
Robust Analysis of High Throughput Screening (HTS) Assay
Data

Changwon Lim1,†, Pranab K. Sen2,3,‡, and Shyamal D. Peddada4,*

1Department of Mathematics and Statistics, Loyola University Chicago, 1032 W Sheridan Rd,
Chicago, IL 60660
2Department of Statistics and Operations Research, University of North Carolina at Chapel Hill,
338 Hanes Hall, CB#3260, Chapel Hill, NC 27599
3Department of Biostatistics, University of North Carolina at Chapel Hill, 3101 McGavran-
Greenberg, CB#7420, Chapel Hill, NC 27599
4Biostatistics Branch, NIEHS, NIH, 111 T. W. Alexander Dr, RTP, NC 27709

Abstract
Quantitative high throughput screening (qHTS) assays use cells or tissues to screen thousands of
compounds in a short period of time. Data generated from qHTS assays are then evaluated using
nonlinear regression models, such as the Hill model, and decisions regarding toxicity are made
using the estimates of the parameters of the model. For any given compound, the variability in the
observed response may either be constant across dose groups (homoscedasticity) or vary with dose
(heteroscedasticity). Since thousands of compounds are simultaneously evaluated in a qHTS
assay, it is not practically feasible for an investigator to perform residual analysis to determine the
variance structure before performing statistical inferences on each compound. Since it is well-
known that the variance structure plays an important role in the analysis of linear and nonlinear
regression models it is therefore important to have practically useful and easy to interpret
methodology which is robust to the variance structure. Furthermore, given the number of
chemicals that are investigated in the qHTS assay, outliers and influential observations are not
uncommon. In this article we describe preliminary test estimation (PTE) based methodology
which is robust to the variance structure as well as any potential outliers and influential
observations. Performance of the proposed methodology is evaluated in terms of false discovery
rate (FDR) and power using a simulation study mimicking a real qHTS data. Of the two methods
currently in use, our simulations studies suggest that one is extremely conservative with very small
power in comparison to the proposed PTE based method whereas the other method is very liberal.
In contrast, the proposed PTE based methodology achieves a better control of FDR while
maintaining good power. The proposed methodology is illustrated using a data set obtained from
the National Toxicology Program (NTP). Additional information, simulation results, data and
computer code are available online as supplementary materials.
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1 INTRODUCTION AND MOTIVATION
The classical rodent cancer bioassay used to detect toxicity or carcinogenicity of a chemical
is often a slow and expensive process. For instance a typical carcinogenicity bioassay
conducted by the National Toxicology Program (NTP) takes more than 2 years and costs
several million dollars. It is widely acknowledged that humans are exposed to thousands of
chemicals and yet less than 600 chemicals have been investigated by the NTP using the 2-
year rodent bioassay. To speed up the process of screening chemicals, the NTP and other
agencies as well as some chemical and pharmaceutical industries have begun conducting
quantitative high throughput screening (qHTS) assays. Rather than using higher order
animals such as rodents, qHTS assays typically treat cells or tissues to various doses of each
chemical to determine toxicity of a chemical. Typically these assays are completed in a short
period of time which results in substantial reduction of costs and time. Accordingly, in
recent years, the design and analysis of qHTS data has been an active area of research
(Zhang 2007; Michael et al. 2008; Qu 2010).

Typically, thousands of chemicals are processed at the same time in a qHTS assay and the
resulting data are usually analyzed by fitting dose-response curves using the following
function, known as the Hill function shown in Figure 1:

(1)

where x denotes the dose of a chemical, θ0 is the lower asymptote, θ1 is the diference
between the mean response at baseline and the lower asymptote (also known as the efficacy
of the chemical), θ2 is the slope or shape parameter of the curve and θ3 is the dose
corresponding to 50% response to the maximum change from baseline (also known as
ED50). Throughout this paper xmin and xmax denote the smallest and the largest doses used
in the study. In qHTS assays a possible response variable of interest is cell viability
measured by intracellular adenosine triphosphate (ATP) levels (Xia et al. 2008). Often such
responses are normalized relative to a positive control (−100%) and the vehicle control (0%)
as follows:

where y is percent activity, y0 is raw data value, N is the median of the vehicle control, I is
the median of a positive control (Inglese et al. 2006). Hence, the response is expressed as
percentage and can be positive or negative.

Two common methods for analyzing qHTS data are the methods by Xia et al. (2008) and
Parham et al. (2009). The former method, which will be referred to as the NCGC method,
was developed by researchers at National Institute of Health Chemical Genomic Center
(NCGC) and is widely used by researchers in the field. For each chemical, the NCGC
methodology fits the Hill model using ordinary least squares and classifies the chemical into
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various curve classes on the basis of the ordinary least squares estimates (OLSE) θ̂ as
follows:

• Class 1: If θ̂1 > 30, θ̂3 ∈ (xmin, xmax) and the curve does not have the lower
asymptote.

