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Abstract
With the goal of non-invasively localizing cardiac ischemic disease using body-surface potential
recordings, we attempted to reconstruct the transmembrane potential (TMP) throughout the
myocardium with the bidomain heart model. The task is an inverse source problem governed by
partial differential equations (PDE). Our main contribution is solving the inverse problem within a
PDE-constrained optimization framework that enables various physically-based constraints in both
equality and inequality forms. We formulated the optimality conditions rigorously in the
continuum before deriving finite element discretization, thereby making the optimization
independent of discretization choice. Such a formulation was derived for the L2-norm Tikhonov
regularization and the total variation minimization. The subsequent numerical optimization was
fulfilled by a primal-dual interior-point method tailored to our problem’s specific structure. Our
simulations used realistic, fiber-included heart models consisting of up to 18,000 nodes, much
finer than any inverse models previously reported. With synthetic ischemia data we localized
ischemic regions with roughly a 10% false-negative rate or a 20% false-positive rate under
conditions up to 5% input noise. With ischemia data measured from animal experiments, we
reconstructed TMPs with roughly 0.9 correlation with the ground truth. While precisely estimating
the TMP in general cases remains an open problem, our study shows the feasibility of
reconstructing TMP during the ST interval as a means of ischemia localization.
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1 Introduction
Electrocardiography (ECG) aims to non-invasively capture the electrophysiological activity
of the heart by measuring its resulting potential field at the body surface. Because of recent
advances in computational modeling, computing power and imaging technology, ECG is
evolving from a basic clinical tool into a new era of personalized healthcare, in which
computer models integrate not only unprecedented complexity and realism but also
biophysical information specific to individual subjects [27]. Subject-specific computer
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models, typically in anatomical or physical aspects, are poised to promote mechanistic and
functional studies at various biological levels ranging from cells up to organs, opening
promising opportunities for clinical diagnosis, intervention planning and therapy delivery.
Essential to this emerging paradigm, and the overarching goal of this study, is the
development of computational methods that efficiently handle enough model complexity
and realism to be useful for clinical needs.

The foundation of ECG is an inverse source problem governed by partial differential
equations (PDEs) which describe the bioelectric source/conduction model of the heart and
body. The most biophysically accurate yet tractable heart model is the bidomain approach
[25], in which the cardiac source is represented by the transmembrane potential (TMP),
embedded within interleaved intracellular and extracellular domains. Research on
recovering this source model from body-surface ECG has been limited compared with the
studies on other cardiac source models, such as epicardial potentials [2] or activation time
[8]. Inverse ECG problems are generally ill-posed, and recovering TMP is more difficult and
computationally demanding than recovering other source models [23].

This study aimed to inversely calculate the TMP throughout the myocardium from the body-
surface potentials with the specific goal of localizing myocardial ischemia. A leading cause
of cardiac death [18], myocardial ischemia typically results from occlusion of coronary
arteries. The disease occurs when the blood flow shortage causes cardiac myocytes to
undergo acidosis and anoxia, resulting in a progressive deterioration of electrical and
mechanical activity of the affected heart tissue, ultimately leading to life threatening rhythm
abnormalities. Traditional ECG diagnosis needs expert interpretation and has limited ability
to localize ischemic regions. The ability to acquire a whole-heart TMP map will greatly
enhance clinicians’ ability to identify the location and extent of ischemia. While
reconstructing the TMP through all time remains an open problem, this is not necessary for
ischemia localization, which may be achieved instead by identifying spatial nonuniformity
of the TMP at the plateau phase.

Our major contribution lies in presenting a new computational methodology for inverse
TMP estimation using measured ischemia data obtained from animal experiments. Inverse
ECG problems are conventionally solved in several steps. Based on the physical model, one
derives a mathematical transformation that relates the unknown source parameters directly
to the measurements, and then minimizes the misfit between the predicted and measured
data. The misfit term is typically augmented with regularization terms in order to mitigate
the ill-conditioning. This approach, essentially an unconstrained optimization scheme,
allows constraints only on the source parameters, and hence is inadequate for complex
formulations such as the bidomain model. In contrast, we treated our inverse problem in a
PDE-constrained optimization framework that incorporates the whole PDE model as a
constraint. Our approach offers ample flexibility not only for adjusting the underlying
physical model but also for applying various physically-based constraints simultaneously.

PDE-constrained optimization has been a frontier in scientific computing research over the
last decade, and numerous theoretical accomplishments [11] have laid the foundation for its
application. Its initial introduction to ECG problems [23] was limited to quadratic objective
functions with equality constraints. Here we extended that inaugural work by allowing
nonlinear objective functions and constraints in both equality and inequality forms.

Solving PDE-constrained optimization numerically is more challenging than solving an
ordinary optimization problem or a PDE alone. The task involves forming the optimality
conditions and solving them through iterative methods, with each iteration solving the entire
PDE system at least once. As such, most existing PDE solvers cannot be directly used when
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a PDE becomes a constraint in the optimization context. Also, the large size of the
discretized PDE constraints poses a challenge for contemporary optimization algorithms.

To tackle these difficulties, one needs not only to efficiently integrate generic optimization
algorithms, advanced PDE solvers such as adaptive finite element methods, and large-scale
scalable linear algebraic solvers such as the Newton-Krylov method [3], but also to create a
framework that exploits the mathematical structure specific to the physical model being
considered, in our case bioelectric models. Such integration has yet to be fulfilled. Rather,
most engineering studies formulate the inverse problem in a discrete, algebraic form based
on a predefined mesh, and then use numerical optimization methods. However, such a
practice does not guarantee mathematical rigor and may lead to inconsistencies when
simulations are performed over different meshes.

This study investigated the formulation, discretization and numerical solution of our PDE-
constrained optimization framework realized by the finite element method. We explored two
minimization schemes: the Tikhonov regularization and the total variation (TV)
regularization. Our contribution features the following new ingredients: (1) formulating
optimality conditions in the continuum before discretization, thereby achieving consistency
over multi-scale simulation; (2) comparing this approach with the discretize-then-optimize
approach; (3) deriving robust finite element formulation for both the Tikhonov and the TV
regularization; (4) incorporating inequality constraints in optimization, handled by a tailored
primal-dual interior-point method that exploits the block-matrix structure so as to optimize
numerical efficiency.

This paper is organized as follows. Section 2 describes the mathematical model. Section 3
describes the optimization framework for the inverse problem, its finite element solutions,
and the primal-dual interior method. Section 4 presents numerical experiments. Section 5
discusses computational and biophysical issues.

1.1 Background and Related Work
Inverse ECG problems have been formulated in terms of various heart source models, such
as dipoles models, epicardial potentials, the activation wavefront, the monodomain model
and the bidomain model (see an overview by Gulrajani [10]). Among these models the
bidomain model is the most physically realistic, and its source, the TMP (whose time course
is known as the “action potential”), is described by numerous membrane kinetic models that
account for electrophysiological activities at the cell level [29]. The bidomain model is the
predominant choice for simulating cardiac electrical activity at the tissue/organ level [4,25],
and has been widely used to investigate the relation between the cellular origins and
extracardiac consequences of myocardial ischemia [13,17]. Ischemia manifests its
electrophysiological effects by altering cell membrane kinetics and accordingly the TMP,
leading to elevation/depression in the ST segment of the ECG signal—the hallmark of
myocardial ischemia in clinical ECG diagnosis, see [26] for a review of electrophysiological
modeling of ischemia.

While reproducing the entire TMP (with the bidomain model) from the body surface
potentials remains a challenge, it appears more tractable to solve a simplified problem of
reconstructing ischemia-induced spatial variation of TMP amplitude during the plateau
phase. In this phase, there is normally about 200 ms of relatively stable and uniform TMP
amplitude, resulting in a nearly equipotential condition throughout the heart and
correspondingly on the body surface—the isopotential ST segment of the ECG signal. In
ischemic cells, however, the plateau-phase TMP suffers from attenuated amplitudes,
forming a voltage difference between healthy and ischemic regions. The voltage difference
results in extracardiac currents and ultimately the hallmark ST-segment shift in the body
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surface ECG potentials. The resulting ECG patterns are temporally stable and spatially fairly
simple, suggesting that suitable reconstruction may be feasible.

