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Abstract: The composition of a defined set of subunits (nucleotides, amino acids) is one of the key features of biological sequences. 
Compositional biases are local shifts in amino acid or nucleotide frequencies that can occur as an adaptation of an organism to an 
extreme ecological niche, or as the signature of a specific function or localization of the corresponding protein. The calculation of 
probability is a method for annotating compositional bias and providing accurate detection of biased subsequences. Here, we present a 
Sequence Analysis based on the Ranking of Probabilities (SARP), a novel algorithm for the annotation of compositional biases based 
on ranking subsequences by their probabilities. SARP provides the same accuracy as the previously published Lower Probability Sub-
sequences (LPS) algorithm but performs at an approximately 230-fold faster rate. It can be recommended for use when working with 
large datasets to reduce the time and resources required.
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Introduction
Compositional biases are local shifts in amino acid or 
nucleotide frequencies in biological sequences. This is a 
widespread natural phenomenon occurring at all levels of 
biological material, from genomes and proteomes down 
to short regions of genes and proteins. These regions are 
called compositionally biased (CB) regions. It is now 
clear that CB regions play a significant role in the adap-
tation of organisms to extreme ecological niches1,2 and 
determine certain properties of proteins.3,4 Some types of 
CB regions in protein sequences are strongly associated 
with completely disordered sequences,5 and have the 
ability to form amyloids6,7 or other cellular functions.8 
Certain compositional biases play significant roles in 
human neurodegenerative diseases.9,10

The great success of recent genome projects is an 
important factor in the development of algorithms 
and tools for the automated annotation of biological 
sequences. In recent years, in addition to a large num-
ber of prokaryotic genomes, the genomes of thousands 
of different eukaryotic species have been sequenced 
and assembled. The almost exponential growth of 
genomic and proteomic data is an important incentive 
for the development of algorithms and tools for the 
automated annotation of biological sequences. Some 
algorithms for the annotation of CB regions have pre-
viously been derived. The general aim of these exist-
ing algorithms has been the selective masking of CB 
regions without affecting other regions that could be 
potentially important. Examples of such algorithms 
are SEG (Segment Sequence(s) by Local Complex-
ity) and CAST (Complexity Analysis of Sequence 
Tracts).11,12 Later, a method for the identification of 
CB regions based on defining the lowest-probability 
subsequences (LPSs) for a given amino-acid com-
position was proposed.6 This algorithm (referred to 
below as the original LPS algorithm) is based on 
scanning along the input sequence in a decreasing 
series of moving windows whose range of window 
sizes is specified by the user. The next adaptation of 
this method was an algorithm for the complete anno-
tation of multiple amino acid residue biases.8 This 
algorithm provides an exhaustive assignment of CB 
regions with a precise localization of boundaries. It 
was employed for the development of the LPS-anno-
tate server and “Prion Home” database.13,14 The LPS 
algorithm is a very useful and powerful tool for the 
annotation of LPSs, but some of its features reduce 

its efficiency. For examples, it uses an enumerative 
technique in which LPSs are found by checking all 
possible subsequences from 25 residues to the full 
sequence length with a step size of 1 residue.6 In this 
algorithm, the dependence of processing time on the 
length of the sequence is nearly quadratic. Annotation 
of CB regions requires a lot of time and resources, 
especially for relatively long sequences.

Considering that processing time is essential for the 
processing of large datasets, we developed Sequence 
Analysis based on the Ranking of Probabilities 
(SARP): a novel algorithm for the annotation of 
LPSs. SARP provides a precise annotation of LPSs; 
it finds all of the LPSs that would be found by the 
original LPS algorithm. Our algorithm is based on 
ranking subsequences by their probabilities, followed 
by the selection of LPSs, which avoids enumeration. 
We achieved an approximately 230-fold faster per-
formance with a dependence on sequence length that 
is closer to a linear relationship. SARP is especially 
useful for the processing of large datasets, such as 
sets of eukaryotic proteomes, as it permits the user to 
drastically reduce the computing time and hardware 
requirements for computation.

Methods
Materials
Algorithms were implemented using C#. All calcu-
lations were performed on a computer with a single 
2.8 GHz Intel Core i7 CPU and 6 GB RAM. The 
probability threshold in all cases was 10-12. The mini-
mum window size for both algorithms was 25 aa, 
and the maximum window size for the original LPS 
algorithm was 1000 aa. The source code for SARP is 
available upon request.

All protein sequences were downloaded from the 
NCBI RefSeq database (http://www.ncbi.nlm.nih.
gov/refseq/). To generate the sets of 1000 proteins of 
yeast Saccharomyces cerevisiae, we selected top 1000 
proteins from the list of proteins sorted by accession. 
To generate the sets of 250 proteins for each of 
5 species: Homo sapiens, Drosophila melanogaster, 
Caenorhabditis elegans, Nanoarcheum equitans and 
Saccharomyces cerevisiae, we sorted the list of the 
proteins by accession and selected the first protein 
of each n proteins. The parameter n was different for 
each species, so the sampling procedure covered the 
whole proteome.

http://www.la-press.com
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Original LPS algorithm
We used the LPS algorithm described previously.6 
This algorithm is based on calculating the probabili-
ties for all subsequences of the given sequence. To 
generate the set of subsequences, the authors used 
sliding windows of different sizes. For each individ-
ual amino acid of type x, the whole range of window 
sizes and for all positions of the window, the prob-
ability of subsequences was calculated as follows:
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where Si,w is a subsequence of sequence S starting at 
position i with length w, n is the count of amino acid 
residues of type x in subsequence Si,w and px is the fre-
quency of residues of this type in the whole proteome. 
The subsequence with the lowest probability was 
selected as the LPS, and the remainder of the sequence 
was resubmitted to the procedure. The input sequence 
was searched for LPSs for each residue with a preas-
signed range of window sizes (from 25aa to 1000aa).