• Class 2: If θ̂1 > 30, θ̂3 ∈ (xmin, xmax) and the curve has the lower asymptote.

• Class 3 (Inconclusive): If θ̂1 > 30 and θ̂3 ∉ (xmin, xmax).

• Class 4 (Inactive): If θ̂1 < 30 then a chemical is classified as inactive.

Chemicals in Class 1 are declared to be active if the multiple correlation coefficient R2 >
0.9. Chemicals in Class 2 are declared to be active if R2 > 0.9 and θ̂1 > 80. Chemicals that
are neither classified to be active nor inactive are classified as inconclusive (Class 3). To
define lower asymptote we quote Inglese et al. (2006) “To determine if the curve contained
a lower bound asymptote, two points, representing the highest concentration tested and a
half-log lower, were plotted according to the curve’s Hill parameters. If the slope of these
points was > −10 and if the plotted concentrations were past the inflection, the curve was
determined to contain a lower asymptote.”

A problem with the above strategy is that it ignores uncertainty associated with θ̂. To deal
with some of these issues, Parham et al. (2009) first test H0 : θ1 = 0 against Ha : θ1 ≠ 0 using
a likelihood ratio test (LRT) (chi-squared with 3 degrees of freedom) at α = 0.05 with
Bonferroni correction for multiple testing. They then classify compounds as follows:

• Active: If H0 is rejected with θ̂2 > 0, θ̂3 < xmax and |yxmax| > 10 where yxmax is the
response at x = xmax.

• Inactive: If either H0 is not rejected or θ̂2 < 0.

• Marginal: If a chemical is neither classified as active nor as inactive.

Throughout this paper we shall refer to the above methodology as “Parham methodology”.
Although they use a formal procedure for testing θ1, they too ignore uncertainty associated
with the estimates of remaining parameters. Furthermore, they ignore the underlying
variance structure by using OLSE even if the variances are heteroscedastic.

In practice, since qHTS assays consist of data on thousands of chemicals, it may not be
realistic to assume that all data are homoscedastic. Williams et al. (2007) suggested the use
of iterated weighted least squares (IWLS) methodology by modeling the variance as a
function of dose. Although such a methodology is practical, it is well-known that when the
error variance is nearly homoscedastic then IWLS may not perform well. To illustrate this
point, we consider qHTS data on two chemicals from the NTP library of 1,408 chemicals
(Tice et al. 2007). We label them as Chemical A and Chemical B. Since outliers are
common in qHTS data, throughout this paper we use M-estimators (with Huber-score
function) in place of least squares. Thus we use Ordinary M-estimator (OME) and Weighted
M-estimator (WME), both of which will be defined precisely later in the paper. The
following illustration would work equally well for OLSE and IWLSE.

Data for Chemical A, along with OME and WME fitted curves are presented in Figure 2(a).
Similarly, plots for Chemical B are presented in Figure 2(b). The individual point estimates
are summarized in Table 1. There are a total of 14 doses in the study which are 0.00059,
0.00294, 0.0147, 0.0328, 0.0734, 0.164, 0.367, 0.821, 1.835, 4.103, 9.175, 20.52, 45.87, and
91.74 with 3 replicates per dose. From Figure 2, it seems reasonable to assume that
Chemical A data are possibly heteroscedastic as the variance seems to increase with dose,
whereas Chemical B data are approximately homoscedastic. We performed a simple linear
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regression by regressing log of sample variance on the dose and found that the slope
parameter for Chemical A is highly significant (p = 0.004) while the slope parameter for
Chemical B is not (p = 0.33). The log linear model for the sample variance seems to be a
simple parsimonious model to describe variance as a function of dose. Hence it is used
throughout this paper.

As seen from Figure 2, the fits based on OME and WME seem to be equally good.
However, parameter estimates and their standard errors seem to differ substantially. Thus
this example demonstrates that OME and WME (and their standard errors) can be drastically
different from each other depending upon the underlying variance structure. In practice, one
never knows a priori if the data are homoscedastic or heteroscedastic. Standard diagnostic
tools are practically impossible to implement since thousands of models are to be fitted in an
automated manner. Thus there is a need for a methodology which automatically chooses
between OME and WME.

