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 Multiple myeloma bone disease (MMBD) is an example of 
extremely abnormal bone remodeling with severe dysfunction 
of both bone resorption and bone formation. 1,2  Thus, myeloma 
serves as a paradigm for other inflammatory bone diseases and 
the regulation of osteoclasts and osteoblasts in cancer. The 
accessibility of myeloma cells has allowed in-depth analysis 
of the mechanisms involved in cancer invasion of the bone. 
Importantly, studies of MMBD have identified novel regulators 
that increase osteoclastogenesis and osteoclast function, as 
well as others that repress bone marrow stromal cell (BMSC) 
differentiation into bone-building osteoblasts, or increase 
angiogenesis as is the characteristic of this malignancy. 

 Myeloma is the most frequent cancer to involve the skele-
ton, and over 80 %  of myeloma patients have bone disease. 3,4  
MMBD has a tremendous impact on patient quality of life, 
and can result in severe bone pain, pathological fractures, 
hypercalcemia and increased mortality. 5  Almost 20 %  of 
myeloma patients will present with a pathological fracture, 
and almost 60 %  of patients will sustain a pathological frac-
ture over their disease course. 6,7  Patients with pathological 
fractures have a 20 %  increase in mortality compared with 
patients without pathological fractures, and the cost of mye-
loma bone disease adds at least  $ 50   000 to the care costs for 
each patient compared with myeloma patients without bone 
disease. 8,9  Importantly, MMBD can continue to progress 
even when patients are in complete remission from their tumor. 
In this review, the mechanisms responsible for MMBD and 
the therapeutic approaches derived from knowledge of these 
mechanisms will be discussed.  

 Mechanisms of MMBD 

 MMBD is characterized by purely osteolytic bone destruc-
tion, with markedly increased osteoclast activity and little or 
no osteoblast activity, resulting in characteristic  ‘ punched-out ’  
lesions on skeletal X-rays. 10  As there is little or no new bone 
formation in response to the bone destruction, bone scans can 
severely underestimate the extent of MMBD. 11  In myeloma, the 
increased bone destruction is mediated by the osteoclast and 
not tumor cells themselves, although tumor cells can directly 
stimulate osteoclast formation. 12  In addition, myeloma cells 
induce cells in the marrow microenvironment to produce fac-
tors that drive osteoclast formation and suppress osteoblast 
formation. Immune cells also contribute to these processes 
through production of cytokines and adhesion molecules that 
increase myeloma cell growth and enhance myeloma cell chemo-
resistance, increase osteoclastogenesis (in part, by driving 
dendritic cell and tumor-associated macrophages towards the 
osteoclast lineage), suppress osteoblastogenesis and polarize 
T-cell subsets from predominantly Th1 to Th17. 13 – 16  The mar-
row stromal cells and osteoclasts produce factors that promote 
tumor growth, both directly by acting on the myeloma cells 17  
and indirectly by increasing angiogenesis. 18 – 20  Finally, the bone 
resorption process releases immobilized growth factors, such 
as transforming growth factor- �  (TGF � ), from the bone matrix, 
which also drive tumor growth. 21  This  ‘ vicious cycle ’  of bone 
destruction whereby myeloma cells drive bone destruction, 
which in turn increases tumor growth, highlights the critical role 
that bone disease has in myeloma. All active multiple myeloma 
patients progress from monoclonal gammopathy of unknown 
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significance, a premalignant plasma cell disorder without osteo-
lytic lesions. 22  As the cytogenetic changes present in plasma 
cells from active multiple myeloma patients are already present 
in almost all monoclonal gammopathy of unknown signifi-
cance patients regardless of whether they progress to multiple 
myeloma or not, 23,24  extrinsic changes, such as alterations in 
the bone marrow microenvironment that previously controlled 
tumor growth, may contribute to progression. The recent MRC 
Myeloma IX trial demonstrated that blocking osteoclast activity 
increases survival of myeloma patients. 25  Similarly, enhancing 
marrow stromal cell differentiation into osteoblasts decreases 
tumor growth and bone destruction, as well as increases bone 
formation. 26,27  Unfortunately, myeloma is still incurable for 
most patients and MMBD remains a major contributor to the 
morbidity and mortality of myeloma patients.   

