

NIH Public Access

Author Manuscript

Tetrahedron Lett. Author manuscript; available in PMC 2013 July 30.

Published in final edited form as:

Tetrahedron Lett. 2013 April 17; 54(16): 2077–2081. doi:10.1016/j.tetlet.2013.02.013.

Mild and convenient *N*-formylation protocol in water-containing solvents

Bilal A. Aleiwi, Katsuhiko Mitachi, and Michio Kurosu*

Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA

Abstract

We have realized that *N*-formylations of free amines of some drug leads can improve PK/PD property of parent molecules without decreasing their biological activities. In order to selectively formylate *primary* amines of polyfunctional molecules, we have sought a mild and convenient formylation reaction. In our screening of *N*-formylation of an α -amino acid, L-phenylalanine, none of formylation conditions reported to date yielded the desired HCO-L-Phe-OH with satisfactory yield. *N*-Formylations of amino acids with HCO₂H require the reactions in a water-containing media and suppress polymerization reactions due to the competitive reactions among carboxylic acids. We found that *N*-formylations of α -amino acids could be achieved with a water-soluble peptide coupling additive, an oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl-2-cyano-2-(hydroxyimino)acetate (**2**), EDCI, and NaHCO₃ in water or a mixture of water and DMF system, yielding *N*-formylated α -amino acids with excellent yields. Moreover, these conditions could selectively formylate *primary* amines over *secondary* amines at a controlled temperature. A usefulness of these conditions was demonstrated by selective formylation of daptomycin antibiotic which contains three different amino groups.

Keywords

N-formylation; Reactions in water media; Water-soluble oxyma; Glyceroacetonide-oxyma; Amino acids; Kanamycin; Spectinomycin; Daptomycin

1. Introduction

In our SAR studies of antibacterial agents, we have realized that *N*-formylations of free amines of some antibiotics do not significantly decrease their bioactivities and can be applied to improve PK/PD property of parental molecules. Because of necessity of selective formylation reactions of antibiotics and antibacterial agents in our ongoing programs, we have sought a mild and convenient *N*-formylation reaction condition that can be applied to a wide range of complex natural products, oligo- to poly-peptides, and amino acids. To date, the numerous formylating agents and conditions have been reported.¹ Although several formylating agents can be applicable for the formylations of *C*-protected amino acids, it is not possible to achieve effective formylation reactions for non-protected amino acids with reported reagents and conditions.² In addition, many formylating agents are hygroscopic and are not tolerated in appropriate solvents for the reactions for amino acids and oligo-peptides (e.g. water-containing solvents). In our recent finding of amide-forming reactions with the ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma, **1**) derivative, glyceroacetonide-Oxyma **2**

²⁰⁰⁹ Elsevier Ltd. All rights reserved.

^{*}Corresponding author. Tel.: +1-901-448-1045; fax: +1-901-448-6940; mkurosu@uthsc.edu.

in water media (Figure 1),³ it was observed that formylation of H-L-Phe-OH could be achieved with HCO_2H (5 eq.), **2** (2 eq.), EDCI (2 eq.) and NaHCO₃ (10 eq.) in water (0.2–0.3 M) to yield the corresponding HCO-L-Phe-OH in greater than 90% yield. On the other hand, the same reaction in the absence of glyceroacetonide-Oxyma **2** did not furnish the desired HCO-L-Phe-OH. Thus, effectiveness of glyceroacetonide-Oxyma **2** in the formylation of amino acid in water was unambiguously determined. Herein, we report mild and convenient *N*-formylations in water or water-containing solvent systems, and selective *N*-formylations of *primary* amines.