Recently, in Lim et al. (2012) we proposed the preliminary test estimation (PTE) procedure
for possibly heteroscedastic nonlinear models. The basic idea is to select either OME or
WME on the basis of a simple preliminary test for heteroscedasticity. Depending upon the
outcome of the test, PTE uses either OME or WME. Motivated by the performance of PTE
methodology in Section 2 we develop PTE based likelihood ratio type methodology to
evaluate if a chemical is active or inactive. In addition to testing, we also propose PTE based
confidence intervals for estimating various parameters of the Hill model. We derive suitable
critical values for the PTE methodology. Extensive simulation studies are conducted in
Section 3 to investigate the performance of the proposed methodology in terms of the false
discovery rate (FDR), the power and coverage probabilities of confidence intervals.

It is important to note that unlike linear models, where statistical inference is based on exact
distribution theory (under suitable model assumptions), in the case of nonlinear models one
relies on the asymptotic theory. The asymptotic approximations are generally reasonable for
moderately large tail probabilities. Unfortunately, however, the asymptotic approximations
are not good for very small tail probabilities, which are of primary interest in multiple
testing problems. This is particularly the case when the data are heteroscedastic. A possible
alternative to asymptotic theory based methodology is to use a resampling based method
such as bootstrap/permutation methodology. Unfortunately, in the case on nonlinear models,
this is a computationally challenging process. Even in the absence of bootstrap, fitting
nonlinear models requires a very large number of starting values to avoid convergence to
local solutions. It is critical to get a solution as close to the optimum as possible – not only
because one wants to estimate the model parameters as accurately as possible, but the
uncertainty estimates depend upon the unknown parameters (unlike linear models). This has
a downstream effect on statistical inference. Secondly, some of the model parameters can be
very unstable/sensitive to the data (such as ED50 and slope parameter). Estimates of these
parameters are critical for toxicologists. Thus, even in the absence of bootstrap/permutation,
the computation time to fit each model can be substantial. Since we are interested in far right
tail probabilities (of the order 0.0001 or less), the number of bootstraps/permutations needed
are of the order 100,000 or more to get an accurate estimate of small p-values. The current
and future qHTS assays process 10,000 to 100,000 chemicals if not more. Thus the
bootstrap/permutation based methods are practically infeasible for these assays. For this
reason, it is more practical to use asymptotic theory based p-values although they are
potentially inaccurate for small tail probabilities, especially when the data are
heteroscedastic. As a consequence the FDR cannot be controlled by the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). Since p-values are inaccurate, we
need to empirically determine which “black box” method could control FDR in this case. In
this paper we concentrate on using a Bonferroni corrected threshold at level 0.05, which in
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our simulations below works quite well at assuring FDR control at the same level. The
Bonferroni adjusted p-values obtained in this paper can be thought of as “scores” for each
chemical, with small scores corresponding to a compound that is more likely to be active.
Thus, although the methodology described here is inspired by large sample theory, the
inability to obtain accurate p-values for small to moderate sample sizes renders this
methodology to be a bit of a “black box”. We note that this problem is not unique to the
qHTS context, but may arise in other settings where p-values are not exact but are based on
asymptotic methods.

The proposed methodology is illustrated in Section 4 using an assay conducted on NTP’s
library of 1,408 compounds. We conclude this paper in Section 5 by providing discussion
and open problems. Notations and Proofs are provided in the Appendix. The regularity
conditions and results of some additional simulation studies are provided in the online
Supplementary Materials.

2 METHODOLOGY
The standard nonlinear regression model may be expressed as

(2)

where yij is an observable response variable, xi is a known constant, f(xi, θ) and θ are
defined in (1), σi is an error variance at xi, and εij is an unobservable random error assumed

to be iid N(0, 1). The total sample size .

Our experience with a sample of qHTS data suggests that σi depends upon xi. To keep the
variance model parsimonious, we use the log-linear model log σi = log σ(xi, τ) = τ0 + τ1 xi,
where τ = (τ0, τ1)t is a vector of variance parameters. However, the proposed methodology
can be easily modified if a more complex model is justified.

An underlying assumption made by researchers in this field is that if a chemical is active
then its mean response can be modeled by the Hill model. On the other hand, if the chemical
is not active then it is assumed to have a constant mean response across dose groups.
Therefore, one may formulate the statistical problem as a test of the following hypotheses:

(3)

Assuming that the residuals are homoscedastic and normally distributed, the null distribution
of the likelihood ratio test (LRT) for the above hypotheses can be approximated by central
F-distribution (cf., Gallant 1987). More precisely, suppose θ̂ is the OLSE of θ under H1 with