Partly because of its severe ill-conditioning, the problem of reconstructing the myocardial
TMP from body-surface potentials has seen minimal progress [23] in comparison with other
inverse ECG problems. One study reconstructed the TMP only at the heart surface [22], and
this approach compared favorably with recovering epicardial extracellular potentials [21].
Another approach sought the integral of TMP over the ST segment rather than at one time
instant, thereby making the inverse solution more robust to input noise [15]. A level-set
framework has been proposed that parameterizes the TMP by the size and location of
ischemia [19,24,28]. A recent study attempted to directly compute the TMP within the heart
via the PDE-constrained optimization approach [23], but the study was limited to 2D models
and synthetic data. Our study extends that approach both by advancing computational
methods and by using measured ischemia data from animal experiments.

1.2 Mathematical Notation
We use regular lower-case letters for a variable or a continuous function, and boldface
lower-case letters for a vector. Different fonts for the same letter usually mean the
continuous or discrete version of the same physical quantity. For example, u denotes a
continuous potential field, and its numerical discretization is denoted by a real vector u ∈
ℝn. An upper-case calligraphic letter represents a continuous functional or operator
operating on a continuous function, e.g.,  in the expression u. A bold capital letter denotes
a matrix and is the discrete version of the operator given by the same letter if it exists. For
example, Q is the discrete version of .

2 The Bioelectric Model
The bioelectric model, illustrated in Fig 1, consists of a static bidomain heart model coupled
with a quasi-static torso conduction model, described as follows:

(1)

(2)

Here H and B represent the domain of the heart and the torso volume. Eq (1) is the static
bidomain heart model, which consists of an extracellular potential field denoted by ue and an
intracellular potential field denoted by ui (not explicitly present in this equation). The
transmembrane potential, defined as v = ue − ui, forms the source term of the model. The
variables σi and σe represent the intra- and extracellular conductivity, modeled by
symmetric, positive-definite second-order tensors dependent upon spatial location. Eq (2)
states that the torso is a passive volume conductor, with ub denoting the potential and σt
denoting the conductivity of the torso volume.

The above model satisfies the following boundary conditions at the torso surface T and the
heart-torso interface H:

(3)

(4)
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(5)

(6)

Here Eq (3) assumes no current flows across the torso surface. Eq (4) assumes the continuity
of potentials on ∂H. Eq (5) dictates the conservation of the current flowing across the heart
boundary. Eq (6) dictates that the intracellular current, σi∇ui, stops at the heart boundary,
and only the extracellular current flows into the torso, yielding Eq (5).

The above model and boundary conditions can be jointly expressed by a Poisson equation:

(7a)

(7b)

(7c)

(7d)

(7e)

where the boundary conditions (4)–(6) have been implicitly assumed in this formulation.
Details of this model can be found in [23,24] and Chapter 5 of [10].

The forward problem and the inverse problem associated with this physical model are stated
as follows. Given the transmembrane potential v, the forward problem is to calculate u (the
extracellular potential throughout the torso and heart volumes) by solving Eq (7a). Its
corresponding inverse problem is to reconstruct v based on a sampling of u measured on the
body surface. Both the forward and inverse problems assume that domain geometry and
conductivities are known and remain fixed.

An important property of the forward/inverse problem is that it admits non-unique solutions.
From Eq (7a) one may see that the mapping between v and u is affine and non-injective: if
u0 is the solution of a given v0, so is u0 + c for any constant c. We enforce the uniqueness in
the forward problem by requiring u satisfy the following constraint:

(8)

where d(x) denotes the measured body-surface potential field. This constraint enables one to
consider u as a function of v. It also reasonably describes the situation of the inverse
problem where one needs to fit the unknown u to the known d.

The non-uniqueness of the solution to the inverse problem refers to the fact that v0 and v0 +c
yield identical u for any constant c. Such non-uniqueness reflects the physical understanding
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that the electric source is essentially induced by the currents (gradient of potentials) rather
than the potential field itself. In practice all the potential fields that differ by a constant are
treated as identical because the choice of any particular potential field depends solely on
how to pick the ground reference.

2.1 Galerkin Formulation and Finite Element Solution of the Forward Model
This paper solves the elliptic PDE by the Galerkin-based finite element method. Assuming
that u ∈ ℍ1(Ω), v ∈ ℍ1(H) (here ℍk(·) denotes the kth-order Hilbert-Sobolev space defined
over a domain), the variational form of Eq (7) after applying the Green’s divergence
theorem and the natural boundary conditions is given as follows:

(9)

Our finite element discretization is described by the following definition.

Definition 1: Let Ωh denote a tessellation of Ω and Hh denote a tessellation of H. Let 

be the global finite element basis functions associated with Ωh and  be the global basis
functions associated with Hh. Assume u and v are discretized by

. Let u = (u1, u2, …, uNu)T and v = (v1, v2, …, vNv)T

denote the two coefficient vectors.

In this study we adopted the linear finite element method, in which case each φi and ψi is a
hat function associated with the node i of the mesh Ωh or Hh. Accordingly, u and v contains
the voltage values at mesh nodes. These implications are henceforth assumed in this paper
unless explicitly mentioned.

Applying Definition 1 to Eq (9) and choosing our test space to be the same as our trial space
(the traditional Galerkin formulation), we obtain a matrix system as follows:

(10)

where A ∈ ℝNu×Nu is the stiffness matrix, Ai,j = 〈∇φi, σ∇φj〉Ω; R ∈ ℝNu×Nv, Ri,j = 〈∇φi,
σi∇ψj〉H. Here 〈·, ·〉Ω denotes the inner product taken over the space L2(Ω), defined as

(11)

It is worth noting that ue and v may be discretized by different trial spaces. This practice is
desirable in inverse simulations, as we will see later that the inverse calculation prefers both
a fine heart mesh for an accurate conduction model and a coarser heart mesh for
representing the source term v.

When implementing an ECG simulation, one should ensure that boundary conditions at the
heart-torso interface are applied properly. Another set of boundary conditions alternative to
Eq (5) and (6) also lead one from the Poisson Equation given by Eq (7a) to the same
variational formulation Eq (9). The alternative boundary conditions state that nH · σi∇v = 0
and nH · (σi + σe)∇ue = 0. It differs from Eq (6) in that it assumes zero Neumann condition
on the transmembrane potential, whereas Eq (6) assumes zero Neumann condition on the
intracellular potential. There has been controversy over the choice between the two
boundary condition sets. Later studies have shown that Eq (6) matches experiments more
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faithfully, but simulation scientists are advised to be aware of this subtle difference. See
Chapter 5.9 of [10] for more discussions.

3 Inverse Problem
The inverse problem of estimating the transmembrane potential can be formulated as an
optimization problem in which all the physical quantities are governed by a set of PDEs.
This PDE-constrained optimization problem can be expressed in an abstract form as follows:

(12a)

(12b)

In the optimization community, v and u are often known as the control variable and state
variable, respectively. The first term of the functional J is the misfit between predicted and
observed data, measured by a certain Lp norm at the body surface T. The operator : ℍ1(Ω)
→ Lp(T) is the volume-to-surface projector. The second term of J is a regularization term
for stabilizing the minimization, where v0 denotes a prior estimation of v. The operator :
ℍ1(H) → Lp(H) defines certain regularity conditions to be imposed on v. Common choices
for (v) are v, ∇v, or Δv. The parameter β ≥ 0 controls the amount of regularization. e(u, v)
= 0 is an abstract notation for the physical model. In our problem it refers to the PDE Eq (7)
with proper boundary conditions. The last two constraints represent abstract inequality
bounds for u and v, with  and  denoting proper cones.