2. Results and discussion

Formylation of H-L-Phe-OH with HCO₂H, glyceroacetonide-Oxyma 2, EDCI, NaHCO₃ in water seems to undergo through the well-known reaction mechanism with EDCI,⁴ however, in this reaction several interesting chemical observations are worth mentioning. HCO₂H reacts with EDCI faster than H-L-Phe-OH; 5 equivalent of HCO₂H could completely suppress the undesired competitive reaction with H-L-Phe-OH. Due to the fact that formylation of H-L-Phe-OH with EDCI in water did not proceed in the absence of 2, the initial intermediate, carbamimidic formic anhydride 3 may have a relatively short half-life or not be a good electrophile as a formylating agent in water. However, the intermediate **3** reacts with the glyceroacetonide-Oxyma 2-sodium salt⁵ to furnish the active ester 4 which has a relatively long half-life and serves as N-formylating agent in water. It is important to note that formylation of H-L-Phe-OH with Oxyma 1 in water furnished the desired product in very low yield (<10%). As observed in peptide-forming reactions, formylation using 1 could be improved dramatically when the reaction was performed in a mixture of DMF-H₂O (9/1).^{3b} Thus, **1** and **2** can efficiently be utilized for formylation of H-L-Phe-OH by using water or a mixture of water and DMF. However, glyceroacetonide-Oxyma 2 has a significant advantage over 1 in that 2 can be removed completely after the reactions via an acidic water work-up, thus, the only formylated-products can be extracted from reaction mixtures after a simple work-up.

In order to examine scope and limitations of N-formylation reactions with HCO₂H, 2 (or 1), EDCI, and NaHCO₃ in H_2O (condition **A**) or in DMF- H_2O (9/1, condition **B**), we have applied these conditions to a wide variety of *primary* and *secondary* amines, and a-amino acids. As observed for H-L-Phe-OH, formylations of all α -amino acids tested in this program provided the corresponding N-formylated products in H₂O. Representative data are summarized in Table 1 (entries 15–18). In all cases N-formylations of α -amino acids with condition A furnished the desired products in better yield than those with condition B (85-95 vs 30-60% yield). We have demonstrated N-formylation of an oligopeptide in water; Nformylation of the pentapeptide with condition A yielded the corresponding formylation product in 90% (entry 19). N-Formylation of C-protected α -amino acids could be achieved efficiently either with condition **A** or **B** without noticeable difference in yield of the products (entries 8-10). Thus, formylations of aliphatic and aromatic amines were performed with Oxyma 1 in DMF-H₂O (condition \mathbf{B}); *N*-formylations of benzylamine, octylamine, and aniline provided the corresponding products in quantitative yield (entries 1, 2, and 5). N-Formylation reactions of a monoprotected 1,3-diamine and an amino-alcohol provided the N-formylated products in excellent yields (entries 3 and 4). On the other hand, Nformylations of 2-aminobenzoic acid and 2-aminophenol gave rise to the desired products in 30% and 25% yield, respectively (entries 6 and 7).⁶ Formylations of secondary amines, piperidine, morpholine, L-Pro-OMe, and N-Me-L-Val-OMe were completed within 3h to yield the corresponding products in good yields (entries 11, 12, 13, and 14). Interestingly, formylation of a secondary amine, N-Me-L-Val-OMe provided the formylated-product in less than 5% yield at 0 °C, whereas a primary amine H-L-Val-OCH₃ was formylated at 0 °C-rt. The rate of the reaction progress of formylations of N-Me-L-Val-OMe and H-L-Val-

 OCH_3 in H_2O (condition **A**) was monitored over time and their reaction kinetic curves are shown in Figure 2. The striking difference in reaction rate for formylations of *primary* and *secondary* amines was observed when the reactions were performed in water or in water-containing solvents.