. Similarly, suppose β̂ is the sample mean under the null

hypothesis and . Then the LRT LOLSE = {(SSE0(β̂)−SSE1(θ̂))/3}/
{SSE1(θ̂)/(n−4)} is approximately central F distributed with (3, n − 4) degrees of freedom.
The above test statistic can be approximated as LOLSE = {η̂t(Ĥ−H0)η̂/3}/{η̂t(In − Ĥ)η̂/(n
−4)}+oP (1) = LOLSE+oP (1), where η̂ = Y − β̂1, Y = (y11,…, yk,nk)t, β̂ = ȳ, 1 = (1,…, 1)t, Ĥ
= F̂(F̂tF̂)−1 F ̂t, F̂ = fθ (θ̂) = {∂f (xi, θ)/∂θj∣θ=θ̂}, and H0 = 1(1t1)−11t. Since LOLSE is not
robust to outliers and influential observations, in this paper we make it robust by replacing
OLSE by OME θ̃n, in the above calculations, where OME is defined as (Lim et al. 2012): θ̃n
= Argmin {Σi,j h2 (yij − f (xi, θ)) : θ ∈ ℜp} where h is taken to be the Huber-score function.

For a pre-specified positive constant k0, , if |u| < k0, otherwise h(u) = {k0(|u|
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−k0/2)}1/2. As commonly done, throughout this paper we take k0 to be 1.5. We shall denote
the resulting statistic by LOME. Since OME and OLSE are asymptotically equivalent and
OME is consistent and asymptotically normally distributed (Lim et al. 2012), the null
distribution of LOME can also be approximated by central F-distribution with (3, n − 4)
degrees of freedom. Throughout this paper we shall refer to this modified LRT as the OME
based methodology.

As often done, for heteroscedastic data we use the weighted version of LOLSE by weighting
the least squares with the estimated variances under the log-linear model as follows. First we
estimate τ0 and τ1 in the log-linear model log σi = τ0 + τ1xi by performing simple linear
regression of log of residuals on dose using OLSE. Using these estimates we obtain WLSE
of θ, denoted as θ̂ under H1 and WLSE of β, denoted β̂ under H0. Let L0 = Σi,j (yij − β̂)2/
exp(2τ̂1xi), L1 = Σi,j (yij − f(xi, θ̂))2/exp(2τ̂1xi) and β̂ = Σi,j yij exp(−2τ̂1 xi)/Σi niexp(−2τ̂1xi).
Then the weighted version of LOLSE is given by LWLSE = {(L0 − L1)/3}/{L1/(n−6)}. As
done in the case of homoscedastic data, to robustify against outliers and influential
observations, we replace the WLSE by WME in the above test statistic, where

, is defined as (Lim et al. 2012)

. Under
suitable regularity conditions, the asymptotic normality and consistency of WME is
established in Lim et al. (2012). The WME version of LWLSE is denoted as LWME. Again
due to asymptotic equivalence of WME and WLSE and the asymptotic equivalence of
LWLSE and LWME, the null distribution of LWME can be approximated by the approximate
null distribution of LWLSE (see Theorem 1).

As noted earlier, in practice one does not know if the data are homoscedastic or
heteroscedastic. For this reason we now describe the PTE methodology.

As in Lim et al. (2012), we test for heteroscedasticity under the log-linear model log σi = τ0

+ τ1xi, by testing H0 : τ1 = 0 vs. H1 : τ1 ≠ 0 using , which is
approximately central t distributed with n − 2 degrees of freedom. Throughout this paper we

perform this preliminary test at α = 0.5. Thus the PTE  is defined as

, where I(·) is the usual indicator function. There
is no special reason for choosing an α of 0.50. Our proposed methodology is flexible enough
that one could use any level of significance in the pre-test. We use the pre-test as a model
selection procedure and not a formal test. It mimics classical model selection procedures
such as forward selection/stepwise regression etc. in the linear/logistic/Cox regression model
literature. Most standard software packages (and applied researchers) typically set the
default value to be larger than 0.05. For example, in its FORWARD selection method
implemented in PROC REG, SAS sets it at 0.50 as the default value (http://support.sas.com/
onlinedoc/913/docMainpage.jsp). Unlike in most instances, in the present context of
pretesting for homoscedasticity vs. heteroscedasticity, the Type II error is more important
than the Type I error. This is because, using a homoscedastic method for heteroscedastic
data usually results in an inflated false positive rate. On the other hand, if we use a
heteroscedastic method for homoscedastic data, then the damage done is potentially small
because the estimate of the slope parameter of the log-linear variance model (corresponding
to the dose) would be small enough that the dose may not contribute much to the variance.
Thus the presumed heteroscedastic model would be “close to” homoscedastic case. Hence,
we arbitrarily chose α to be 0.50.

The asymptotic covariance matrix of , derived in Lim et al. (2012), is as follows:
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where , Ft is the cumulative
distribution function of the t-distribution with n − 2 degrees of freedom, and Γ1n (θ, τ), Γ31n
(θ, τ), Γ33n (θ) and Γ4n (θ) are defined in Appendix A.