 Factors Driving Osteoclast Formation and 
Activity in MMBD 

 Early studies of MMBD demonstrated that myeloma cells 
produce bone-resorbing factors, which were termed  ‘ osteo-
clast-activating factors (OAF) ’ . The OAFs were identified in 
conditioned media from myeloma cell lines and stimulated 
bone resorption in bone organ culture systems. 12  Myeloma 
cells also stimulate cells in the marrow microenvironment, in 
particular, the marrow stromal cells and T cells, to increase the 
production of OAFs and decrease the production of osteoclast 
inhibitory factors. Multiple factors have since been identified 
as important OAFs in myeloma, including receptor activator of 
nuclear factor- � B (RANKL), macrophage inflammatory protein-
1 �  (MIP-1 � ), tumor necrosis factor- �  (TNF- � ), interleukin (IL)-3 
and IL-6. Intriguingly, several of these OAFs also suppress osteo-
blast formation and / or support myeloma cells directly, indicat-
ing that they have multiple roles in MMBD. Besides releasing 
immobilized growth factors from the bone matrix, osteoclasts 
secrete several factors that support myeloma cells, including 
IL-6 (the most important growth factor for multiple myeloma 
cells), 28  annexin II (AXII), 29  osteopontin, 30  fibroblast activation 
protein, 31  BAFF (B-cell-activating factor belonging to the TNF 
family) and APRIL (a proliferation-inducing ligand). 32   Figure 1a  
summarizes these interactions.  

  Receptor activator of nuclear factor- � B.      The ratio of RANKL 
(TNFSF11 — TNF superfamily member 11), which interacts with 
its receptor RANK (TNFRSF11A) on osteoclast progenitors 
to induce osteoclastogenesis, and the soluble decoy recep-
tor for RANKL, osteoprotegerin (OPG; TNFRSF11B) in bone 
is critical for the regulation of lytic activity in both normal and 
myelomatous bone. 33  Myeloma cells both produce and induce 
production of RANKL by marrow stromal cells. Pearse  et al.  34  
initially demonstrated that RANKL was increased and OPG was 
suppressed in the microenvironment of patients with myeloma. 
Several laboratories have reported that myeloma cells produce 
low levels of RANKL; however, it is unclear if these levels are suf-
ficient to support osteoclast formation. 35 – 38  Myeloma cells do 
induce production of high levels of RANKL by marrow stromal 
cells through adhesive interactions between  � 4 � 1 integrin on 
myeloma cells and vascular cell adhesion molecule-1 (VCAM-1) 
on marrow stromal cells, 39  as well as by soluble factors pro-
duced by myeloma cells, such as TNF- �  28,40  and Dickkopf1 
(DKK1). 41  Further enhancing the effects of increased RANKL in 

myeloma is the decreased production of OPG by marrow stro-
mal cells via inhibition of osteoblast differentiation, decreased 
transcription of OPG and degradation of OPG by myeloma cell 
endocytosis of the OPG bound to CD138 (syndecan-1). 42,43  
Thus, the ratio of RANKL to OPG in myeloma patients is mark-
edly increased and drives osteoclastogenesis. Additionally, the 
ratio of RANKL to OPG, detectable in the sera from myeloma 
patients, impacts prognosis. Patients with high RANKL:OPG 
ratios have inferior survival compared with patients with nor-
mal or intermediate levels of RANKL:OPG. 44  The importance 
of increased RANKL expression in myeloma has been clearly 
shown in preclinical models. Blocking RANKL activity with OPG 
or a soluble RANK receptor (RANK-Fc) reduced tumor burden 
and bone destruction in these animal models. 35,45  The impact of 
denosumab, a human monoclonal antibody to RANKL, on bone 
metastases in patients with breast and prostate cancer, treat-
ment-induced bone disease due to prostate cancer, and osteo-
porosis has been evaluated. 46  Denosumab treatment resulted 
in a statistically significant improvement in bone mineral density 
in patients with non-metastatic prostate or breast cancer. 47,48  In 
addition, the prostate cancer patients receiving denosumab had 
a reduced incidence of new vertebral fractures at 36 months. 48  
A recent clinical trial, which examined the efficacy of deno-
sumab in approximately 1500 patients with solid tumor bone 
metastasis and 200 patients with myeloma showed that deno-
sumab reduced skeleton-related events and time to the next 
skeleton-related events as effectively as zoledronic acid.   