We have applied these formylation reaction conditions to several antibacterial natural products. Selective *N*-formylation of kanamycin A could be achieved at the *primary* amine, yielding the 6'-formylated kanamycin A in 30% isolation yield (65% yield based on LC-MS) (entry 20 in Table 1).⁷ Formylation of spectinomycin in H₂O at rt furnished the mono-formylated product in 50% yield (entry 21).⁸ Daptomycin is a cyclic lipopeptide antibiotic used in the treatment of certain community-associated methicillin resistant *S. aureus* (CA-MRSA) and healthcare-associated-MRSA (HA-MRSA) infections.⁹ Daptomycin possesses stereoelectronically different three free amines, four carboxylic acids, a free alcohol in the molecule, however, shows limited water solubility. Selective *N*-formylation of daptomycin was achieved at the *primary* amine of the lysine residue in DMF-H₂O (2/1) to provide the expected *N*-formylation product in 65% isolation yield after a reverse HPLC purification (90% yield based on analysis of the crude product via ¹H-NMR and LC-MS) (Scheme 2).¹⁰

In summary, we have demonstrated selective *N*-formylation reactions using HCO₂H, Oxyma **1** or glyceroacetonide-Oxyma **2**, EDCI, and NaHCO₃ in DMF-H₂O system or in H₂O.¹¹ The *N*-formylation reaction conditions described here do not require strict anhydrous conditions necessary for ordinal formylation reactions.^{1,2} To the best of our knowledge, *N*formylation reactions of α -amino acids have never been achieved efficiently without a suitable *C*-protection. We demonstrated that high yielding *N*-formylations of α -amino acids could readily be accomplished with the described conditions. Glyceroacetonide-Oxyma **2** displays remarkable physico-chemical properties as an additive of *N*-formylation reactions with EDCI in water media. Importantly, simple aqueous work-up procedures can remove all reagents utilized in the reactions to afford *N*-formylation products in high yield with excellent purity.

Acknowledgments

The authors thank the National Institutes of Health (NIAID grant AI084411-02) and The University of Tennessee for generous financial supports. NMR data were obtained on instruments supported by the NIH Shared Instrumentation Grant.

References and notes

1. (a) Blicke FF, Lu CJ. J Am Chem Soc. 1952; 74:3933.(b) Sheehan JC, Yang DDH. J Am Chem Soc. 1958; 80:1154.(c) Pettit GR, Thomas EG. J Org Chem. 1959; 24:895.(d) Staab HA, Polenski B. Liebigs Ann Chem. 1962; 655:95.(e) Yale HL. J Org Chem. 1971; 36:3238.(f) Kraus MA. Synthesis. 1973:361.(f) Effenberger F, Muck AO, Bessey E. Chem Ber. 1980; 113:2086.(g) Waki M, Meienhofer J. J Org Chem. 1977; 42:2019. [PubMed: 864543] (h) Effenberger F, Bessey E. Chem Ber. 1980; 113:2100.(i) Effenberger F, Keil M, Bessey E. Chem Ber. 1980; 113:2110.(j) Gramain JC, Rémuson R. Synthesis. 1982:264.(k) Martinez J, Laur J. Synthesis. 1982:979.(l) Yazawa H, Goto S. Tetrahedron Lett. 1985; 26:3703.(m) Kisfaludi L, Ötvös L Jr. Synthesis. 1987:510.(n) Olah GA, Ohannesian L, Arvanaghi M. Chem Rev. 1987; 87:671.(o) Strazzolini P, Giumanini AG, Cauci S. Tetrahedron. 1990; 46:1081.(p) Neveux M, Bruneau C, Dixneuf PH. J Chem Soc, Perkin Trans 1. 1991:1197.(q) Katritzky AR, Chang HX, Yang B. Synthesis. 1995:503. (r) Duczek W, Deutsch J, Vieth S, Niclas HJ. Synthesis. 1996:37.(s) Berry MB, Blagg J, Craig D, Willis MC. Synlett. 1992:659.(t) Akikusa N, Mitsui K, Sakamoto T, Kikugawa Y. Synthesis. 1992:1058.(u) Chancellor T, Morton C. Synthesis. 1994:1023.(v) Giard T, Be'nard D, Plaquevent JC. Synthesis. 1998:297.(w) Meinnel T, Patiny L, Ragusa S, Blanquet S. Biochemistry. 1999; 38:4287. [PubMed: 10194346] (x) Reddy PG, Kumar GDK, Baskaran S. Tetrahedron Lett. 2000; 41:9149.(y) Hill DR, Hsiao CN, Kurukulasuriya R, Wittenberger SJ. Org Lett. 2002; 4:111.

