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Abstract
Purpose—Electronic healthcare databases are commonly used in comparative effectiveness and
safety research of therapeutics. Many databases now include additional confounder information in
a subset of the study population through data linkage or data collection. We described and
compared existing methods for analyzing such datasets.

Methods—Using data from The Health Improvement Network and the relation between non-
steroidal anti-inflammatory drugs (NSAIDs) and upper gastrointestinal bleeding (UGIB) as an
example, we employed several methods to handle partially missing confounder information.

Results—The crude odds ratio (OR) of upper gastrointestinal bleeding was 1.50 (95%
confidence interval: 0.98, 2.28) among selective cyclo-oxygenase-2 inhibitor initiators (n =
43,569) compared with traditional non-steroidal anti-inflammatory drug initiators (n = 411,616).
The OR dropped to 0.81 (0.52, 1.27) upon adjustment for confounders recorded for all patients.
When further considering three additional variables missing in 22% of the study population
(smoking, alcohol consumption, body mass index), the OR was between 0.80 and 0.83 for the
missing-category approach, the missing-indicator approach, single imputation by the most
common category, multiple imputation by chained equations, and propensity score calibration.
The OR was 0.65 (0.39, 1.09) and 0.67 (0.38, 1.16) for the unweighted and the inverse probability
weighted complete-case analysis, respectively.

Conclusion—Existing methods for handling partially missing confounder data require different
assumptions and may produce different results. The unweighted complete-case analysis, the
missing-category/indicator approach, and single imputation require often unrealistic assumptions
and should be avoided. In this study, differences across methods were not substantial, likely due to
relatively low proportion of missingness and weak confounding effect by the three additional
variables upon adjustment for other variables.
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Introduction
Electronic healthcare databases are widely used to assess the comparative effectiveness and
safety of therapeutics in real-world settings.1,2 However, as these databases are not created
for research purposes, data on certain important confounders may not be recorded. For
example, administrative claims databases rarely, if ever, include direct measures of cigarette
smoking, left ventricular ejection fraction, or depression severity.

Confounder data are sometimes available for a subset of patients. For example, measures of
cigarette smoking or left ventricular ejection fraction may be recorded for some patients
with electronic health records (EHRs). Administrative claims databases and EHRs can be
linked to each other,3 or to device and disease registries,4-7 birth certificates,8,9 or survey
data10 to provide additional confounder information that is otherwise not available.
However, supplemental information is available only for patients whose records can be
found in both data sources and linked successfully.

With a rapid increase in database linkage and the use of EHRs in comparative effectiveness
and safety research, many researchers are now dealing with partial missingness of
confounder information. Methods that can handle missing data have been described.11-13

Here we discuss and compare several analytic approaches to handle partially missing
confounder data in studies that use electronic healthcare databases. We used the relation
between non-steroidal anti-inflammatory drugs (NSAIDs) and upper gastrointestinal
bleeding (UGIB) as our example, because the relation is well-known—randomized trials
reported a 40-60% lower risk of UGIB for selective COX-2 inhibitors (coxibs) compared
with traditional NSAIDs (tNSAIDs)14,15—and because severe confounding is expected in
observational studies as coxibs are likely to be preferentially given to patients who have a
higher risk of UGIB.

Methods
Data source

We analyzed data from The Health Improvement Network (THIN) database in the United
Kingdom,16,17 a primary care database of nearly 4 million individuals whose clinical
information is recorded by their general practitioner. Available information includes patient
demographics; medical diagnoses; free-text comments; referral letters from consultants and
hospitalizations; a record of all prescriptions issued; results from clinical examinations and
laboratory tests; and additional information such as weight, height, smoking, and alcohol
consumption. THIN uses Read Codes to register medical diagnoses and procedures, and a
coded drug dictionary based on the Prescription Pricing Authority dictionary to record
medications prescribed. The current study was approved by a Multicentre Research Ethics
Committee (MREC) in the UK.

Study population
Our source population included 1,810,442 individuals aged 40-84 years between January 1,
2000 and December 31, 2008 with at least five years of enrollment with the general
practitioner, at least one year of prospectively recorded information after the first recorded
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prescription in the database, and at least one record (e.g., diagnosis) in the year prior to the
first day in the study period during which they met all the above criteria (“entry date”).