  Tumor necrosis factor- � .      TNF- �  is elevated in myeloma 
patients. 49  Several studies have shown that TNF- �  and IL-
1 �  mRNA is produced by some myeloma cells, but it has 
been difficult to clearly demonstrate that myeloma cells pro-
duce significant quantities of these cytokines themselves. 50  
Myeloma cells do induce high levels of TNF- �  in the marrow 
microenvironment. 17  TNF- �  has multiple functions in myeloma 
bone disease. TNF- �  increases marrow stromal cell produc-
tion of RANKL, IL-6 and other osteoclastogenic cytokines. Xu 
 et al.  51  recently reported that myeloma cells and TNF- �  both 
increase the transcription factor XBP1s (X-box binding protein 
1 spliced) in marrow stromal cells, and that this contributes to 
the increased production of VCAM-1, RANKL and IL-6, as well 
as enhanced stromal cell support of myeloma cell growth and 
osteoclast formation. 

 TNF- �  is also a potent inducer of osteoclast forma-
tion itself, and can either directly increase osteoclast for-
mation or enhance the effects of RANKL. 52,53  In addition, 
TNF- �  can block osteoblast differentiation from marrow 
stromal cells by decreasing the expression of critical oste-
oblast transcription factors, such as runt-related transcrip-
tion factor 2 (Runx2), TAZ (transcriptional co-activator with 
PDZ-binding motif) and osterix, induce apoptosis of mature 
osteoblasts, and increase support of myeloma cells by induction 
of IL-6. 15,54    

  Macrophage inflammatory-1 � .      MIP-1 �  (chemokine C – C motif 
ligand 3) is a potent osteoclast-inducing chemokine produced 
by myeloma cells that, like TNF- � , can both directly stimu-
late human osteoclast formation and potentiate the effects of 
RANKL. 15  Further, MIP-1 �  also enhances myeloma adhesion to 
marrow stromal cells, thereby enhancing marrow stromal cells 
production of the OAFs RANKL, TNF- �  and IL-6, as well as the 
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angiogenic factor vascular endothelial growth factor (VEGF). 
Elevated MIP-1 �  gene expression and secretion by myeloma 
cells is very highly correlated with bone destruction in myeloma 
patients and decreased survival. 55 – 57  Blocking MIP-1 �  activity, 
either with antisense to MIP-1 �  or by treating a mouse model of 
myeloma with an antibody to MIP-1 � , resulted in decreased tumor 
burden and bone destruction. 58,59  MIP-1 �  binds to three dif-
ferent receptors: CCR1, CCR5 and CCR9. CCR1 is the major 
receptor driving osteoclast formation in response to MIP-1 � , 
as well as myeloma cell chemotaxis, growth and survival 
induced by MIP-1 � . 60,61  In addition, small molecule antagonists 
to CCR1 have been studied in models of myeloma and have 
been shown to block both tumor growth and bone destruc-
tion. 62,63  CCR1 antagonists are being developed by several 
pharmaceutical companies 64  and should be in clinical trial for 
myeloma in the future.   

  Interleukin-3 / activin A.      IL-3 is produced by myeloma 
cells and T cells in the myeloma microenvironment, and can 
both stimulate osteoclastogenesis 65  and inhibit osteoblast 
formation. 66  IL-3 levels are increased in the marrow of 