[PubMed: 11772103] (z) Cochet T, Bellosta V, Greiner A, Roche D, Cossy J. Synlett. 2011:1920. see reference 2.

- (a) Jung SH, Ahn JH, Park SK, Choi JK. Bull Korean Chem Soc. 2002; 23:149.(b) Mihara M, Ishino Y, Minakata S, Komatsu M. Synthesis. 2003:2317.(c) De Luca L, Giacomelli G, Porcheddu A, Salaris M. Synlett. 2004:2570.(d) Iranpoor N, Firouzabadi H, Jamalian A. Tetrahedron Lett. 2005; 46:7963.(e) Bose AK, Ganguly SN, Manhas MG, Guha A, Pombo-Villars E. Tetrahedron Lett. 2006; 47:4605.(f) Hosseini-Sarvari M, Shargi H. J Org Chem. 2006; 71:6652. [PubMed: 16901164]
 (g) Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Kumar DN. Tetrahedron Lett. 2008; 49:2225.(h) Chandra Shekhar A, Ravi Kumar A, Sathaiah G, Luke Paul V, Sridhar M, Shanthan Rao P. Tetrahedron Lett. 2009; 50:7099.(i) Saidi O, Bamford MJ, Blacker AJ, Lynch J, Marsden SP, Plucinski P, Watson RJ, Willimas JMJ. Tetrahedron Lett. 2010; 51:5804.(j) Kim J-G, Jang DO. Synlett. 2010; 51:2319.(m) Lei M, Ma L, Hu L. Tetrahedron Lett. 2010; 51:4186.(n) Shastri LA, Shastri SL, Bathula CD, Basanagouda M, Kulkarni MV. Synth Commun. 2011; 41:476.(o) Krishnakumar B, Swaminathan M. J Mol Catal A: Chem. 2011; 334:98.(p) Suchý M, Elmehriki AAH, Hudson RHE. Org Lett. 2011; 13:3952. [PubMed: 21707118]
- (a) Wang Y, Aleiwi BA, Wang Q, Kurosu M. Org Lett. 2012; 14:4910. [PubMed: 22937741] (b) Wang Q, Wang Y, Kurosu M. Org Lett. 2012; 14:3372. [PubMed: 22697488]
- 4. (a) Khattab SN. Bull Chem Soc Jpn. 2010; 83:1374.(b) El-Faham, Subiros-Funosas R, Albericio F. Chem Eur J. 2010; 19:3641.(c) Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Chem Eur J. 2009; 15:9394. [PubMed: 19575348]
- 5. We have demonstrated that Oxyma 1and glyceroacetonide-Oxyma 2exist as their Na salts in aq. NaHCO₃ solution.
- 6. Poor reactivity of 2-aminobenzoic acid and 2-aminophenol in these formylations is probably due to the strong formation of intramolecular hydrogen bonding between the NH₂ and COOH or OH groups.
- Difference in reactivity of the nitrogen atoms in kanamycin and amikacin, see Hanessian S, Kornienkoa A, Swayze EE. Tetrahedron. 2003; 59:995.Bera S, Zhanel GG, Schweizer F. J Med Chem. 2010; 53:3626. [PubMed: 20373816] Kawaguchi H, Naito T, Nakagawa S, Fujisawa K. Antibiotics. 1972; 25:695.Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Antimicrob Agents Chemother. 1999; 43:727. [PubMed: 10103173] Mingeot-Leclercq MP, Tulkens PM. Antimicrob Agents Chemother. 1999; 43:1003. [PubMed: 10223907]