We identified from the source population all patients with a first prescription of either a
tNSAID or a coxib between the entry date and December 31, 2008. We refer to the date of
first NSAID prescription as the index date. We required eligible patients to have no evidence
of any NSAID prescription in the 18 months preceding the index date, and no recorded
history of cancer (excluding non-melanoma skin cancer), chronic liver disease, Mallory-
Weiss syndrome, coagulopathy, esophageal varices, chronic alcoholism, or bariatric or other
surgery resulting in gastrojejunal anastomosis any time before the index date. We further
excluded patients who initiated both a coxib and a tNSAID on the index date. The remaining
43,569 coxib and 411,616 tNSAID initiators formed our study cohort. We represent the
treatment variable by A (1: coxib initiation, 0: tNSAID initiation).

Each patient in the cohort was followed from the index date until the earliest occurrence of
UGIB, 85 years of age, death, 180 days of follow-up, or December 31, 2008. We selected a
short follow-up of up to 180 days to minimize exposure misclassification.

Outcome
The validation process of potential UGIB cases has been described previously.18 Briefly, we
first searched for Read Codes that suggest UGIB during the follow-up period, and then
reviewed the computerized medical records (after including free-text comments) to confirm
the diagnosis. Our initial computer search identified 468 potential cases of UGIB (73 among
coxib initiators) during follow-up, of which 183 (25 among coxib initiators) were confirmed
as cases after manual review and included in the analysis. The incidence rate of confirmed
UGIB per 1,000 person-years was 1.2 for coxib initiators and 0.9 for tNSAID initiators,
which was consistent with previous studies.19-22 We represent the outcome variable by Y (1:
UGIB, 0: no UGIB).

Potential confounders
We identified the following potential confounders recorded in the entire study cohort during
the 12-month period preceding the index date:19-22 age; sex; calendar year of treatment
initiation; Charlson comorbidity score; use of gastroprotective drugs, anticoagulants,
antiplatelets, and oral steroids; diagnosis of osteoarthritis, rheumatoid arthritis, dyspepsia,
complicated and uncomplicated peptic ulcer disease, hypertension, congestive heart failure,
and coronary artery disease; and three measures of healthcare utilization (numbers of
distinct drugs prescribed, physician visits, and hospitalizations in the prior year). We
represent these confounders by the vector X.

We further considered three supplemental variables – smoking, alcohol consumption, and
body mass index – that were recorded in only a subset of the study population. About 78%
of the study cohort had information for all three of these “lifestyle” variables, which are
represented by the vector L=(L1, L2, L3). Both X and L include only baseline variables
measured before treatment initiation.

Propensity score analysis
We used propensity score (PS)23,24 to adjust for potential confounders. Suppose the values
of L variables were known for all patients, we could fit 1) a logistic model for Pr[A = 1∣ X,
L] to estimate each patient’s PS, i.e., the probability of initiating a coxib conditional on his
covariate values, and 2) a logistic model for Pr[Y = 1∣ A, PS] to estimate the odds ratio (OR)
of UGIB for coxib initiators versus tNSAID initiators conditional on coxib initiation A and
the PS (in deciles). This PS analysis would estimate an “intention-to-treat” effect of coxib
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initiation on the risk of UGIB (conditional on the PS) compared with tNSAID initiation over
the study’s follow-up in the entire study population. In this study, we had to handle partial
missingness in L before proceeding to performing the PS analysis.

Methods to deal with missing confounders
We describe two ways to handle missing data for L: 1) restricting the outcome model to
patients without missing values (complete-case analysis) or 2) fitting the outcome model to
all patients after assigning a value to either L or the PS for those with missing values
(imputation methods). We analyzed our data under two versions of the complete-case
analysis and four versions of imputation.

1. Complete-case analysis
1.1 Unweighted analysis: We defined a missingness indicator M (1: if any of the L
variables is missing, 0 otherwise) and performed the PS analysis described above, but only
among patients with no missing values (M=0). For comparison purposes, we performed an
analysis adjusting only for X separately in patients with and without missing values in L.