approximately 70 %  of the myeloma patients with a median level 
of 100   pg   ml     −    1 . 65  Although IL-3 is a potent inducer of osteo-
clast formation, this effect appears to be indirect. Silbermann 
 et al.  67  recently reported that IL-3 stimulates marrow macro-
phages in the myeloma microenvironment to produce activin 
A, a TGF �  family member, 67  and that anti-activin A inhibits the 
effects of IL-3 on osteoclast formation. Activin A is known to 
directly induce osteoclast formation and enhance the effects 
of RANKL on osteoclast formation. 68  Vallet  et al.  27  reported 
that levels of activin A are increased in marrow plasma and 
peripheral blood from patients with myeloma, and that marrow 
stromal cells and osteoclasts are the major source of activin 
A in myeloma patients. Most recently, Terpos  et al.  69  reported 
that circulating activin A levels are elevated in newly diagnosed 
symptomatic myeloma patients as compared with controls, and 
that patients with relapsed disease had elevated activin A levels 
compared with symptomatic patients at the time of diagnosis. 
Additionally, elevated activin A levels correlated with advanced 
disease stage and were associated with increased bone resorp-
tion and extensive bone disease. Interestingly, Erlich  et al.  66  
found that the mechanism of IL-3 suppression of osteoblast 
differentiation required the participation of CD45    +     cells. The 
osteoclast precursor is CD45    +    , 66  suggesting that activin A is 
involved as a cross-talk regulatory molecule between osteoclast 
and osteoblast precursors in both directions. 

 Activin A signals through the activin A type-IIA receptor to 
increase bone resorption and suppress osteoblast differentiation 
by inhibiting production of the critical transcription factor Dlx5. 
An activin A receptor antagonist (soluble activin receptor 
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   Figure 1             Mechanisms of myeloma bone disease: increased osteoclast (OCL) 
activity and suppressed osteoblast (OBL) formation in myeloma result in tumor growth 
and bone destruction. In myeloma bone disease, osteoclastogenesis is favored and 
osteoblastogenesis is inhibited. ( a ) Increased OCL activity in myeloma. Multiple factors 
produced by myeloma cells increase OCL activity. Myeloma cells produce OCL-activating 
factors (OAFs) that directly increase OCL activity and stimulate marrow stromal cells 
and T cells to increase production of OAFs and decrease production of OCL inhibitory 
factors. OAFs produced by myeloma cells include RANKL, MIP-1 � , IL-3 and TNF- � . 
In addition, IL-3 activates tumor-associated macrophages to produce activin A, further 
increasing OCL activity. Myeloma cells also induce marrow stromal cells production 
of OAFS, such as RANKL, macrophage colony-stimulating factor (MCSF), IL-6 and 
TNF- � , and decrease expression of OPG, which enhances OCL formation. Amplifying 
this process, OCLs and stromal cells secrete soluble factors, such as IL-6, annexin 
II, osteopontin, BAFF and APRIL, which further stimulate tumor growth. Finally, the 
enhanced bone destructive process releases growth factors (TGF � , insulin-like growth 
factors (IGFs), fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), 
bone morphogenetic proteins (BMPs)) from the bone matrix that increase the growth of 
myeloma cells, exacerbating the osteolytic process. This results in a  ‘ vicious cycle ’  of 
bone destruction. ( b ) OBL suppression in myeloma. Suppression of OBL differentiation 
by tumor-derived OBL-inhibitory factors, such as sclerostin, DKK1, IL-3, IL-7, HGF and 
TNF- � , also has an important role in tumor growth, as mature OBL inhibit myeloma 
cell growth. In addition, IL-3, secreted by myeloma cells, stimulates release of activin A 
from macrophages in the bone marrow microenvironment to inhibit osteoblast formation. 
Myeloma cells also induce cells in the bone microenvironment to increase production of 
OBL suppressors. Osteocyte production of sclerostin and marrow stromal cell production 
of TNF- �  are examples. TGF �  released from the bone matrix by the enhanced OCL 
activity in MMBD also inhibits OBL differentiation. Myeloma cells induce changes in 
marrow stromal cells that increase production of factors that support myeloma cells, such 
as IL-6, VEGF and IGF-1, in part via adhesive interactions through VCAM-1 on marrow 
stromal cells and  �  4  �  1  on myeloma cells. Finally, bidirectional signaling between ephrin 
B2 in OCLs and its receptor, EphB4 in BMSC and OBL (not illustrated) negatively control 
osteoclast formation and promote osteoblast differentiation. Both ephrin B2 and EphB4 
are decreased in myeloma, and enhancing ephrinB2 – EphB4 signaling to decrease 
osteoclast function is a possible therapeutic target for MMBD.  
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type-IIA fusion protein (ActRIIA.muFc; also called RAP-011)) has 
been shown by two groups to block bone destruction, stimulate 
bone formation and decrease tumor growth in a mouse model 
of myeloma. 27,70  There is an ongoing clinical trial evaluating a 
humanized activin-A-soluble receptor antagonist (ACE-011) in 
myeloma patients, but the results are yet to be fully reported. 
However, ACE-011 effectively inhibited bone resorption markers 
and stimulated bone formation parameters in post-menopausal 
women in a double-blind placebo-controlled study. 71    