The term “proper cone” is frequently used in optimization literature to define generalized
inequality relation. A set  is called a convex cone if for all x1, x2 ∈  and θ1, θ2 ≥ 0, we
have θ1x1 + θ2x2 ∈ . A cone is proper when it is convex, closed, solid and pointed (if x ∈

 and −x ∈ , x must be zero). Given a proper cone , its dual cone  is defined by  =
{y|xTy ≤ 0, ∀x ∈ }. Note that  is also convex. More information about cones can be
found in [5].

It has been proven that Eq (12a) admits a solution if the objective, the constraints and the
feasible sets all satisfy certain conditions on convexity, closure and continuity [12]. In
practical scenarios these conditions are normally satisfied. All practical solutions to the
problem stated in Eq (12) amounts to solving its optimality conditions, also known as the
Karush-Kuhn-Tucker (KKT) conditions given as:

(13)

(14)

(15)

(16)

(17)
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where p, λ are the Lagrange multipliers associated with each constraint;  and  are the
dual cones of  and .

In the rest of this section, we will elaborate on how to populate the abstract concept
presented above in practical simulations in the context of finite element methods. Our goal is
to translate the mathematical formulation into a numerical system for efficient numerical
optimization. In particular we will address the following four topics in the subsequent
subsections: (1) Tikhonov regularization, (2) finite element formulation of the PDE
constraint, (3) total variation regularization and its finite element formulation, and (4)
inequality constraints and a primal-dual method for numerical optimization.

3.1 Tikhonov Regularization
Perhaps the most popular regularization approaches to ill-conditioned problems, the
Tikhonov regularization uses the L2 norm for the objective functional given by Eq (12a),
yielding:

(18)

Because of its quadratic nature, the Tikhonov regularization can be readily integrated with
the variational formulation of the optimality conditions to be described in the next section.
When the regularizer is of the Sobolev-norm type such as (v) = v, ∇v, or Δv, we can
compute it via a finite element formulation as given in [40]:

(19)

where M and S are the mass and stiffness matrices respectively, based on the finite element
discretization of v. Their Cholesky factor conceptually serves as the equivalent of , though
such factorization is often not necessary when implementing the optimization.

Our finite element formulation for  as provided in Eq (19) is superior to the common
expedient practice of discretizing  directly over a given mesh. Independent of mesh size,
our formulation not only ensures consistency under multiscale discretization but also allows
adaptive refinement during optimization iterations. Moreover, mesh-grid-based discrete
derivative operators are not strictly compatible with the Galerkin finite element
discretization because the field has less regularity at nodes than within elements, whereas
our formulation does not have this problem.

3.2 Discretize the PDE constraint in the variational form
There are two approaches to numerically tackling the problem given in Eq (13): discretize-
then-optimize (DTO) or optimize-then-discretize (OTD). The DTO approach discretizes all
the quantities (both the objective and constraints) into vectors or matrices and treats the
discretized problem as a pure algebraic optimization problem. The OTD approach derives
the optimality conditions in continuous function spaces before discretizing those conditions
into numerical systems. Although the DTO approach is more popular among the engineering
community, the OTD approach preserves more faithfully the structure inherent in the
underlying infinite-dimensional optimization problem. This approach is less subject to mesh
size, enables individualized discretization for each quantity, and facilitates adaptive
refinement techniques. Therefore we adopted the OTD approach whenever possible. The
rest of this section presents the continuous optimality conditions and their discretization by
finite element methods.
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For illustration purposes we minimize the Tikhonov functional given by Eq (18), and
assume that the minimization problem is subject only to the PDE constraint Eq (7). The
Lagrangian functional for this constrained optimization problem, denoted by : ℍ1(Ω) ×
ℍ1(H) × ℍ−1(Ω) → ℝ, is defined as

(20)

where p ∈ ℍ−1(Ω) is the Lagrange multiplier function. The optimality condition states that
the optimal solution is situated at the stationary point of the Lagrangian functional. By
taking the Gâteaux derivatives of  at the optimal solution (u, v, p) in the perturbation
direction (ũ, ṽ, p̃), we obtain a set of equations as follows:

(21a)

(21b)

(21c)

Eq (21) is the variational form of the KKT condition, and Eqs (21a) – (21c) are called the
variational form of the control equation, the adjoint equation and the state equation,
respectively. This set of differential equations are linear with respect to u, v and p because
the objective is quadratic and the constraint takes the linear equality form. In general they
are nonlinear PDEs. We now discuss how to discretize them by the finite element method.

The key to applying the Galerkin finite element discretization to Eq (21) is to take the
perturbation in each finite element basis functions. We discretize u and v according to
Definition 1, and assume that p is discretized by the same trial space as for u:

. Let p = (p1, p2, …, p Nu)T. The perturbation p̃ and ũ are chosen from the
finite-dimensional space {φi}, and ṽ chosen from {ψj} as given in Definition 1. Eq (21)
then yields a 3 × 3 block matrix system for numerical computation, given as follows:

(22)

which is a symmetric system where each block is given below: (here 〈·, ·〉 denotes the inner
product defined in Eq (11))

(23)

The remaining task is to numerically solve the large linear system Eq (22), which is known
to be positive indefinite. Existing methods include the BiStabCG [23], the adjoint method,
and computing the Schur complement [5,35] (the one adopted in this paper). The adjoint
method is widely used especially for large-scale linear systems. The method affects
discretization considerations to be discussed in Section 3.2.1 so we describe it here: it
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acquires the derivative of J with respect to v (by solving the state and adjoint equations
sequentially), then applies one step of gradient descent of J, and repeats the above two steps
until J is minimized.

3.2.1 Optimize-then-Discretize versus Discretize-then-Optimize—Here we
compare the two approaches and show under what conditions they are equivalent. As will be
shown, the connection and distinction between the two approaches are manifested by one
fact: they result in identical numerical optimality conditions only when the state variable u
and the adjoint variable p are discretized by the same trial space. Based on this
understanding we discuss several theoretical and practical concerns of the two approaches.

The DTO approach applies the finite element discretization to the objective functional and
the constraint PDE, yielding an algebraic optimization problem of the form

(24)

subject to Eq (10), where Q is the matrix version of the volume-to-surface projector , and
MT and MH are identical to those given by Eq (23). The KKT conditions of this problem are
exactly Eq (22). The discrete adjoint vector p multiplies to the stiffness matrix A, indicating
that its continuous version, p, is discretized by the trial space of the state variable u.

The two approaches differ when the state and adjoint variables are represented by different
trial spaces. When the same trial space is chosen for both variables, the KKT system (22) is
a symmetric matrix, and its reduced equation with respect to the control variable v, obtained
by eliminating the state and adjoint variables, is the full derivative of the objective
functional J with respect to v. With state and adjoint variables discretized by different trial
spaces, Eq (22) becomes nonsymmetric, and its reduced equation generally does not strictly
represent the derivative of J with respect to v. This subtle difference in the representation of
derivatives is worth noting, because in practice Eq (22) is often not solved as a whole (e.g.,
by BiCGStab [23]) but instead by the adjoint method, which depends on evaluating the
derivative of J to v (see Section 3.2.1).

There is no conclusion as to whether the state and adjoint variables should use identical trial
spaces, and the choice depends on each problem’s structure and computational resources.
The OTD approach typically requires more developmental efforts than the other. Most finite
element solvers are designed for solving PDEs directly but not for optimization purposes.
On the other hand, there exist many numerical optimization solvers designed for problems
given in algebraic forms. One may fulfill the discretize-then-optimize approach by applying
finite element discretization and numerical optimization sequentially. However, to fulfill the
OTD approach one must merge the PDE and optimization solvers. In some complex
scenarios, the continuous optimality conditions are not even achievable, for instance when
non-linear inequality constraints or the Lp-norm are concerned. In our problem, the potential
field u is smooth (from the biophysics of the problem), and p admits two more weak
derivatives than u, so we believe it unnecessary to discretize p by different trial functions.