1.2 Inverse probability (IP) weighted analysis: The IP weight 1/ Pr[M = 0 ∣ X ] is the
inverse (reciprocal) of the probability of M=0 conditional on X.25,26 To estimate this weight,
we 1) defined a missingness indicator Mj (1 if missing and 0 otherwise, j=1, 2, 3) for each of
the three variables smoking L1, alcohol L2, and body mass index L3 (smoking had the
lowest proportion of missing values, BMI the highest; alternative orderings of the three
variables did not materially affect the results); 2) fit three logistic models for Pr[M1 = 0 ∣
X ], Pr[M2 = 0 ∣ X, M1 = 0], and Pr[M3 = 0 ∣ X, M1 = M2 = 0]; 3) calculated the three
predicted conditional probabilities for each patient; and 4) multiplied the three predicted
probabilities and used the reciprocal of the product as the IP weight for each patient. We
then performed a complete-case analysis identical to the one described above, except that
each patient was weighted by his estimated IP weight. We used a robust variance estimator
to calculate a conservative 95% confidence interval.27 Using either bootstrapping or a
variance estimator that explicitly incorporates how the weights were estimated would
produce a narrower 95% CI.28

This method attempts to reconstruct the study population without missing values by re-
weighting patients with complete information. For example, if a patient had a conditional
probability of 0.25 of having no missing values in L, the patient would be assigned a weight
of four (1/0.25). That is, the patient would represent three other patients with identical X
values but whose data are not included in the outcome model due to missing L.

2. Imputation methods
2.1 Missing-category and missing-indicator approach: In the missing-category approach,
we created an additional category within each variable in L for patients with missing values.
We then conducted the PS analysis described above. In the missing-indicator approach,11,29

we estimated the PS via a logistic model for coxib initiation that included the X variables,
the missing indicators Mj, and the product terms Lj(1-Mj).

2.2 Single imputation: We replaced the missing values for each L variable by the value of
its most common category and conducted the PS analysis described above.

2.3 Multiple imputation by chained equations30,31

Iteration 1: We fit a multinomial logistic regression model for Pr[L1 = l ∣ X, A,Y,M1 =
0].32,33 The parameter estimates from the model defined a conditional multinomial
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distribution, from which we drew values of L1 to impute them to patients with missing L1.
We then fit a second multinomial model for Pr[L2 = l ∣ X,A,Y,L1*,M2 = 0], where L1* is the
partially imputed smoking status, to impute the missing values for L2. Finally, we fit a
multinomial model for Pr[L3 = l ∣ X,A,Y,L1*,L2*,M3 = 0] to impute the missing values for
L3. This first iteration of the procedure resulted in a dataset in which all missing values for
variables L were imputed.

Iteration 2: We repeated the above procedure using the imputed data set from the first
iteration. We removed the imputed values of L1 and re-imputed them with a model
conditional on A,X,Y,L2*, and L3*. We then re-imputed the missing values of L2 and L3.

The procedure was repeated until 10 iterations were completed or until stable imputed
values were obtained. We then repeated the iterative procedure 10 times to create 10
imputed datasets, in each of which we conducted the PS analysis described above. We then
combined the OR estimates from the imputed datasets.34 We performed this multiple
imputation analysis using the IVEWare package for SAS software developed by the Survey
Research Center, Institute for Social Research, at the University of Michigan (http://
www.isr.umich.edu/src/smp/ive/).

2.4 PS calibration: This method imputes the value of the PS, rather than the value of the
confounders L, in patients with missing values in L.35 Imputing the PS can be
conceptualized as a measurement error issue, which can be corrected using regression
calibration if the true or “gold-standard” PS, PSgs, can be correctly estimated from an
internal or external validation sample.36,37 We attempted to create an internal validation
sample by randomly selecting 300,000 patients among those with complete information on
both X and L with the same age and sex joint distribution as the entire study cohort.

In the entire study cohort, we estimated an “error-prone” PS or PSep via the logistic model
for Pr[A = 1∣ X ], and then included the estimated PSep as a linear continuous covariate in

the logistic model for .

In the validation sample, we estimated PSgs via the logistic model for Pr[A = 1∣ X,L], and fit

the linear regression model .

The regression calibration-adjusted estimator for the treatment effect was .
We conducted the analysis using a SAS macro by Spiegelman and Logan, which is publicly
available at http://www.hsph.harvard.edu/spiegelman/blinplus.html.