  Interleukin-6.      IL-6 is another potent inducer of human osteo-
clast formation 72  produced in the myeloma microenvironment in 
response to myeloma cells and by myeloma cells themselves. 73  
IL-6 can directly induce human osteoclast formation and induce 
RANKL production. IL-6 is also an anti-apoptotic factor and a 
growth factor for myeloma cells. Antibodies to IL-6 have been 
in clinical trials for patients with myeloma, and although a pilot 
study indicated that blocking IL-6 may decrease the growth of 
myeloma cells in patients, 74  to-date, none of these trials have 
been exceptionally successful. These results suggest that tar-
geting IL-6 by itself is not sufficient to inhibit bone destruction 
and myeloma tumor growth.   

  Annexin II.      AXII is a recently identified factor produced by stro-
mal cells and osteoclasts that is important in osteoclast forma-
tion, hematopoietic stem cell mobilization and homing of prostate 
cancer cells to the bone. 75  AXII has been previously found to be 
upregulated in myeloma, and myeloma-derived AXII increases 
proliferation of myeloma cell lines, possibly through an autocrine 
mechanism. 76,77  D ’ Souza  et al.  29  recently reported that AXII 
secreted by osteoclast and stromal cells enhances the growth 
of multiple myeloma cells in the bone marrow by binding to the 
AXII receptor on myeloma cells, primarily through a paracrine 
mechanism. Additionally, AXII can induce stromal cell production 
of RANKL, further stimulating osteoclast formation.   

  Ephrin B2 / EphB4 Bidirectional Signaling.      Bidirectional sig-
naling between the ligand ephrin B2 in osteoclasts and its recep-
tor EphB4 in the BMSC and osteoblasts has been reported to 
negatively control osteoclast formation from precursors (reverse 
signaling) and to promote osteoblast differentiation (forward sig-
naling). 78  Pennisi  et al.  79  found that ephrinB2 and EphB4 were 
decreased in BMSC in myeloma patients. EphB4-Fc activated 
ephrinB2 in osteoclasts, but not in the BMSC, and ephrinB2-Fc 
activated EphB4 in BMSC. Administration of either peptide 
to multiple myeloma-bearing SCID-hu mice stimulated osteo-
blastogenesis, bone formation and angiogenesis, but only 
EphB4-Fc also inhibited osteoclastogenesis and myeloma 
growth. Therefore, enhancing ephrinB2 – EphB4 signaling is a 
possible therapeutic target for MMBD.    

 Osteoblast Suppression in MMBD 

 In addition to the markedly increased osteoclast activity in 
MMBD, osteoblast differentiation is severally inhibited in 
patients with myeloma and remains suppressed even after 
the tumor cells are eradicated. In the overwhelming major-
ity of patients, myeloma bone lesions rarely heal, even when 
patients are in long-term complete remission without detectable 
myeloma cells in these lesions. A number of inhibitors of osteo-
blast differentiation have been identified in myeloma and are 