The PTE based test statistic, which is robust to heteroscedasticity as well as outliers and
influential observations, is given by LPT = LOME I(|Tn| ≤ tα/2,n−2) + LWME I(|Tn| > tα/2,n−2).
Using the fact that OME and WME are consistent and asymptotically normally distributed
under the regularity conditions (Lim et al. 2012), we obtain approximate critical values for
LWME and LPT in the following theorem.

Theorem 1
Suppose εij ~ independent N (0, exp{2(τ0 + τ1xi)}). Then,

a. Under the conditions [S1] – [S9] in the supplementary material, the distribution of
LWME under the null hypothesis H0 can be approximated by the central F-
distribution with (3, n − 6) degrees of freedom.

b. Under the conditions [S1] – [S11] in the supplementary material, lim supn→∞
P(LPT > fα1,3,n−6∣H0) ≤ α1 where fα1,3,n−6 is the upper α1 percentile of F-
distribution with (3, n − 6) degrees of freedom and α1 is the significance level.

The proof of the theorem is provided in Appendix B.

Our proposed methodology using OME, WME or PTE for screening chemicals in qHTS
assays can be summarized as follows. For each chemical test (3) using LT (i.e., LOME,
LWME or LPT) with Bonferroni correction for multiple testing. Chemicals that are significant
based on this test are declared to be active while the remaining ones are declared to be
inactive.

Once a chemical is declared to be active, researchers are interested in estimating individual
parameters of the Hill model along with their confidence intervals. Standard errors and the
critical values for the confidence intervals using OME and WME methodologies are
available from Lim et al. (2012). However, Lim et al. (2012) did not derive the critical
values for the confidence intervals centered at PTE, which are provided in the following
theorem.

Theorem 2

For i = 1,…, 4 define . Then, under the conditions

[S1] – [S11] in the supplementary material, .

The proof of the theorem is provided in Appendix B.

Note that we are constructing confidence intervals for parameters of those models that are
selected by the above testing process. Consequently, one needs to be concerned about the
overall coverage probability along the lines of Benjamini and Yekutieli (2005).
Unfortunately, as noted earlier, the asymptotic p-values, especially those corresponding to
far right tail of the distribution, are likely to be incorrect for small to moderate sample sizes.
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Thus, under the null hypothesis, the p-values are not necessarily uniformly distributed. As a
consequence, procedures such as those of Benjamini and Yekutieli (2005) are not directly
applicable. This presents an interesting problem for future research.

3 SIMULATION STUDIES
In this simulation study we compare the proposed PTE based methodology with the two
existing methods, namely, NCGC and Parham methodologies as well as compare it with
OME and WME based methodologies. Note that the WME and OME methods are similar to
the PTE method. In contrast, NCGC and Parham are completely different methods. Our
primary criteria of comparison are the estimated false discovery rate (FDR) and the power.
As usual, for a given method, the estimated FDR is the proportion of true null hypotheses
rejected among all rejected hypotheses and the estimated power is the proportion of cases in
which the null hypothesis is correctly rejected among all cases where the null is false.

Since investigators are also interested in estimating parameters of the Hill model for
chemicals that are considered to be active, in this paper we also compare the performance of
the estimators, OME, WME and PTE in terms of coverage probability.

3.1 Study design
The design of our simulation study was modeled after a real qHTS data set obtained from
the NTP. Thus our simulation experiment consisted of 14 doses (0.59 nM, 2.94 nM, 14.7
nM, 32.8 nM, 73.4 nM, 0.164 μM, 0.367 μM, 0.821 μM, 1.835 μM, 4.103 μM, 9.175 μM,
20.52 μM, 45.87 μM, and 91.74 μM) and 3 observations per dose. We generated 10,000
“chemicals” of which γ × 100% corresponded to “active” (i.e., none of the Hill parameters
are zero) and the remaining (1 − γ) × 100% were true nulls which corresponded to no
change in mean response across the dose groups. We now describe the selection of θ for the
non-null data in our simulation study. To keep the parameters of our simulation study
consistent with the NTP’s data on 1,408 chemicals, we first fitted a Hill model to each of
these 1,408 compounds. From these we selected 100 patterns of curves that displayed
various shapes of dose-response to get a reasonably broad selection of patterns. Since the
observed responses of the NTP’s qHTS data were normalized using the positive control (set
to be −100%) and the vehicle control (set to be 0%) obtained using dimethylsulfoxide
(DMSO) (the solvent used for compound transfer) only, and since NCGC uses 30% as the
minimum response to be active, θ1 was chosen in the interval (32, 112). Motivated by
Parham et al. (2009), θ2 was chosen to range from 0.8 to 4.9 and θ3 < xmax. Hence the 100
parameter sets so chosen include a wide range of patterns of shapes of Hill curves (see
online supplementary materials for the values). The descriptive statistics of the parameters
are presented in Table 2. We generated the null data by taking the mean response to be zero
across all doses.