Results
Table 1 shows the distribution of baseline characteristics of initiators of coxibs and tNSAIDs
ascertained during the 12-month period before the first NSAID prescription. The crude OR
of UGIB for coxib initiators vs. tNSAID initiators was 1.50 (95% CI: 0.98, 2.28). The OR
was 1.04 (0.68, 1.59) after adjustment for age and sex; 0.98 (0.63, 1.52) upon further
adjustment for calendar year of treatment initiation; and 0.84 (0.54, 1.31) after further
adjustment for measures of healthcare utilization. When we further adjusted for all
remaining confounders in X, the OR was 0.81 (0.52, 1.27) for the entire study cohort; the
OR was 0.64 (0.38, 1.07) for the 78% patients of the cohort with complete information on
all three lifestyle variables in L, and 1.93 (0.78, 4.74) for patients with missing values on
any of the three lifestyle variables.
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Table 2 shows the results from different analytic approaches to deal with missing
confounder data. The adjusted ORs were 0.65 and 0.67 for the unweighted and IP-weighted
complete-case analyses, respectively. In the IP-weighted analysis, the weight had a mean of
1.28 (standard deviation 0.15) and ranged from 1.04 to 2.49. The adjusted ORs ranged
between 0.80 and 0.83 for the imputation methods. The 95% CIs from the different methods
were overlapping; the 95% CI for any estimate included all other point estimates.

Results from all approaches did not materially change when the PS was included as a
continuous variable instead of deciles in the outcome model (as was necessary for the PS
calibration approach). The c-statistic for the PS model was around 0.80 for all analyses, and
the covariates were overall well balanced within PS strata (data not shown).

Discussion
We have reviewed and compared several approaches to deal with partially missing
confounder information in electronic healthcare databases. We used the NSAID-UGIB
example to illustrate their application to comparative effectiveness and safety research. All
these methods require the assumptions of no unmeasured confounding for the effect of
treatment on the outcome, and no misspecification of the outcome and PS models.

The missing-category/indicator approach and single imputation by the most common
category further require additional assumptions that are generally implausible. In essence,
they all assume that patients with missing information on certain variables are
unconditionally exchangeable and can be grouped together for analysis. Single imputation
by the most common category goes a step further and assumes that patients with missing
data are not only comparable with each other, but also with patients with a certain (often
arbitrarily chosen) covariate value. Though these methods are easy to implement, they have
been shown to produce biased estimates even when patients with and without missing data
are unconditionally exchangeable (i.e., data “missing completely at random”).11,38-40

Multiple imputation requires that missingness be unassociated with the outcome conditional
on the measured confounders or the corresponding PS (i.e., data are “missing at random”),
and that the imputation model for each covariate with missing data be correctly specified.34

The approach has been shown to provide more valid estimates than the missing-indicator
approach and single imputation when these assumptions are true.11,34,41,42 A recent study
that used THIN43 found that patients with missing information on smoking, alcohol
consumption, weight, or height differ systematically from the others in terms of
comorbidities like cardiovascular disease and chronic obstructive pulmonary disease. Our
estimate from multiple imputation would be incorrect if missingness were associated with
other prognostic factors that were not included in the analysis. We used a version of multiple
imputation that does not require the often unrealistic assumption of joint multivariate
normality.30,31

The PS calibration approach is valid under the assumptions that there is an appropriate
internal or external validation sample, the linear measurement error model is correctly
specified, and the error-prone PS is an appropriate surrogate for the gold-standard PS.35,44

The last assumption may be violated if the direction of confounding from the unmeasured or
partially measured confounders is in the opposite direction to that from the measured
covariates.44 This approach may be combined with single imputation of the gold-standard
PS based on the parameters of the measurement error model to do away with the need to
specify the outcome model through matching or stratifying on the imputed gold-standard
PS.45

Toh et al. Page 6

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Yet, despite all these differences in the conditions required for valid estimates, we found
only small differences across different imputation methods. The reasons might be that the
proportion of missingness was relatively low and that the three variables with missing values
might not be strong confounders after conditioning on other measured variables. Indeed, the
OR adjusted for all potential confounders available in the entire study cohort (0.81) was
similar to the ORs that further adjusted for the three lifestyle variables using different
imputation approaches (0.80 to 0.83).