3.3 Total Variation Regularization
The total variation (TV) regularization tends to reconstruct discontinuity in the solution, a
feature that is appealing to our inverse problem since the transmembrane potential field is
assumed to have sharp variation between healthy and ischemic regions. A number of inverse
ECG studies have adopted the TV regularization and reported superior reconstructions than
the Tikhonov regularization [9,30]. Our study complements their work by integrating TV
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implementation with PDE-constrained optimization. Existing ECG studies have
implemented the TV regularization in a algebraic form, requiring the transfer matrix and the
gradient-operator matrix based on a given mesh. These matrices may either become
unavailable in PDE-constrained optimization (such as the transfer matrix) or have poor
numerical accuracy when high-resolution irregular meshes are used (such as the gradient-
operator matrix). In contrast, we formulated the TV regularization in the continuum
followed by a rigorous finite element discretization, thereby ensuring that the TV
regularization has dimension-independent performance over different discretizations.

To simplify illustration, we present a TV minimization problem that contains only the PDE
constraint, described as follows:

(25)

(26)

where TV (v) is the total variation functional, and ε is a small positive constant introduced
to overcome the singularity where ∇v = 0. In this paper we set ε = 10−6. The Gâteaux
derivative of the TV term in the direction ṽ, along with its strong form expression, is given
by:

(27)

The major difficulty of the total variation minimization is to cope with the highly anisotropic

and nonlinear term . This topic has been extensively studied by the image processing
community over the past decade [42]. Numerous algorithms have been proposed for the ε-
smoothed minimization, such as the parabolic-equation-based time marching scheme, the
primal-dual variant of Newton’s method [6], the fixed-point iteration [38], or the second-
order cone programming. More recent methods tackle the original, unsmoothed
minimization problem by exploiting its dual formulation [41,42].

However, the achievements made by the imaging community do not naturally translate
themselves to PDE-constrained optimization problems. The imaging community mostly
consider the Euler-Lagrange equation, which is essentially the strong form of the optimality
condition for the total variation minimization. The imaging community tackles the strong-
form equations by finite difference methods since imaging problems are based on regular
grids. In contrast, PDE-constrained optimization problems are typically defined on irregular
meshes for which the finite element method is more appropriate, thereby requiring both the
optimality conditions and the PDEs to be formulated in the variational form. Even if it is
sometimes expedient to circumvent the variational formulation by adopting the DTO
approach and devising discrete, mesh-node-based operators, we do not advocate such a
practice because those discrete operators may not be rigorously compatible with finite
element formulation. For example, a field approximated by linear finite elements is not
differentiable at mesh nodes, so a mesh-node-based discrete gradient operator may be
improper, losing desirable numerical structures that could have been obtained with regular
grids, such as symmetry or positive-definiteness.
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However, a major difficulty is that the total variation minimization is not naturally
compatible with Galerkin finite element methods. Our aim here is to propose a framework
that “almost naturally” adapts the TV minimization to finite element formulation. We do not
intend to propose new algorithms for the TV minimization, but instead our goal is to transfer
the aforementioned algorithms proposed by the imaging community into the finite element
formulation. In this paper, we adopted the fixed-point iteration because of its robustness.
However, it is worth noting that our finite element formulation is not limited to the fixed-
point iteration, but can be naturally applied to other TV-minimization algorithms such as the
primal-dual Newton’s method [6]. Further discussion is presented in Section 5.1.

3.3.1 Fixed Point Iteration—The basic idea of the fixed point iteration (and most other
iterative methods) is to solve a sequence of linearized minimization problems, each of which
can be solved in the same way as we solve the Tikhonov minimization in Eq (22). (All the
matrix blocks in Eq (22) will remain unchanged except MH, which will be replaced by a
linearized version of  TV.)

To linearize TV, the fixed point iteration fixes the denominator of Eq (27) to its value at
the step k, and computes the (k + 1) step, vk+1, by the following formula:

(28)

Here the denominator becomes a known scalar field over the domain H. Applying the finite
element discretization on vk+1 and letting the perturbation ṽ range over the test space, one
obtains a linear system identical to Eq (22) except that MH is replaced by the following
formula:

(29)

One solves that linear system to obtain vk+1, then updates Eq (29) and continues iteration
until convergence is reached. Essentially a quasi-Newton scheme, the fixed point iteration is
linearly convergent and has been reported to be rather robust with respect to the parameter ε
and β [38]. Its convergence domain becomes smaller with a decreased ε, but the drop-off is
gradual.

A major feasibility concern about the finite element formulation of the fixed-point method is
its high computational cost: Each iteration of the fixed-point method needs to compute Eq
(29), which amounts to forming a stiffness matrix for the finite element heart mesh. Because
∇vk is a nonconstant field in each element, quadrature points are needed to evaluate the
integrand and integral in Eq (29), and such evaluation is required in each fixed-point
iteration. In order to reduce repeated calculation of Eq (29), one needs to store the
coefficients of local basis functions in all elements, but this consumes a large amount of
memory. Therefore we believe that the finite element formulation of the TV minimization is
generally impractical due to its high computational cost.

However, the computational cost becomes feasible in a special case when linear tetrahedral
elements are used. In this case, ∇vk is a constant in each clement, and hence the integration
of the numerator of Eq (29) can be precomputed for each element. The calculation of Eq
(29) in each fixed-point iteration is simplified to two steps: (1) updating ||∇v|| and M(v) at
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each element and (2) assembling all local M(v) matrices into the global matrix. The first
step is a scalar-matrix multiplication only in the case of linear tetrahedral elements; with
non-simplex elements or high-order basis functions, this step would involve differentiation

and integration at all quadrature points, thereby increasing the computation by  times
where nq is the number of quadrature points in each Euclidean dimension. Given the above
consideration, we advocated and adopted the linear tetrahedral elements for the TV
regularization in this study.

3.4 Inequality Constraints and Primal-Dual Interior Point Method—So far we
have described how to handle equality-formed constraints, such as the PDE constraint. It is
often desirable to impose lower or upper bounds on physical quantities concerned in a
physical model. Such inequality constraints reflect prior physical knowledge about the
electric potential fields or the current fields. These bounds may concern particular parts of
the domain, such as vepicardium ≤ 0, or contain spatially dependence such as vepicardium ≤
vendocardium.

Inequality constraints are usually handled by interior-point methods, which roughly fall into
two categories: the barrier method and the primal-dual method. The primal-dual method is
often more efficient and stable than the barrier method. In this study we used as our
optimization solver the software SDPT3, which employs an infeasible primal-dual method
for solving conic programming problems [34]. In view of the large size of our PDE-
constrained optimization problem, a generic solver like SDPT3 may become inefficient. We
present here a primal-dual formulation tailored to our optimization problem, explicitly
exposing the block-matrix structures. Our purpose is to let the generic solvers fully exploit
these structures so as to improve the computation efficiency.

Since inequality constraints are often pointwise bounds, we incorporate them in a discrete
form after we perform the finite element formulation (see Section 3.2 and 3.3). Our
optimization problem can be stated as follows:

(30a)

(30b)

Here Eq (30a) denotes the optimization problem with only the PDE constraint. It can be
either Eq (24) or Eq (25). Each inequality constraint on v is represented by ci(v), with  ⊆
ℝki denoting a proper cone of ki dimensions, and so does each ĉj(u) and 

We now present how to solve the above optimization problem by a primal-dual interior-
point method. The primal-dual method optimizes both the primal and dual formulation of
the given problem. It approaches the optimal solution via a sequence of interior points
(points that are strictly within the subspace dictated by the inequality constraints). The
interior points are generated by relaxing the complementary slackness in the KKT
conditions. At each iteration, the method seeks the Newton step for solving the KKT
equations, determines the proper step length, and moves to the next interior point until the
gap between the primal objective and dual becomes sufficiently small.