The patterns of variances considered in our simulation study were also deduced from the
1,408 chemicals data. For the selected 100 compounds, we tested for homoscedasticity and
estimated the standard deviation for homoscedastic data sets. The range of the estimated
standard deviation is between 2.9 and 48.6 and the median is 5.3. Thus, we considered five
patterns of homoscedastic errors with standard deviation, σ = 4, 6, 8, 15 and 30,
respectively.

To obtain patterns of variances to model heteroscedasticity, we fitted log-linear model for
the variance (as described in the previous section) to the heteroscedastic data sets among the
selected 100 compounds. The range of the estimated slope τ̂1 of the log standard deviation is
between −0.034 and 0.027 and the median is 0.007. Then, we arrived at four patterns of
parameters, namely, (τ0, τ1) = (1.5, −0.015), (1, 0.01), (1, 0.02) and (3, 0.01). The ranges of

Lim et al. Page 8

Technometrics. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



σi with the choice of these parameters were (1.132, 4.482), (2.718, 6.803), (2.718, 17.027)
and (20.086, 50.270), respectively.

In practice one generally does not know a priori what proportion of chemicals are
heteroscedastic in a given qHTS assay. To keep our simulations realistic, we considered
three patterns of proportion of heteroscedastic chemicals in a given run, namely, 10%, 25%
or 50% heteroscedastic chemicals. The remaining are homoscedastic.

In summary we have 100 patterns of parameters with 9 patterns of variances for non-null
data and 9 patterns of variances for null data. Thus we created a universe of 90,000 non-null
data by generating 100 data sets for each of the 900 combinations of the patterns, and 9,000
null data by generating 1,000 data sets for each of the 9 patterns. From these 99,000 data
sets, we obtained a random sample of 10,000 “chemicals” of which γ × 10, 000 were non-
null and the remaining were null patterns. We repeated the simulation study 100 times and
estimated the FDR and the power. We considered two different patterns of γ = 0.05 and
0.10 and three different patterns of the proportion of heteroscedastic data (as stated above).

For comparing OME, WME and PTE in terms of the coverage probability and the length of
confidence interval, we used non-null data only. From 90,000 non-null data sets, we
obtained a random sample of 10,000 non-null chemicals with three different patterns of
proportions of heteroscedastic chemicals, which were 0.10, 0.25 or 0.50. Thus, either 10%
or 25% or 50% of the non-null chemicals were heteroscedastic.

3.2 Results
The estimated FDR and power for the methods when γ = 0.10 are summarized in Figure 3.
The results for the case of γ = 0.05 are provided in the supplementary material. The standard
error of all FDR and power estimates provided in these figures was less than 0.005. In all the
cases, the Parham method had a very high FDR compared to other methods. For example,
when the proportion of non-null data is 0.10 and the proportion of heteroscedastic data is
0.50, the overall FDR of the Parham method is 0.421 and its FDR for heteroscedastic data is
0.475. On the other end of the spectrum, the NCGC method produced zero FDR in all cases.
Accordingly it has a very low power. Additionally, we see from Table 3, both NCGC and
Parham methods tend to declare a large proportion of chemicals to be inconclusive or
marginal, thus requiring additional testing and resources to evaluate such chemicals.

The three alternative methods discussed in this paper, namely, OME, WME and PTE, had a
better control of FDR in comparison to Parham method while maintaining reasonably good
power in all the cases considered here. They were uniformly more powerful than NCGC
method. The power of OME, WME and PTE based methods were almost same in every case
but they differed in terms of FDR. As expected, the OME has the smallest FDR when the
data are homoscedastic and generally has the largest FDR when the data are heteroscedastic.
Overall, it has a larger FDR than WME and PTE based methods and hence we do not
recommend its use for qHTS data. Interestingly, WME and PTE perform very similarly.
This is largely due to the fact that for homoscedastic data the estimate of τ1 used in the
WME methodology is small enough for WME to perform similar to OME (and hence
similar to PTE). However, when estimating confidence intervals for active chemicals, our
simulation study reveals that PTE methodology outperforms WME (as well as OME) in
terms of coverage probability (Figure 4). The coverage probabilities based on PTE are closer
to the nominal level (0.95) than those based on OME and WME. One exception is the
generally elevated θ2 levels, in which PTE can be slightly higher and WME is close to
nominal. The OME is subject to severe under-coverage especially for heteroscedastic data.
For example, the lowest coverage probability based on OME for θ0 is as low as 0.78 when
25% of the data are heteroscedastic. The WME is also subject to under-coverage in several
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cases, with the coverage probability as low as 0.90. On the other hand, the lowest coverage
probability based on PTE is 0.93.