Like the imputation methods, the IP-weighted complete-case analysis estimates the effect in
the entire study population.25,46 It is valid under an additional assumption that the weight
models are correctly specified. The unweighted complete-case analysis estimates the effect
only among patients without missing values, its results cannot be applied to the entire study
population unless the data are missing completely at random. The unweighted complete-
cases analysis has been shown to produce more biased estimates compared to other
approaches, such as multiple imputation.11,39,40

The point estimates of complete-case analyses and imputation methods were somewhat
different, which may be due to random variability (wide and overlapping 95% CIs) or to real
differences between patients with complete and incomplete confounder information beyond
the information recorded in the database. For example, general practitioners who record
patient lifestyle factors—and patients who respond to these questions—might have certain
unmeasured characteristics that are associated with the outcome risk. Also, the effect of
NSAIDs on UGIB might be modified by certain patient characteristics for which
“missingness” is a proxy.

In conclusion, a number of methods are available to deal with missing data in comparative
effectiveness and safety studies of therapeutics that analyze electronic healthcare databases.
Researchers need to be aware of the underlying assumptions of various methods when
choosing among them.

Acknowledgments
The authors would like to thank Ken Kleinman, ScD from Harvard Medical School and Harvard Pilgrim Health
Care Institute for his thoughtful comments on an earlier draft of this paper.

Source of financial support: Dr. Toh is partially supported by R03HS019024. Dr. Hernán is partially supported by
R01HL080644.

References
1. Suissa S, Garbe E. Primer: administrative health databases in observational studies of drug effects--

advantages and disadvantages. Nat Clin Pract Rheumatol. 2007; 3:725–732. [PubMed: 18037932]

2. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic
research on therapeutics. J Clin Epidemiol. 2005; 58:323–337. [PubMed: 15862718]

3. Andrade, SE.; Raebel, MA.; Boudreau, D., et al. Chapter 12: Health Maintenance Organizations/
Health plans. In: Strom, BL.; Kimmel, SE.; Hennessy, S., editors. Pharmacoepidemiology. 5th ed.
Wiley-Blackwell; Chichester, UK: 2012.

4. Doebbeling BN, Wyant DK, McCoy KD, et al. Linked insurance-tumor registry database for health
services research. Med Care. 1999; 37:1105–1115. [PubMed: 10549613]

5. Bradley CJ, Given CW, Luo Z, et al. Medicaid, Medicare, and the Michigan Tumor Registry: a
linkage strategy. Med Decis Making. 2007; 27:352–363. [PubMed: 17641138]

6. Hammill BG, Hernandez AF, Peterson ED, et al. Linking inpatient clinical registry data to Medicare
claims data using indirect identifiers. Am Heart J. 2009; 157:995–1000. [PubMed: 19464409]

Toh et al. Page 7

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Douglas PS, Brennan JM, Anstrom KJ, et al. Clinical effectiveness of coronary stents in elderly
persons: results from 262,700 Medicare patients in the American College of Cardiology-National
Cardiovascular Data Registry. J Am Coll Cardiol. 2009; 53:1629–1641. [PubMed: 19406337]

8. Piper JM, Ray WA, Griffin MR, et al. Methodological issues in evaluating expanded Medicaid
coverage for pregnant women. Am J Epidemiol. 1990; 132:561–571. [PubMed: 2202203]

9. Andrade SE, Davis RL, Cheetham TC, et al. Medication Exposure in Pregnancy Risk Evaluation
Program. Matern Child Health J. 2011

10. Lillard LA, Farmer MM. Linking Medicare and national survey data. Ann Intern Med. 1997;
127:691–695. [PubMed: 9382381]

11. Greenland S, Finkle WD. A critical look at methods for handling missing covariates in
epidemiologic regression analyses. Am J Epidemiol. 1995; 142:1255–1264. [PubMed: 7503045]

12. Horton NJ, Kleinman KP. Much ado about nothing: A comparison of missing data methods and
software to fit incomplete data regression models. Am Stat. 2007; 61:79–90. [PubMed: 17401454]

13. Faris PD, Ghali WA, Brant R, et al. Multiple imputation versus data enhancement for dealing with
missing data in observational health care outcome analyses. J Clin Epidemiol. 2002; 55:184–191.
[PubMed: 11809357]