- 8. (a) Andre B. Antimicrob Agents. 2005:470.(b) Peeters M. Antimicrob Agents Chemother. 1984;
 26:608. [PubMed: 6240224] (c) Sanson-Lepors M. Antimicrob Agents Chemother. 1986; 30:512.
 [PubMed: 2946262]
- 9. Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC. J Antibiot. 1987; 40:761. [PubMed: 3610833]
- 10. $[a]_D^{23} = +30$ °(*c* 0.1, CHCl₃); IR (neat) 3302, 3063, 2928, 2856, 1723, 1717, 1657, 1545, 1536, 1503, 1454, 1408, 1203, 1142, 1024, 828, 742 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.31 (s, 4H), 10.80 (d, *J* = 2.4 Hz, 1H), 8.51–8.43 (m, 2H), 8.37 (d, *J* = 7.6 Hz, 3H), 8.26 (t, *J* = 6.1 Hz, 1H), 8.16 (d, *J* = 7.4 Hz, 3H), 8.07 (d, *J* = 5.7 Hz, 1H), 8.03 (d, *J* = 6.3 Hz, 1H), 8.02 (d, *J* = 1.7 Hz, 1H), 7.96–7.91 (m, 1H), 7.77 (t, *J* = 9.1 Hz, 2H), 7.69–7.57 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.30–7.25 (m, 1H), 7.18 (dd, *J* = 26.7, 24.4 Hz, 2H), 7.10–7.05 (m, 1H), 7.01–6.97 (m, 1H), 6.92 (s, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 6.56 (t, *J* = 7.6 Hz, 1H), 5.12–5.04 (m, 1H), 4.92–4.84 (m, 1H), 4.70–4.47 (m, 8H), 4.46–4.40 (m, 1H), 3.15–3.04 (m, 3H), 2.94 (dd, *J* = 14.8, 9.0 Hz, 1H), 2.80 (ddd, *J* = 27.9, 16.7, 5.6 Hz, 2H), 2.68–2.57 (m, 2H), 2.51–2.39 (m, 4H), 2.37 (p, *J* = 1.9 Hz, 1H), 2.35–2.26 (m, 2H), 2.06 (t, *J* = 7.3 Hz, 2H), 1.94 (dd, *J* = 15.6, 10.2 Hz, 1H), 1.78–1.66 (m, 1H), 1.61–1.44 (m, 3H), 1.43–1.34 (m, 2H), 1.30–1.21 (m, 10H), 1.21–1.14 (m, 5H), 1.11 (d, *J* = 6.4 Hz, 6H), 0.87 (q, *J* = 6.9 Hz, 6H); HRMS (EI) calcd for C₇₃H₁₀₂N₁₇O₂₇ (M + H⁺): 1648.7131, found: 1648.7135.
- 11. General procedure for *N*-formylations: To a solution of amine (1 eq.), formic acid (5 eq.), sodium bicarbonate (10 eq.), and glyceroacetonide-Oxyma **1** (2 eq.) in H₂O (0.2–0.3M) solution was added EDCI (2 eq.) The reaction mixture was stirred for 3h and quenched with 1% aq. HCl. The aqueous phase was extracted with EtOAc (or CHCl₃ or CHCl₃-MeOH (10/1). The combined organic extracts were dried over Na₂SO₄ and evaporated *in vacuo*. Purification by a silica gel

chromatography (or sephadex LH20) afforded the desired compound (yields were given in Table 1). Similarly, *N*-formylations were performed with Oxyma 1in DMF-H₂O (9/1).

Figure 1. Structures of Oxyma **1** and glyceroacetonide-Oxyma **2**.

Table 1

N-Formylations of primary and secondary amines.11

^{*a*} The condition **A** was also effective.

 $^{b}\mathrm{The}$ same reaction under the condition \mathbf{B} yielded the product in 30–60% yield.