In summary, our simulation studies suggest that the proposed methodology based on PTE
outperforms the existing methods of NCGC and Parham et al. (2009) by providing a better
control of FDR while maintaining good power.

4 ANALYSIS OF HTS ASSAYS DATA
The NTP library of 1,408 compounds was established for evaluation in qHTS assays (Smith
et al. 2007; Tice et al. 2007). These include solvents, preservatives, flavoring agents,
therapeutic agents, inorganic and organic pollutants, pesticides, natural products, etc.
Among 1,408 compounds, 1,353 are unique compounds and 55 are tested twice to evaluate
the reproducibility of the assay. For details, we refer the reader to Xia et al. (2008).

We illustrate the proposed methodology using the HepG2 cell triplicate data obtained from
the above experiment. For each compound, 14 different concentrations, listed previously in
Section 3.1 and ranging from 0.00059 to 91.74 μM, were used. There were 3 replicates at
each concentration thus resulting in a total sample size n = 42 observations.

The results of the analysis using all the methods discussed in this paper are summarized in
Figure 5. According to our preliminary test 782 out of 1,408 compounds (56%) potentially
have a heteroscedastic variance structure and the remaining 626 (44%) have a
homoscedastic variance structure.

According to the NCGC method 5% of the 1,408 chemicals are active, while 26% are active
according to the method of Parham et al. (2009). On the other hand, using the proposed
OME, WME and PTE methodologies we discovered 19%, 17% and 17% of the 1,408
chemicals to be active, respectively. The NCGC method declared 88% chemicals as
inconclusive while the Parham method declared 41% chemicals as marginal. For
homoscedastic data, 5%, 27%, 18%, 16% and 15% of 626 chemicals are active while for
heteroscedastic data, 4%, 25%, 21%, 18% and 18% of 782 chemicals are active according to
the NCGC, Parham, OME, WME and PTE methods, respectively.

Venn diagrams of active chemicals declared by the various methods are provided in in
Figure 6. From Figure 6(a), 205 chemicals were found to be active by OME, WME and PTE
methods. Figure 6(b) shows that 66 chemicals were discovered by all three methods in the
diagram.

5 DISCUSSION AND OPEN PROBELMS
With the advent of high throughput screening (HTS) assays and the need for fitting
thousands of nonlinear regression models to classify chemicals into various toxicity
categories, it is important that statistical methods are developed which are robust to various
assumptions commonly made in classical regression analysis. This paper takes the first step
in this direction. Based on the simulation studies and the example of real qHTS data
(Section 4), it appears that the proposed methodology performs better than two currently
available methods in terms of the false discovery rate and the power, which is desirable for
the analysis of qHTS assays data. Although the PTE and WME performed equally well in
terms of FDR and power, the PTE as an estimator outperforms both OME and WME in
terms of the coverage probability of confidence intervals.

In the course of this investigation we identified several important research problems for
future research. As noted in the introduction, the asymptotic p-values derived in the context
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of nonlinear models are not necessarily accurate for small to moderate sample sizes,
especially those corresponding to small tail areas which are important for multiple testing
problems. This problem is not unique to the present context, but may arise in other such
multiple testing problems where asymptotic p-values are used. Unfortunately, resampling
based procedures such as bootstrap/permutation methods are not practical in such situations
for computational reasons.

A related problem is, for some data, especially the null data, the condition number of the
information matrix can be extremely large. Note that, unlike linear models, in nonlinear
models the information matrix is a function of the unknown parameters of the model.
Toxicologists seem to recognize this issue and hence tend to discount/ignore data with either
large slopes or large ED50 values since they can’t trust those values (e.g., Parham et al.
2009). Analogous to SAM methodology for microarray data, in such cases we believe that
the testing procedure can perhaps be modified by considering a shrinkage or a ridge type M-
estimator in place of the regular M-estimator considered in this paper.