14. Rostom A, Muir K, Dube C, et al. Gastrointestinal safety of cyclooxygenase-2 inhibitors: a
Cochrane Collaboration systematic review. Clin Gastroenterol Hepatol. 2007; 5:818–828. 828,
e811–815. quiz 768. [PubMed: 17556027]

15. Chen YF, Jobanputra P, Barton P, et al. Cyclooxygenase-2 selective non-steroidal anti-
inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and
lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic
evaluation. Health Technol Assess. 2008; 12:1–278. iii. [PubMed: 18405470]

16. Lewis JD, Schinnar R, Bilker WB, et al. Validation studies of the health improvement network
(THIN) database for pharmacoepidemiology research. Pharmacoepidemiol Drug Saf. 2007;
16:393–401. [PubMed: 17066486]

17. Bourke A, Dattani H, Robinson M. Feasibility study and methodology to create a quality-evaluated
database of primary care data. Inform Prim Care. 2004; 12:171–177. [PubMed: 15606990]

18. Toh S, García Rodríguez LA, Hernán MA. Confounding adjustment via a semi-automated high-
dimensional propensity score algorithm: an application to electronic medical records.
Pharmacoepidemiol Drug Saf. 2011; 20:849–857. [PubMed: 21717528]

19. García Rodríguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated
with individual non-steroidal anti-inflammatory drugs. Lancet. 1994; 343:769–772. [PubMed:
7907735]

20. García Rodríguez LA, Hernández-Díaz S. The risk of upper gastrointestinal complications
associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and
combinations of these agents. Arthritis Res. 2001; 3:98–101. [PubMed: 11178116]

21. García Rodríguez LA, Barreales Tolosa L. Risk of upper gastrointestinal complications among
users of traditional NSAIDs and COXIBs in the general population. Gastroenterology. 2007;
132:498–506. [PubMed: 17258728]

22. Hernández-Díaz S, García Rodríguez LA. Association between nonsteroidal anti-inflammatory
drugs and upper gastrointestinal tract bleeding/perforation: an overview of epidemiologic studies
published in the 1990s. Arch Intern Med. 2000; 160:2093–2099. [PubMed: 10904451]

23. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for
causal effects. Biometrika. 1983; 70:41–55.

24. Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the
propensity score. J Am Stat Assoc. 1984; 79:516–524.

25. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are
not always observed. J Am Stat Assoc. 1994; 89:846–866.

26. Hernán MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol
Community Health. 2006; 60:578–586. [PubMed: 16790829]

27. Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika.
1986; 73:13–22.

Toh et al. Page 8

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



28. Robins, JM. Marginal structural models versus structural nested models as tools for causal
inference. In: Halloran, ME.; Berry, D., editors. Statistical Models in Epidemiology: The
Environment and Clinical Trials. Springer-Verlag; New York: 1999. p. 95-134.

29. Jones MP. Indicator and stratification methods for missing explanatory variables in multiple linear
regression. J Am Stat Assoc. 1996; 91:222–230.

30. van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure
covariates in survival analysis. Stat Med. 1999; 18:681–694. [PubMed: 10204197]

31. Raghunathan TE, Lepkowski JM, Van Hoewyk J, et al. A multivariate technique for multiply
imputing missing values using a sequence of regression models. Survey Methodology. 2001;
27:85–95.

32. Moons KG, Donders RA, Stijnen T, et al. Using the outcome for imputation of missing predictor
values was preferred. J Clin Epidemiol. 2006; 59:1092–1101. [PubMed: 16980150]

33. Cole SR, Chu H, Greenland S. Multiple-imputation for measurement-error correction. Int J
Epidemiol. 2006; 35:1074–1081. [PubMed: 16709616]

34. Rubin, DB. Multiple imputation for nonresponse in surveys. John Wiley & Sons; New York, NY:
1987.

35. Sturmer T, Schneeweiss S, Avorn J, et al. Adjusting effect estimates for unmeasured confounding
with validation data using propensity score calibration. Am J Epidemiol. 2005; 162:279–289.
[PubMed: 15987725]

36. Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and
confidence intervals for systematic within-person measurement error. Stat Med. 1989; 8:1051–
1069. discussion 1071-1053. [PubMed: 2799131]

37. Rosner B, Spiegelman D, Willett WC. Correction of logistic regression relative risk estimates and
confidence intervals for measurement error: the case of multiple covariates measured with error.
Am J Epidemiol. 1990; 132:734–745. [PubMed: 2403114]