produced by myeloma cells or cells in the microenvironment. 
Along with TNF- � , MIP-1 �  and IL-3 / activin A, which were dis-
cussed above, DKK1, sclerostin, TGF � , hepatocyte growth fac-
tor (HGF) and IL-7 inhibit osteoblast differentiation ( Figure 1b ). 
In addition, myeloma patients marrow stromal cells retain their 
aberrant properties, such as increased production of activin 
A, RANKL, IL-6 and XBP1s, as well as elevated Gfi1 and sup-
pressed osteoblast differentiation, even after weeks in culture. 
This suggests that myeloma cells induce permanent changes 
in marrow stromal cells. Although myeloma cell products that 
can suppress osteoblast differentiation have been identified, the 
mechanisms responsible for the suppressed osteoblast activ-
ity in myeloma are just beginning to be understood. Further, 
the basis for the persistent block in osteoblast differentiation 
is unknown. The formation and differentiation of osteoblasts 
from marrow stromal cells requires the activity and function of 
the transcription factor Runx2 / Cbfal (Runx2).  Runx2 -deficient 
mice ( Runx2     −     /     −      ), which are embryonic lethal, completely lack 
osteoblasts and bone formation, 80  demonstrating the critical 
role of Runx2 in osteoblast activity. Inhibition of Runx2 activ-
ity in osteoblast precursors has been clearly demonstrated 
in MMBD, 81  but the mechanisms underlying the inhibition of 
Runx2 activity are unclear. The myeloma cells also induce the 
marrow stromal cells to produce factors that support the mye-
loma cell growth survival, and chemoresistance, such as IL-6, 
AXII, VCAM-1, VEGF and IGF-1. Thus, even in remission, the 
bone microenvironment is locked into a myeloma-supportive 
phenotype that is primed to protect and promote the growth 
of any myeloma cells that escaped eradication. Yaccoby and 
coworkers reported that mature osteoblasts suppress myeloma 
cell growth via production of Decorin. 82,83  These results sug-
gest that suppression of osteoblast differentiation in myeloma 
enhances tumor growth because of the toxic effects of mature 
osteoblasts on myeloma cells.  

  Dickkopf1.      Wnt signaling, leading to activation and nuclear 
translocation of  � -catenin, is an important regulator of osteo-
blast formation. 84  DKK1, a Wnt signaling antagonist, is a major 
inhibitor of osteoblast differentiation in myeloma. 85  Myeloma 
cells produce high levels of DKK1, and DKK1 gene expres-
sion correlates with the extent of bone disease in myeloma. 
Although there is strong data that DKK1 can inhibit osteoblast 
formation, there is a controversy over whether DKK1 levels 
correlate with myeloma disease severity, as DKK1 expression 
is lost as multiple myeloma bone disease progresses, 85  and 
if myeloma cells produce enough DKK1 to inhibit normal 
human osteoblast formation. 86  DKK1 can enhance RANKL 
production as well as suppress OPG expression, further driv-
ing the bone-destructive process. 41  Preclinical studies with 
blocking antibodies to DKK1 (BHQ880) have clearly shown that 
they can enhance bone formation and block tumor growth in 
murine models of myeloma bone disease. 87  Anti-DKK1 does 
not have direct anti-tumor effects, although anti-DKK1 may sup-
press tumor growth via its effects on osteoblast differentiation. 
Antibodies to DKK1 are now in clinical trials for smoldering and 
active myeloma. Several other Wnt signaling antagonists have 
been identified in myeloma, including soluble frizzle-related 
protein II and III.   

  Sclerostin.      Several recent studies have shown that myeloma 
cells may produce sclerostin or induce sclerostin expression in 
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myeloma patients. 88,89  Sclerostin is an inhibitor of the down-
stream Wnt signaling pathway and is produced by osteocytes 
to inhibit osteoblast differentiation. Antibodies to sclerostin 
are potent inducers of bone formation in preclinical models. 90  
Sclerostin levels correlate with the extent of bone destruction in 
patient with myeloma. 89  Giuliani and coworkers recently reported 
that osteocyte apoptosis occurs in myeloma, and apoptotic 
osteocytes may release both RANKL and sclerostin. 91    

  Transforming growth factor- � .      Active TGF � , deposited into 
bone matrix in a latent form by osteocytes and osteoblasts, 
is released by the enhanced osteoclast activity in MMBD. 
A major action of TGF �  in MMBD is to inhibit osteoblast dif-
ferentiation. 92  Takeuchi  et al.  92  reported that blockade of TGF �  
signaling through the TGF �  type-I receptor by an inhibitor of the 
receptor ’ s kinase function, Ki26894, restored osteoblast differ-
entiation suppressed by either TGF � , myeloma cell line condi-
tioned media, or bone marrow plasma from myeloma patients. 92  
Oral administration of Ki26894 to a SCID-rab model of MMBD 
injected with INA-6 myeloma cells revealed that targeting TGF �  
signaling  in vivo  decreased myeloma cell growth in the bone, 
protected the bone from destruction and preserved osteoblast 
differentiation.   