Although the theory of optimal designs is well developed in the case of linear and nonlinear
models, it is has not been very well developed for high throughput screening assays with the
exception of Qu (2010). Optimal designs developed in Qu (2010) are useful when the
investigator is interested in making comparisons across chemicals. However, in the context
described in this paper the problem of interest is not necessarily the comparison among
thousands of chemicals but to screen chemicals that are potentially toxic. Hence the design
issues discussed in Qu (2010) is not directly applicable here. Since the information matrix
depends upon the unknown parameters of the model, the optimal design is not only a
function of the dose but it is also a function of the unknown parameters of the model. The
problem is exacerbated by the fact that the study involves not one nonlinear model but
thousands of nonlinear models. Given that qHTS assays are being routinely conducted, it is
important to derive suitable optimal designs. Since the condition number of the information
matrix plays an important role, perhaps one may explore optimal designs by taking the
objective function to be the expected value of the condition number of the information
matrix. The expectation may be taken over a suitable prior distribution of θ, representing a
wide range of chemicals.
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Acknowledgments
This research was supported, in part, by the Intramural Research Program of the NIH, National Institute of
Environmental Health Sciences [Z01 ES101744-04]. This work was initiated while Dr. Lim was a post-doctoral
research fellow at NIEHS under the supervision of Dr. Peddada. We thank Drs Kissling, Shockely, the editor, the
associate editor and the two anonymous referees for several helpful comments that led to substantial improvement
in the content and presentation of the manuscript.

APPENDIX A: NOTATIONS
In this appendix we define the notations used in the paper.

i.
, where γ2 = Eψ′ (ε)(≠ 0), k(zi, τ) = 1/σ

(zi, τ), and fθ (x, θ) = (∂/∂θ) f (x, θ).

ii.
, where .
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iii.
, where .

iv.
, where γ4 = Eψ′ (σ (z, τ)ε)(≠ 0).

APPENDIX B: PROOFS OF THEOREMS

Proof of Theorem 1
(a) It is enough to show that the distribution of LWLSE under H0 is approximately central F-
distribution with (3, n − 6) degrees of freedom. To begin with we assume τ1(≠ 0) is known.

Let , g(xi, θ) = f (xi, θ)/exp(τ1 xi) and σ0 = exp(τ0). Then, the nonlinear

regression model (2) can be expressed by . Then,

, where η1 = Y* − g(θ), ,
g(θ) = (g(x1, θ), …, g(xk, θ))t (n × 1 vector), H* = G(GtG)−1Gt and G = gθ(θ) = {∂g(xi, θ)/

∂θj}. Under H0 in (3) the above regression model is replaced by , where di = 1/

exp(τ1 xi). Then, , where , η0 = Y*
− Dβ, D = (d1, …, dk)t (n × 1 vector) and G0 = D(Dt D)−1 Dt. If we apply the standard

theory of the LRT in nonlinear regression models, under H0  is
approximately following the central F-distribution with (3, n − 6) degrees of freedom.

Since τ1 is unknown we replace it by its estimator τ̂1n. Noting that τ̂1n = τ1 + oP (1) and

hence exp(τ̂1n xi) = exp(τ1xi) + oP (1), we therefore have  and .
Consequently, LWLSE = L* + oP (1). Therefore, under the null hypothesis H0, LWLSE is
approximately distributed as central F-distribution with (3, n − 6) degrees of freedom.

(b) We show that the Type I error for the test statistic LPT is bounded by α1 in the following
equation. Here the independence between Tn and (LWME, LOME) is needed, which can be
deduced from the asymptotic joint normality of (θ̃, θ̂, τ̂1n) (Theorem 2, Lim et al. 2012).

Proof of Theorem 2
For i = 1, …, 4, from the independence between Tn and (θ̃, θ̂) (Theorem 2, Lim et al. 2012),
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where U and V are random variables following t-distributions with n − 6 degrees of freedom
and n − 4 degrees of freedom, respectively.
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Figure 1.
Hill function
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Figure 2.
HepG2 cell triplicate data, potentially (a) heteroscedastic and (b) homoscedastic, from qHTS
assays; the corresponding fitted curves using OME and WME methods.
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Figure 3.
Estimated FDR and power for OME, WME, PTE, NCGC and Parham methods when the
proportion of heteroscedastic data is 0.10, 0.25 and 0.50. Here γ = 0.10 and α = 0.05/10,
000.
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Figure 4.
Estimated coverage probability based on OME, WME and PTE methods for non-null
(overall, homoscedastic or heteroscedastic) data with 1 − α = 0.95 when the proportion of
heteroscedastic data is 0.10, 0.25 or 0.50.
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Figure 5.
Screening results for 1,408 chemicals of HepG2 cell triplicate data using the NCGC,
Parham, the proposed method based on OME, WME and PTE with α = 0.05/1408.
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Figure 6.
Venn diagrams of active chemicals using (a) OME, WME and PTE methods and (b) NCGC,
Parham and PTE methods from qHTS assays.
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Table 2

Summary statistics of 100 sets of parameters used in the simulation study.

Parameter Range Mean Standard deviation

θ0 (−117, −31) −74.420 26.377

θ1 (32, 112) 71.110 26.237

θ2 (0.8, 4.9) 2.467 1.060

θ3 (0.055, 83.49) 30.826 21.467
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