38. Vach W, Blettner M. Biased estimation of the odds ratio in case-control studies due to the use of ad
hoc methods of correcting for missing values for confounding variables. Am J Epidemiol. 1991;
134:895–907. [PubMed: 1670320]

39. van der Heijden GJ, Donders AR, Stijnen T, et al. Imputation of missing values is superior to
complete case analysis and the missing-indicator method in multivariable diagnostic research: a
clinical example. J Clin Epidemiol. 2006; 59:1102–1109. [PubMed: 16980151]

40. Knol MJ, Janssen KJ, Donders AR, et al. Unpredictable bias when using the missing indicator
method or complete case analysis for missing confounder values: an empirical example. J Clin
Epidemiol. 2010; 63:728–736. [PubMed: 20346625]

41. Little, RJA.; Rubin, DB. Statistical analysis with missing data. 2nd Edn. John Wiley & Sons; New
York, NY: 2002.

42. Schafer, JL. Analysis of incomplete multivariate data. Chapman & Hall; London, UK: 1997.

43. Marston L, Carpenter JR, Walters KR, et al. Issues in multiple imputation of missing data for large
general practice clinical databases. Pharmacoepidemiol Drug Saf. 2010; 19:618–626. [PubMed:
20306452]

44. Sturmer T, Schneeweiss S, Rothman KJ, et al. Performance of propensity score calibration--a
simulation study. Am J Epidemiol. 2007; 165:1110–1118. [PubMed: 17395595]

45. Carroll, RJ.; Ruppert, D.; Stefanski, LA. Measurement error in nonlinear models. Chapman and
Hall, Ltd; London, United Kingdom: 1995.

46. Toh S, Hernán MA. Causal inference from longitudinal studies with baseline randomization. Int J
Biostat. 2008:4. Article22.

Toh et al. Page 9

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2013 July 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Key points

• Partially missing confounder information is common in comparative
effectiveness and safety research of therapeutics.

• We applied several methods to deal with missing confounder information using
data from a primary care electronic medical records database from the United
Kingdom.

• Researchers should be aware of the underlying assumptions of various methods
for handling missing data when choosing among them.
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Table 1

Baseline characteristics of initiators of selective COX-2 inhibitors (coxibs) or non-selective (“traditional”)
non-steroidal anti-inflammatory drugs (tNSAIDs) ascertained during the 12-month period before the first
NSAID prescription

Characteristics

Patients with no missing
supplemental

confounder data*

Patients with missing
supplemental

confounder data*

Coxib
initiators

(n=33,693)

tNSAID
initiators

(n=320,733)

Coxib
initiators
(n=9,876)

tNSAID
initiators

(n=90,883)

% % % %

Age (years)

 40-44 6.7 18.9 7.9 20.4

 45-49 8.2 14.3 9.4 15.9

 50-54 10.5 13.9 11.4 14.8

 55-59 13.2 13.7 11.8 12.9

 60-64 12.6 12.6 11.7 11.0

 65-69 13.4 9.7 11.6 8.5

 70-74 14.3 8 12.9 7.0

 75-79 12.6 5.7 12.7 5.7

 80-84 8.6 3.3 10.7 3.9

Male sex 35.0 41.3 39.5 50.2

Calendar year of treatment initiation

 2000 5.0 9.7 5.7 12.0

 2001 10.9 11.5 13.5 14.1

 2002 19.3 10.9 22.1 13.5

 2003 24.6 10.3 25.6 12.0

 2004 27.3 10.6 23 11.0

 2005 2.3 11.9 2.3 11.0

 2006 3.4 11.5 2.7 9.6

 2007 3.6 11.9 2.7 8.9

 2008 3.7 11.7 2.3 7.9

No. of distinct drugs in the prior year

 0-2 22.7 42.2 32 53.3

 3-4 17.7 20.5 19.5 19.4

 5-7 22.2 18.5 20 15

 ≥ 8 37.3 18.8 28.5 12.4

No. of outpatient visits in the prior year

 0-3 19.5 29.9 34.3 46.1

 4-6 20.7 23.5 23 23.3

 7-10 22.3 21.0 19.1 16.0

 ≥ 11 37.5 25.6 23.7 14.6
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Characteristics