We followed the primal-dual method outlined in Chapter 11 of [5], which considers only
scalar-valued inequalities, and we extend it to general inequalities associated with various
cones. First, define the Lagrangian for Eq (30) as follows:
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where each qi ∈ ℝki×1 is the Lagrange multipler vector for each inequality constraint; p ∈
ℝn×1 is the adjoint vector for the discretized PDE constraint.

The primal-dual method considers a relaxed version of the KKT optimality conditions given
below:

(31)

where ci(v) is the Jacobian matrix of ci(v), and θi is the degree of the generalized logarithm
associated with the cone  (see [5] for more information about the generalized logarithm).
ĉj(u) and θ̂j are defined in the same way. t > 0 is a scalar parameter. rcentral = 0 is named

the complementary slackness condition. In the primal-dual method, this condition is relaxed
by the addition of θi/t term.

The primal-dual search direction is the Newton step for the non-linear Equation (31). Let the
current point be denoted by (u, v, p, q, q̂), the Newton system is expressed in a block-matrix
structure:

(32a)

(32b)

Here a little explanation of the notation is needed. c denotes the aggregate of {ci(v)} and
accordingly Eq (32b) represents its Hessian with respect to v. Since each ci(v) is vector-
valued, its Hessian ci(v) is a third-order tensor. The Hessian matrix of the jth component

of ci is denoted by  denotes the jth component of the vector qi. Similarly, ĉ denotes

the aggregate of {ĉj(u)}, and  and  are defined in the same way. The rest matrix
blocks involved in Eq (32) are given below in the Matlab format:
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(33)

and the rest quantities, , Dĉ(u),  and diag(ĉ(u)), are defined similarly to Eq (33).

After obtaining the Newton step, we did not investigate other optimization algorithms. We
relied on SDPT3 to determine the step size and convergence criteria. SDPT3 employs an
infeasible primal-dual predictor-corrector path-following method [35].

Based on physical considerations, one may customize a variety of inequality constraints
either by designing the function ci(v) (or ĉi(u)) or by setting the inequality type (via proper
cones). Here we present two types of inequality constraints commonly used in ECG
simulation, both of which use an affine function in the form of ci(v) = Gv + g. The first type
imposes a point-wise bound on the potential field at a user-specified domain of interest,
taking the form Gv + g ≤ 0. In this case, the cone corresponding to the point-wise inequality
is the non-negative orthant, whose associated generalized logarithm has a degree of θi = ki
(to be used in Eq (31)). The second type of constraint bounds the current density field (the
gradient of the potential field) by applying a second-order cone in the following way:

(34)

(35)

where Dx,y,z are the discrete partial-derivative operators, and s gives the current density at
each node. The generalized logarithm associated with the second-order cone has a degree of
θi = 2.

4 Numerical Experiments and Results
Here we present numerical experiments with the goal of verifying the aforementioned
optimization framework and inverse algorithms. We conducted three simulation
experiments: 1) an isotropic heart conduction model with synthetic ischemia data, 2) an
anisotropic heart model with empirical ischemia data, and 3) an isotropic heart model with
empirical ischemia data. The first experiment verifies our inverse algorithm under a strictly
controlled setting. The second one simulates the most physically realistic situation. The third
one explores whether our inverse calculation is feasible for a typical clinical situation in
which patient-specific myocardial conductivity and fiber structure information are not
available.

4.1 Simulation Setup
Our simulation of the PDE model Eq (7) is based on an in situ experiment that consisted of a
live canine heart perfused with blood from a second animal and suspended in a human-
torso-shaped tank filled with an electolytic medium that simulates human-body electrical
conductivity [20], as shown in Fig 1. The heart and torso geometries were discretized by
tetrahedral meshes, derived from anatomical MRI scans by the segmentation software,
Seg3D [7], and an automated mesh generation software system, BioMesh3D [1]. Table 1
describes the mesh configuration. Each element of the heart mesh contained a 3 × 1 vector
giving the local fiber orientation, derived from diffusion-tensor MRI imaging of the heart
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carried out postmortem over 16–24 hours. The conductivities of the heart tissue are listed in
Table 2.

Our forward and inverse simulations were performed by the following procedure. Given a
configuration of transmembrane potentials (which we will describe later with each
experiment), we conducted the forward simulation to obtain the body-surface potentials. The
forward simulation used a finer torso mesh than did the inverse simulation, so as to avoid the
so-called “inverse crimes” of biasing the solution by using the same mesh for forward and
inverse simulations [16]. After adding Gaussian noise to the body-surface potentials, we
inversely calculated the heart potentials and compared them with ground truth values. Two
regularization methods were used for the inverse calculations: the Tikhonov regularization
with the gradient constraint (henceforth abbreviated as the Tikhonov) and the total variation
regularization as given by Eq (30). The regularizer weight parameter, β, was determined by
the discrepancy principle: starting from 10−4, it iteratively decreased by a factor of five until
the misfit between the reconstructed body-surface potentials and their true values dropped
below the noise ratio, which was known a priori. β was normally determined within five
iterations. All the computation in this study was carried out using 12 CPUs (AMD Opteron
8360 SE, 2.5GHz) and 96 GB memory on a shared-memory workstation.

We evaluated the inverse solutions using four metrics: (1) the correlation coefficient (CC)
between the true and computed TMPs, (2) the Haussdorff distance between the true and
estimated ischemic regions, (3)the sensitivity error ratio, and (4) the specificity error ratio.
The last three metrics were used only in Section 4.2 where the “true” ischemic region was
known. The correlation coefficient between the reconstructed potentials (denoted as a vector
ûH) and the ground truth (denoted as uH) is defined as follows:

(36)

The Haussdorff distance, defined below, measures the proximity of the boundaries of two
shapes:

(37)

The sensitivity error ratio is defined as the percentage of the true ischemic region that is not
detected out of the entire true ischemic region (in terms of their volumes). This metric
describes the false negative (related to Type II error), characterizing the sensitivity of an
ischemia estimation. The specificity error ratio is defined as the percentage of the misjudged
ischemic region out of the entire estimated ischemic region (in terms of their volumes). This
metric describes the false positive (related to Type I error), characterizing the specificity of
an ischemia estimation.

4.2 Synthetic Ischemia Data
To produce synthetic data that mimic acute ischemia myocardium, we set the
transmembrane potential (TMP) during the ST interval to 0 mV in the healthy tissue and −30
mV in the ischemic tissue, as suggested by [17]. This setting is equivalent to assigning the
TMP to any other absolute values that maintain a 30-mV difference in amplitude between
healthy and ischemia regions. The magnitude of voltage difference was not critical to our
inverse calculation, because ischemic regions would later be identified by thresholding the
potential field. We specified realistically shaped and located ischemic regions in heart
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meshes derived from animal experiments, and regarded the mesh nodes belonging to the
ischemic regions as “ischemic” and set the rest of the nodes as “healthy”. The TMP was then
set as stated above, with a linear transition at the boundary between the two regions. We
describe a case of anterior transmural ischemia depicted in Fig 2. Both the heart and the
torso volume have isotropic conductivities according to Table 2.

Once we inversely reconstructed the TMP field v, we estimated the ischemic regions by a
thresholding scheme: if the average of v in an element (over its four vertices) was below the
threshold, the element was regarded as “ischemic”. The threshold value was determined by

(38)

(39)

where v̄ is the mean of v, vmin is the minimum of v, and v5% denotes the low 5% quantile of
v. The threshold generally takes the value of t1, and the term t2 acts on rare occasions when
vmin is abnormally low because v contains several outlier values. (This occurred only when
we performed the TV method with the maximum noise.) Such a threshold reflects the
hypothesis that the ischemic TMP should be notably below the average value over the whole
heart domain because the ischemic regions account for a minor portion of the whole
myocardium.