  Hepatocyte growth factor.      HGF is a negative modulator of 
BMP-induced osteoblast differentiation. 54  A myeloma cell line 
(JJN-3) that produces large amounts of HGF, causes 99 %  loss 
of osteoblast perimeter when injected into irradiated SCID mice. 
Standal  et al.  93  have shown that HGF could inhibit human oste-
oblast formation, and that myeloma patients with higher HGF 
levels in their sera had lower bone-specific alkaline phosphatase 
activity (a marker of osteoblast function).   

  Interleukin-7.      IL-7 has also been identified as a suppressor 
of osteoblast differentiation. Giuliani  et al.  81  reported that IL-7 
levels were increased in marrow plasma of patients with myeloma 
and did not suppress Runx2 transcriptional activity, but affected 
the differentiation of early and late osteoblast precursors by tar-
geting Runx2 activity. IL-7 can also induce Gfi1 and enhance the 
effects of suboptimal TNF- �  on osteoblast suppression, resulting 
in marked suppression of osteoblast differentiation. 94    

  Gfi1.      None of the soluble inhibitors of osteoblast differentiation 
produced or induced by myeloma cells explains the long-term 
suppression of osteoblast differentiation present in myeloma, 
even in patients in long-term remission. Recently, D ’ Souza 
 et al.  94  reported that myeloma cells induce expression of Gfi1, 
a transcriptional repressor of the  Runx2  gene, in marrow stro-
mal cells. They showed that marrow stromal cells isolated from 
myeloma patients had elevated levels of Gfi1, and that Gfi1 
was a potent suppressor of osteoblast differentiation. Further, 
knockdown of  Gfi1  in marrow stromal cells from patients with 
myeloma allowed them to differentiate toward the osteoblast 
lineage. Finally, marrow stromal cells from  Gfi1  knock-out mice 
were partially resistant to the inhibitory effects of myeloma cells 
on osteoblast differentiation. In preliminary studies, Galson and 
colleagues 95  have shown that Gfi1 binds directly to the  Runx2  
promoter, that there are multiple Gfi1 sites within the  Runx2  
promoter, that mutation of the key Gfi1 binding site significantly 
prevents TNF- �  repression of  Runx2 , and that Gfi1 can recruit 
histone-modifying enzymes to the  Runx2  promoter, which may 

explain long-term suppression of osteoblast differentiation in 
patients with myeloma.   

  Adiponectin.      Adiponectin has been identified by Fowler  et al.  96  
as an adipocyte-derived factor that can protect osteoblast dif-
ferentiation in myeloma, and increases myeloma cell apoptosis. 
They analyzed differentially expressed genes in bone marrow 
from KaLwRij that supported 5T myeloma growth as compared 
with bone marrow from the closely related C57Bl6 mice that did 
not support 5T myeloma growth. They found that adiponec-
tin expression was decreased in both mice and human bone 
marrows permissive for myeloma growth. Further, increasing 
adiponectin expression with the apolipoprotein peptide mimetic 
L-4F not only reduced tumor burden and MMBD, but in the 
absence of myeloma cells induced a significant increase in 
both osteoblasts and bone formation rates without affecting 
osteoclasts. Thus, inducing adiponectin expression is another 
potential therapeutic target to treat the osteoblast suppression 
induced in MMBD.    

 Summary 

 Multiple factors that simulate osteoclast formation and suppress 
osteoblast differentiation are involved in the development of 
the lytic bone destruction characteristic of myeloma. The mul-
tiplicity of factors driving osteoclast activity and preventing new 
bone formation explains the severity of myeloma bone disease. 
As myeloma patients are living longer and continuing to suffer 
the sequelae of their bone disease, it is important to develop 
novel therapies that target the mediators of bone destruction 
and blockade of bone formation in these patients. Trials of new 
anabolic therapies to repair myeloma bone disease are ongoing, 
and new agents are needed if patients are to have an improved 
quality of life and prolonged survival.   
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