Patients with no missing
supplemental

confounder data*

Patients with missing
supplemental

confounder data*

Coxib
initiators

(n=33,693)

tNSAID
initiators

(n=320,733)

Coxib
initiators
(n=9,876)

tNSAID
initiators

(n=90,883)

Hospitalized in the prior year 9.8 8.1 7.2 6.1

Charlson comorbidity score ≥1 41.4 27.9 33.5 20.4

Prior use of

 Gastroprotective drugs 29.2 11.8 26.2 9.4

 Anticoagulants 2.0 0.8 1.7 0.7

 Antiplatelets 21.1 12.7 14.4 7.7

 Oral steroids 9.8 5.0 9.2 4.2

Diagnosis of

 Osteoarthritis 39.8 21.3 31.8 16.5

 Rheumatoid arthritis 3.3 1.2 3.2 1.2

 Dyspepsia 4.6 2.1 3.2 1.4

 Peptic ulcer disease 0.4 0.1 0.3 0.1

 Hypertension 40.5 29.9 26.5 17.0

 Congestive heart failure 2.9 1.1 2.5 0.9

 Coronary artery disease 15.9 8.3 10.1 4.3

Smoking

 Non smoker 55.9 55.2 35.8 37.6

 Current smoker 19.9 21.7 16.4 18.1

 Past smoker 24.3 23.1 12.8 12.6

 Unknown -- -- 35.0 31.7

Alcohol consumption (drinks/week)

 None 49.6 44.4 14.9 13.6

 1-19 33.4 34.6 7.9 8.8

 10-19 10.7 12.9 2.5 3.6

 ≥ 20 6.3 8.1 1.8 3.0

 Unknown -- -- 73.0 71.0

Body mass index (kg/m2)

 <18.5 1.3 1.1 0.5 0.4

 18.5-24.9 33.9 36.7 8.0 8.6

 25.0-29.9 39.8 38.8 9.2 9.2
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Characteristics

Patients with no missing
supplemental

confounder data*

Patients with missing
supplemental

confounder data*

Coxib
initiators

(n=33,693)

tNSAID
initiators

(n=320,733)

Coxib
initiators
(n=9,876)

tNSAID
initiators

(n=90,883)

 30.0-34.9 17.6 16.0 4.9 4.6

 ≥ 35 7.4 7.4 2.8 2.4

 Unknown -- -- 74.7 74.9

*
Supplemental confounding data include information on smoking, alcohol consumption, and body mass index
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Table 2

Odds ratios of upper gastrointestinal bleeding during the first 180 days following initiation of selective COX-2
inhibitors vs. non-selective non-steroidal anti-inflammatory drugs, by different analytic approaches to
incorporate supplemental confounder data available in a subset of the study cohort

Analytic methods Number of patients included in the
analysis

Adjusted odds ratio *
(95% confidence interval)

Standard error of log
odds ratio

Complete-case analyses

 Unweighted 354,426 0.65 (0.39, 1.09) 0.27

 Inverse probability-weighted 354,426 (outcome/PS model)
455,185 (weight model) 0.67 (0.38, 1.16) 0.28

Imputation methods

 Missing-category approach 455,185 0.81 (0.51, 1.26) 0.23

 Missing-indicator approach 455,185 0.80 (0.51, 1.25) 0.23

 Single imputation 455,185 0.83 (0.53, 1.30) 0.23

 Multiple imputation 455,185 0.82 (0.52, 1.29) 0.23

 Propensity score (PS) calibration 455,185 (error-prone PS model)
300,000 (gold-standard PS model) 0.80 (0.50, 1.27) 0.24

*
Adjusted via propensity score (PS) for the following variables recorded in the entire study cohort: age; sex; calendar year; Charlson comorbidity

score; use of gastroprotective drugs, anticoagulants, antiplatelets, and oral steroids; diagnosis of osteoarthritis, rheumatoid arthritis, upper
gastrointestinal symptoms, dyspepsia, complicated or uncomplicated peptic ulcer disease, hypertension, congestive heart failure, and coronary
artery disease; and the number of distinct drugs, physician visits, and hospitalization in the prior year. Supplemental covariates recorded only in a
subset of study cohort included smoking, alcohol consumption, and body mass index.
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