We conducted inverse simulations with three meshes. Fig 2 shows the reconstruction based
on Mesh 1. Fig 3 shows the reconstruction over finer meshes. Fig 4 evaluates the estimated
ischemic regions by the sensitivity error and the specificity error. These figures intend to
explore three major issues: (1) the comparison between the Tikhonov and the TV methods,
(2) the performance of each methods under multiple discretization scales, and (3) the impact
of input noise levels on each method. These three issues also form our analysis framework
for the experiments in Section 4.3 and 4.4.

Overall, both the Tikhonov and TV methods achieved satisfying reconstruction of the TMP
and the ischemic region, consistently over multiple noise levels and mesh sizes (as
demonstrated by Fig 3). The amplitude of reconstructed TMP was roughly two thirds of that
of the ground truth, but the reconstruction achieved a high correlation ranging from 0.7 to
0.8, which in turn resulted in a good ischemic region localization, with the Haussdorff
distance ranging from 5 to 10 mm. Fig 2 shows that the Tikhonov solutions have a smooth
transition at the ischemia border zone, whereas the total variation solutions preserve a sharp
transition. In Fig 3, the TMP fields from the total variation method still exhibit an ellipsoid
shape at the ischemic region (the blue region), similar to the Tikhonov solution except
having a sharper border that the latter. This difference illustrates the essence of the fixed-
point iteration: it works via solving a sequence of Tikhonov minimization problems.

Fig 4 shows that the Tikhonov solutions tended to overestimate the ischemic region whereas
the total variation solutions tended to underestimate. The Tikhonov solutions typically
missed about 10% of the true ischemic region while this ratio is above 30% in the TV
solutions. On the other hand, the TV solutions estimate the ischemic region with a high
specificity (the misjudge ratio ≈ 15%), whereas this ratio for the Tikhonov solutions ranges
from 30% to 50%.

4.3 Measured Ischemia Data with an Anisotropic Heart Model
This test was the most realistic simulation in our study. Ischemia was introduced into a
perfused, live, beating canine heart by adjusting the blood flow to the left anterior coronary
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artery, which we controlled by means of a thin glass cannula, external blood lines and a
rotating pump. The extracellular potentials were recorded at 1 KHz sampling rate at 247
nodes on the epicardial surface, and at 400 nodes within the ventricular myocardium (by
inserting 40 fiberglass needles, each carrying 10 electrodes along its length). Data
postprocessing included gain adjustment, baseline adjustment, registration to the same heart
geometry derived from MRI scans, and extrapolating the potentials throughout the heart
volume using volumetric Laplacian interpolation. Our simulation used the potentials at the
time instant placed after the QRS complex by 40% of the duration of the ST interval, which
was measured from the end of QRS complex to the peak of the T wave. At this time, the
TMPs throughout the heart are believed to stay stably in the plateau phase and to be nearly
constant in a healthy heart. We used an anisotropic heart model coupled with an isotropic
torso model. Their conductivity values were taken from Table 2 in the “Anisotropic Data”
category.

It is not possible to measure TMP throughout the heart, so the verifiable ground truth is not
the TMP but the extracellular potential, which we measured by means of epicardial and
intramyocardial electrodes. We first calculated the heart TMP from the measured
extracellular potential, and treated that as the true TMP. This task was fulfilled by solving a
well-posed optimization problem defined as follows:

(40)

where u0 denotes the measured extracellular potential and Eq (7) is the bioelectric model. In
practice the misfit ||u − u0|| is typically below 10−9.

Since we did not know the exact ischemic region, we examined the reconstructed
transmembrane and extracellular potential fields. Our examination revolved around the roles
of three simulation parameters: 1) the Tikhonov method versus the total variation (TV)
method, 2) inverse solutions under multiple scales, and 3) the impact of input noise. Fig 5
compares the inverse solutions by both methods. Fig 6 shows the inverse solutions over
multiple discretization scales.

Overall both the Tikhonov method and the TV method yielded good reconstructions
consistently under different discretization scales: the reconstructed transmembrane potential
had a correlation of 0.9 with the truth, and the correlation was 0.8 for the extracellular
potential. As anticipated, the Tikhonov method yielded a smoothed solution whereas the TV
method yielded a sharper reconstruction (see Fig 5). The true transmembrane potential
exhibited a smooth transition at the ischemia border rather than behaving like a stepwise
function. This feature partly explains why the Tikhonov method slightly outperformed the
TV method in terms of the correlation coefficient. On the other hand, the total variation
method seemed to better delineate the ischemic border zone than did the Tikhonov.

Fig 7 presents the computation time of the inverse calculation. The TV method took 5–6
times longer than the Tikhonov method, because each fixed point iteration of the TV method
is equivalent to solving one Tikhonov minimization problem. In both methods, the number
of iterations was independent of the problem size. However, the time each iteration takes
scales with the problem size, because the implementation of the interior-point method
typically involves an LTDL Cholesky factorization of a symmetric positive definite matrix,
whose size is dictated by the number of control variables. Our results indicate that Mesh 2
(approximately 6500 nodes on heart) may be an appropriate resolution for conducting the
TV method on moderate computational platforms.
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4.4 Measured Ischemia Data with an Isotropic Heart Model
This test explored whether it is possible to estimate real heart potentials with reasonable
accuracy without using anisotropic conductivities because such information is not generally
available in any remotely realistic clinical scenarios except by means of rule-based
estimation [37]. We first conducted forward simulation using the anisotropic heart model
and voltage data described in Section 4.3, and then conducted inverse simulation using the
isotropic heart model described in Section 4.2.

The results are presented in a similar way as in Section 4.3. The computational times in this
experiment were close to those shown in Fig 7, so they are not presented here due to space
limitations. Fig 8 and Fig 9 compare the reconstructions by the Tikhonov and and total
variation methods under multiple discretization scales. In both methods, reconstructed TMPs
were still good though they were slightly worse than their counterparts in Section 4.3 with
the anisotropic inverse heart model (either by visual inspection or by the correlation
coefficient.) The Tikhonov method behaved robustly over different mesh sizes and noise
levels but less so of the TV method. The Tikhonov method estimated the extracellular
potential reasonably whereas the TV method yielded a poor estimation. Note that the true
TMP and the true extracellular potential were related by the anisotropic model, but the
calculated TMP and extracellular potential in this test were related by the isotropic heart
model, so one should not expect to accurately estimate both of them simultaneously. Our
inverse calculation treated the TMP as the “source” and the primary reconstruction goal.

5 Discussion
The goal of this study is to develop the PDE-constrained optimization methodology to solve
the inverse problem of ischemia localization. We assume that the given physical model
adequately characterizes the underlying electrophysiology, so our simulation experiments
serve to verify our inverse method rather than to validate the physical model. The simulation
results demonstrate that our inverse method was able to reconstruct the transmembrane
potential with a 0.8–0.9 correlation with the experimentally measured ischemia data. A
noteworthy merit of PDE-constrained optimization is that it enables one to impose
constraints on almost any quantity in the physical model so as to overcome the numerical ill-
conditioning of the inversion. Adopting an “optimization-then-discretization” approach, we
obtained consistent inversion results when simulating the physical model under multiple
discretization resolutions. The discussion is organized in two categories: (1) biophysical
aspects of ischemia modeling and localization and (2) computational features of our
approach that are of general interest to PDE-governed inverse problems.

