predict that a full, 100% packing: for the case of only one species of counterions in
the solution, the concentration of the counterions near the charged surface is exactly the
inverse of the ionic volume. In real systems, however, only a fraction of a spatial region of
unit volume can be occupied by the ions. To capture this partial packing, we can introduce
some packing parameters λi with 0 < λi < 1 (i = 0, …, M) in the entropic part of our free-
energy functional (1.1) as

Effectively, we are enlarging the volumes  and our results will then predict the correct
packing of counterions near the charged surface. One of course needs to adjust the
parameters λi to achieve quantitatively an optimal result.

Second, we have found that the ionic valence-to-volume ratios play a key role in
determining some of the important properties of the concentration profiles for counterions
near the charged surface, particularly for systems with multiple ionic species of multiple
valences and different sizes. It is then necessary to understand how such parameters affect
quantitatively the concentration profiles, the stratification structure, and the free energy of
an underlying system. It will be also interesting to see how our findings with these important
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parameters can be applied to the study of some important issues of real biological systems,
e.g., the selectivity of ions passing through ion channels.

Third, the differences between a uniform ionic size and non-uniform ionic sizes are only
explored numerically in our current work. With the assumption on the charge neutrality of
ions in the solution, Li [31] obtained (1.2), the implicit Boltzmann distributions that relate
the equilibrium ionic concentrations c1, …, cM and the electrostatic potential ψ. If all the
sizes are the same, then we have explicit formulas for these concentrations depending on the
potential, the generalized Boltzmann distributions, cf. [31]. Consequently, it is possible to
study such differences analytically.

Finally, we point out that a mean-field model like (1.1) does not capture ion-ion correlations.
In fact, Li [31] proved rigorously that, under the assumption of charge neutrality of ions in

the solution and using the function (1.1), the negative induced charge density , as
an implicitly defined function of the potential ψ, is the derivative of a strictly convex
function. This important analytical property implies that the classical PB-like mean-field
model like (1.1), with or without the size effect included, fails in predicting the ion mediated
like-charge attractions [50, 51, 44, 31]. One way to circumvent this problem is to introduce
nonlocal or convolution terms in the free-energy functional [52]. But it is unclear if such an
approach will be accurate and efficient for large charged systems. It therefore remains still
challenging to develop systematically theories and methods that include the ion-ion
correlation, the ionic size effect, and other microscopic properties of ions and that can be
applied to efficient studies of large biological systems.
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Figure 1.
(Color online) Ionic concentrations in the mid-plane z = 40Å.
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Figure 2.
(Color online) Convergence histories.
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Figure 3.
(Color online) Log-log plot of the CPU time vs. the number of grids for both “SMPBmove”
and “AugLagMulti”.
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Figure 4.
(Color online) Counterion concentrations vs. distance in Å to the charged surface with
different ionic sizes and with no ionic sizes (the classical PB theory). The linear size of

counterions is a1. The counterion concentration at the charged surface is  M when

a1 = 10 Å and is  M when a1 = 8 Å.
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Figure 5.
(Color online) Counterion concentration vs. the distance in Å to the charged surface with
different values of the surface charge density σ.
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Figure 6.
(Color online) Concentrations of multivalent counterions vs. the distance in Å to the charged
surface. In the symbols, +i means the concentration of the counterion with the valence +i (i
= 1, 2, 3). (a) The classical PB solution: without the size effect. (b) The size effect included
with the linear sizes of Group I. (c) The size effect included with the linear sizes of Group II.
(d) The size effect included with the linear sizes of Group III.
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Figure 7.
(Color online) Concentrations of multivalent counterions vs. the distance in Å to the charged
surface. In (a) and (b), α+2 > α+3 > α+1. In (c) and (d), α+1 > α+2 > α+3.
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Table 4.1

Solution differences with the grid size 128×128×128

Algorithms
Max. difference Relative max. difference

c E c E

PBmove vs. LagMulti 1.547e-5 7.223e-5 1.405e-5 8.327e-6

SMPBmove vs. AugLagMulti 1.974e-6 4.073e-5 7.364e-5 4.650e-6
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Table 4.2

Computational time (in seconds)

Grid
Without size effect With size effect

PBmove LagMulti SMPBmove AugLagMulti

16×16×16 3.13 0.44 15.64 3.12

32×32×32 71.34 3.27 81.11 25.43

64×64×64 1884.11 51.02 2554.79 213.00

128×128×128 54347.59 534.67 72298.27 1738.23
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