5.1 Biophysical Considerations

Tikhonov versus total variation in ischemia localization: With the PDE-constrained
optimization approach, we were able to recover ischemic zones with higher accuracy than
any previously published approach (to our knowledge). The two methods, Tikhonov and
total variation (TV), performed adequately but with different strengths and weaknesses. The
Tikhonov method yielded higher sensitivity whereas the TV method showed better
specificity. As Fig 4 shows, the Tikhonov method tended to overestimate ischemic regions
but missed less than 10% of the true ischemic region. In contrast, the TV method
underestimated the ischemic region (typically missing 30%–40% of the true ischemic
region), but nearly 90% of its estimated ischemic region was correct. Hence in clinical
practice, one might use the TV method for a conservative estimate of ischemia and the
Tikhonov method for a worst-case estimate. With measured ischemia data, the Tikhonov
method slightly outperformed the TV method in terms of the correlation coefficient of
recovered TMPs, but the TV method delineated the ischemic border more precisely than the
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Tikhonov method (Fig 6). When the heart anisotropy information was unavailable, the
Tikhonov method outperformed the TV method (Fig 8). Although it is widely believed that
the Tikhonov method tends to yield overly smoothed solutions, our measured data showed
that the ischemic potential distribution was smoother than a stepwise function, indicating
that the Tikhonov method may be more appealing than one would anticipate.

In terms of robustness and computation cost, the Tikhonov method performed robustly over
different discretization resolutions and input noise levels, whereas the TV method became
less stable when the noise level rose to 5% with high-resolution heart models (Fig 3). Such
observations suggest combining the two methods in inverse calculation: one may use the
Tikhonov solution as the initial guess for the subsequent TV iterative algorithm so as to
achieve convergence with fewer iterations.

Border zone consideration: The ischemic border zone, marking the transition between the
healthy and ischemic regions and characterized by a spatial transition of TMP, is of great
clinical interest. The spatial gradient of TMP in the border zone results in “injury currents”,
which are believed to be the primary electric source causing the ST segment shift [17].
Therefore, the shape and width of border zones should be considered when choosing the
resolution for the heart geometry. A border zone is often estimated to be between 5–10 mm
in thickness [33], and the grid size of our mesh ranged between 5 mm (Mesh 1) and 2 mm
(Mesh 3) so as to keep adequate spatial resolution for the border zone.

Our simulations indicated that the border-zone transition could be reasonably reconstructed
whether it was sharp or smooth. In our synthetic study, the border zone was set to be one-
element wide and accordingly the synthetic TMP had a sharper transition than normal.
Nevertheless, the TV method tackled such condition well (Fig 3). In our measured data
study, the border zone transition was smoother than in the synthetic setting, and the
Tikhonov method yielded good recovery (Fig 6). (See [33] for detail of the experimental
ischemic data we used.) These tests indicated that recovering the voltage transition in border
zones should not create extra technical difficulty to the overall goal of recovering the TMP.

Impact of anisotropy and homogeneity in tissue conductivity: Several simulation studies
based on realistic ischemia data have shown that fiber rotation and tissue anisotropy
fundamentally impacts the forward calculation of epicardial extracellular potential
distributions and of body-surface ST-shift patterns [26]. However, in clinical practice the
heart fiber information of an individual patient is generally not available, though there are
emerging techniques for estimating this information on a patient-specific basis [36].
Therefore, it is worth inquiring whether it is possible to reasonably reconstruct the
myocardial TMP without the information of heart anisotropy, while the input body-surface
potentials actually result from an anisotropic heart. We explored this possibility in Section
4.4. In our inverse calculation, the TMP was the control variable whereas the extracellular
potential was subject to the TMP via an isotropic bidomain heart model. We found that
without including the heart anisotropy, one still may achieve an TMP estimation with as
high as 0.85 correlation with the truth, but would estimate the extracellular potential poorly
(see Fig 8 and Fig 9).

This finding has two indications. First, it confirms a previous assumption held by the ECG
community that the heart anisotropy is critical for predicting extracellular epicardial
potentials [14]. Our finding confirms this assumption from the reverse side (i.e., lack of
anisotropy prevents accurate estimation of extracelluar potentials). The second indication is
that the heart anisotropy is less critical to the inverse calculation. Our conjectured
explanation is that given the TMP source, the body-surface potentials are dominated by the
attenuation and superposition effects of the torso volume, and the effect of myocardial
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anisotropy is overwhelmed. Therefore, if the torso’s effects can be properly resolved in the
inverse calculation (which is the main purpose of regularization), it is possible to estimate
the TMP with moderate accuracy without heart anisotropy information.

One limitation of our inverse study is its assumption of homogeneous conductivity
throughout the heart, excluding ischemia-induced conductivity variation. In reality, such
regional variation of conductivity may significantly alter the heart potential patterns.
Although there are some experimental and simulation data that quantify the tissue
conductivity variation associated with ischemia [32], such data cannot be applied to
ischemia localization before one knows the location of ischemic regions. One way to
overcome this dilemma is to adopt an iterative scheme: one solves a homogeneous heart
model in the first round of inversion, estimates ischemic regions, and then uses this
information to create an inhomogeneous heart model to be used in a second round of
inversion. Such iteration may continue for several rounds until the estimated ischemic region
converges. This topic deserves future research.

Resolution of the geometric model: Our inverse simulation features the use of a much finer
heart model (17,000 nodes) than those reported in previous inverse ECG studies (typically
about 1,000 nodes). Moreover, we found inversion with a higher model resolution would
still be feasible with more computation resources available. A main reason for using a coarse
heart model (essentially a low-dimensional parameterization of the control variable) is to
constrain the ill-conditioning of the inverse system. However, our experiments indicate that
this resolution concern can be mitigated by the optimize-then-discretize approach, thus
offering clinical scientists more flexibility to choose the resolution based on their practical
need. Such flexibility may not only enable cardiac diagnosis to reach higher levels of detail
than previously possible, such as identifying the ischemic border zone (typically about 5
mm) or the conduction velocity (about 2 mm/millisecond), but also allow scientists to
balance the sensitivity and specificity of the diagnosis via adjusting the numerical system.

Future work: The ischemia scenario considered in this paper is simplified in that we
assumed a single region of nearly transmural ischemia. A natural extension will be to
evaluate this approach under more realistic ischemic scenarios such as multiple ischemic
regions, subendocardial ischemia and intramural ischemia. It is also worthwhile to connect
mechanistic studies of these ischemia with localization [13]. Another novel direction will be
to recover the TMP over the entire cardiac cycle for diagnosis of activation-related cardiac
diseases.

5.2 Computational Considerations

Individualized discretization: In this study we used the same mesh to discretize the control
variable v, the state variable u, and the adjoint variable p, but this is not necessary.
Individual and adaptive discretization of each variable deserves further investigation. In
inverse problems, one often wishes to discretize the control variable v coarsely so as to exert
certain projective regularization effect, meanwhile taking a finer discretization of the state
variable u [39]. The discretization concern for the adjoint variable has been discussed in
Section 3.2.1. In our problem, p does not need to stress stronger regularity than u, so the
same discretization for both is fine unless computation resource becomes a serious
bottleneck. It is straightforward to incorporate individual discretization into our framework,
see Eq (10) for the PDE constraint and Eq (21) for the optimality conditions.

Adaptive hp finite element refinement: PDE-constrained optimization is computationally
intensive: each iteration of the optimization involves solving the entire PDE system once.
Computational efficiency can be improved in two ways: achieving convergence with fewer
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iterations, or reducing the numerical cost in each iteration. Adaptive finite element methods
(FE) take effects in the latter way by discretizing PDEs differently in each optimization
iteration. While adaptive FE refinements for PDEs have been well established both in theory
and in practice, they have not yet been widely adopted in PDE-constrained optimization,
partly because most practical optimization solvers are algebraic, preventing change of
discretization between iterations (otherwise the finite-dimensional convergence criteria
become meaningless). Adaptive PDE-constrained optimization requires two conditions: the
optimize-then-discretize approach and a refinement strategy based on certain FE error
estimates. This paper addressed the first one, and a meaningful topic for future work is to
investigate finite element refinement schemes in terms of both mesh shapes and basis
functions.

Advanced algorithms for total variation: We fulfilled the TV minimization using the
fixed-point iteration, a choice that is a relatively robust but certainly not optimal in
performance. Our intention is to derive a rigorous finite element formulation for the TV
minimization rather than to thoroughly explore TV algorithms. Our finite element
formulation can be naturally adapted to more advanced TV algorithms as those reviewed in
[42]. The traditional TV algorithms, such as the fixed-point method, form the optimization
problem in the primal space alone. In such cases, the standard Newton’s method is not
recommended because its quadratic convergence domain is small when ε → 0 (see Eq (25))
[6,38]. In contrast, advanced TV algorithms formulate the minimization in both the primal
and dual spaces, such as the primal-dual Newton method [6] or the dual-space formulation
[42]. The primal-dual formulation not only achieves quadratic convergence, but also
removes the expediency of smoothing variable ε, thus allowing one to directly pursue the
original TV solution (without ε). In the aforementioned primal-dual algorithm literature, the
strong form of the KKT systems and their linearization were derived and then solved by
finite difference schemes. Integrating our finite element formulation with the primal-dual
algorithms will require (1) deriving the KKT system in the variational form and (2)
discretizing the functional variables by finite element expansion. Exploring the nuances of
such integration is worth further investigation.

Formulation in general Sobolev spaces: We formed the variational optimality conditions
of the PDE-constrained optimization in the L2 space, with the inner product taking equal
weights between the trial and test spaces (see Eq (11)). The optimality conditions can also
be formed in the general Sobolev spaces as described in the classical literatures of finite
element methods. A proper choice of the variational formulation should take into account
two issues: 1) the inherent structure of the given optimization functional and PDE
constraints and 2) the regularity of the finite element solution. Reexamining the finite
element theories for PDEs in the context of constrained optimization deserves further
investigation.

6 Conclusion
We proposed a general PDE-constrained optimization framework for solving the inverse
ECG problem with application in myocardial ischemia localization. Our main contribution
lies in developing dimension-independent inverse algorithms that perform consistently over
multiple discretization scales. With synthetic ischemia data, we localized ischemic regions
with approximately a 10% false-negative rate or a 20% false-positive rate up to 5% input
noise. With measured ischemia data, we reconstructed heart TMPs with approximately 0.9
correlation with the ground truth. The Tikhonov method tended to overestimate ischemic
regions but with good sensitivity, whereas the total variation method tended to
underestimate ischemic regions but with high specificity. To our knowledge this study was
the first inverse-ECG-based myocardial ischemia localization using measured heart data
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while still achieving adequate precision for clinical use, despite the limitation that the body-
surface potentials were simulated rather than measured. We believe the approach of PDE-
constrained optimization will benefit a broad range of bioelectromagnetic problems in heart
and brain research.
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Fig. 1.
Panel (A): the problem domain. (B): the heart/torso geometry. (C): fiber structure of a 1 cm-
thick slice of the heart. (D): a cross-sectional view of the heart mesh.
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Fig. 2.
Inverse solutions based on Mesh 1 with synthetic ischemia data, obtained by the Tikhonov
and the total variation methods. Ischemic regions are indicated by the blue color. All the
calculated TMPs are in the same color scale. This figure is to be considered with Fig 4. The
input noise is i.i.d. Gaussian imposed on each node on the body surface. The noise level
indicates the noise-to-signal ratio in the root-mean-square sense. Such noise setting holds for
all experiments in this paper.
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Fig. 3.
Inverse solutions based on Mesh 2 and Mesh 3, with synthetic ischemia data. Tikhonov and
total variation solutions are presented. TMP stands for the transmembrane potential.
Ischemic regions are denoted by the blue region. All the calculated TMPs are in the same
color scale. This figure is to be compared with Fig 2 and Fig 4. The mesh profiles are given
in Table 1.
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Fig. 4.
Accuracy of ischemia localization with synthetic ischemia data, in terms of the ratios of
sensitivity error (Panel A) and of specificity error (Panel B). This figure is to be compared
with Fig 2 and Fig 3.
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Fig. 5.
Inverse solutions based on Mesh 1 using the anisotropic inverse model and measured
ischemia data. Reconstructed heart potentials (by Tikhonov and total variation methods) are
visualized at the same cross section. Figures in each column are in the same color scale. CC
denotes the correlation coefficient between each reconstructed potential and the ground truth
(the top row).
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Fig. 6.
Inverse solutions based on Mesh 2 and Mesh 3, using the anisotropic model and the
measured ischemia data. Each column of reconstructed heart potentials are in the same color
scale. CC: the correlation coefficient between the computed potential and the ground truth
(the top row).
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Fig. 7.
Inverse computation time of the Tikhonov (left) and the total variation regularization (right)
based on the anisotropic heart model and measured ischemia data (shown by Fig 5 and Fig
6). Each column bar represents the time based on the given mesh and the torso-surface input
noise level. In the right panel, the number on each bar gives the number of fixed-point
iterations.
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Fig. 8.
Inverse solutions of an isotropic inverse model following an anisotropic forward simulation,
using measured ischemia data. Mesh 1 is being used. Each column of reconstructed heart
potentials are in the same color scale.
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Fig. 9.
Inverse solutions of the isotropic heart model following an anisotropic forward simulation,
based on Mesh 2 and Mesh 3. Each column of reconstructed heart potentials are in the same
color scale.

Wang et al. Page 34

J Comput Phys. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 35

Ta
bl

e 
1

M
es

h 
co

nf
ig

ur
at

io
n.

M
es

h
H

ea
rt

 n
od

e 
nu

m
be

r
H

ea
rt

 e
le

m
en

t 
nu

m
be

r
H

ea
rt

 a
ve

ra
ge

 e
dg

e 
le

ng
th

T
or

so
 n

od
e 

nu
m

be
r

T
or

so
 e

le
m

en
t 

nu
m

be
r

T
or

so
 a

ve
ra

ge
 e

dg
e 

le
ng

th

M
es

h 
1

3,
30

1
16

,5
46

4.
5 

m
m

11
,6

49
76

,5
50

12
.1

 m
m

M
es

h 
2

6,
54

5
36

,6
94

3.
3 

m
m

17
,2

99
11

,1
18

3
10

.2
 m

m

M
es

h 
3

17
,8

05
10

3,
52

0
2.

1 
m

m
25

,9
14

17
0,

35
5

8.
0 

m
m

N
ot

e:
 A

ll 
m

es
he

s 
m

ai
nt

ai
n 

an
 id

en
tic

al
 to

rs
o 

su
rf

ac
e 

di
sc

re
tiz

at
io

n 
(7

71
 n

od
es

 a
nd

 1
53

8 
tr

ia
ng

le
s.

)

J Comput Phys. Author manuscript; available in PMC 2014 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 36

Ta
bl

e 
2

C
on

du
ct

iv
iti

es
 o

f 
he

al
th

y 
he

ar
t t

is
su

es
. U

ni
t: 

Si
em

en
s/

m
et

er
.

T
yp

e
E

xt
ra

ce
llu

la
r 

lo
gi

tu
di

na
l

E
xt

ra
ce

llu
la

r 
tr

an
sv

er
se

In
tr

ac
el

lu
la

r 
lo

ng
it

ud
in

al
In

tr
ac

el
lu

la
r 

tr
an

sv
er

se
B

od
y

Is
ot

ro
pi

c 
D

at
a

0.
5

0.
5

0.
5

0.
5

1.
0

A
ni

so
tr

op
ic

 D
at

a
0.

16
0.

05
0.

16
0.

00
8

0.
22

N
ot

e:
 o

nl
y 

th
e 

re
la

tiv
e 

ra
tio

s 
am

on
g 

th
es

e 
co

nd
uc

tiv
iti

es
 m

at
te

r 
in

 n
um

er
ic

al
 s

im
ul

at
io

n.
 T

he
 a

ni
so

tr
op

ic
 d

at
a 

ar
e 

ac
co

rd
in

g 
to

 [
31

].

J Comput Phys. Author manuscript; available in PMC 2014 October 01.