Description of SARP
Unlike original LPS algorithm, our algorithm, SARP, 
finds short subsequences, which are likely to be the 
parts of LPSs, and extends them to cover the whole 
LPSs. A flow diagram of SARP is shown in Fig. 1. 
First, SARP finds the lower limit of LPS length for 
the given sequence. The procedure for the optimi-
zation is described below. Then, the window of the 
calculated length moves along the sequence with a 
step size of one residue, and both the count of x-type 
amino acids and the probability are calculated for 
each subsequence. Probability is calculated as for the 
original algorithm (1).

Next, all subsequences are split into groups so 
that all elements in each group have equal probabili-
ties, and the groups are added to the queue in order 
of ascending probability. So, at the beginning of the 
queue, we have the group of subsequences with the 
lowest probability among the all subsequences of the 
same size, which are more likely to be the parts of 
LPSs. Then, the first group is taken from the queue 
and split into subgroups in such a manner that each 
subsequence in the subgroup overlaps with at least one 
other subsequence in the subgroup. We expect that all 

members of each subgroup are the parts of one LPS, 
if they are. Next, SARP determines the boundaries 
and probability of the LPSs covering the subgroups. 
For each subgroup, the first and last subsequences 
are selected, and each of these sequences is extended 
towards the beginning and end of the sequence as fol-
lows. At each step, one residue is added to the subse-
quence, and a new probability is calculated until the 
extension reaches the border of the sequence or the 
explored subsequence. Then, the subsequence with 
the lowest probability is chosen. Next, the extensions 

Start

Optimization of the length of window

Generate the array of subsequences of optimized window
length

Calculate the probability for each subsequence from the
array

Split the array into groups with equal probabilities

Split the group into subgroups with overlapping
subsequences

Select the first and last fragment in the subgroup

Extend both subsequences to the beginning and end of the
sequence separately

Combine the extensions for the first and last subsequences
separately

Combine the results for both subsequences

Save the start and end positions

Extend to both tails of the sequence separately

Combine the results of the extension

Check the subsequences for overlapping

Add the subsequences to the array of LPSs

Delete explored subsequences from the sequence

Return the array of LPSs

For each group

For each subgroup

No

Did the positions change?

Yes

Figure 1. A workflow of SARP. The steps of SARP performance are 
shown below. The beginning and end of the algorithm are indicated. The 
steps suggesting alternative solutions are indicated with rhombs.
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are combined as follows. We select the subsequence 
with the lowest probability from the extensions to the 
beginning, to the end and the union of both exten-
sions. Then, from the first and last extended subse-
quences of the subgroup, the subsequence with the 
lowest probability is selected. For this subsequence, 
the procedure of extending to both ends and selecting 
the extension with the lowest probability is repeated 
until the beginning and end of the subsequence do not 
change. The LPS at each step is saved. 

The LPSs generated for the subgroups, could over-
lap. To resolve overlapping, SARP uses the following 
procedure. For the group, the lowest probability subse-
quences from the last extension step for each subgroup 
with a probability lower than the threshold are checked 
for overlap. If there is a pair of overlapping subse-
quences, the subsequence with the higher probability is 
substituted with the LPS from the previous step for that 
subgroup, and checking is repeated. If the probability of 
the new LPS is higher than the threshold, it is excluded 
from the list of LPSs. The explored sequences for each 
group are excluded from further analysis. The final list 
of LPSs for each group is added to the final list of LPSs, 
which is returned by the algorithm. The example of run-
ning SARP is shown in Fig. 2.

Length optimization procedure
SARP outputs only the LPSs, whose probabilities 
are lower than the user-defined threshold, and whose 
lengths are bigger than the user-defined limit. We 
conclude that if the probability for every subsequence 
of the smallest window’s length is much higher than 
the threshold, we can increase the length of the win-
dow until the probability of at least one of the sub-
sequences is closer to the threshold. Therefore, we 
developed the window length optimization procedure. 
The length optimization procedure works as follows: 
SARP calculates the probability for an initial length 
w of each subsequence Si,w of sequence S (1). Then, if 
the lowest probability is greater than the square root 
of the threshold, SARP doubles the length; otherwise, 
it returns w. Given two subsequences of S, Si,w and 
Si+w,w, that contain residues n1 and n2 of type x, the 
probability of subsequence Si,2w is:
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Taking Equations (3) and (4) together, we can con-
clude that P S x P S x P S x ti w i w i w w( , ) ( , ) ( , ), , ,2 ≥ >+ . This 
proves the correctness of the optimization procedure.

Results
Faster algorithm with the same accuracy
The original LPS algorithm uses sliding windows, 
which have sizes that vary over a broad range, and 
a binomial distribution to calculate the probability 
of each subsequence.6 The employment of sliding 
windows with sizes that vary from several residues 
to thousands requires the calculation of approxi-
mately lr probabilities, where l is the length of the 
protein sequence and r is the difference between the 
minimum and maximum sizes of sliding window. 
However, the maximum size of a LPS is equal to the 
length of the sequence; thus, the upper limit for the 
calculation of probability is near l2. SARP does not 
use sliding windows of all sizes to find LPSs, which 
notably reduces computing time.

We benchmarked SARP with the original LPS 
algorithm using 1000 random protein sequences from 
Saccharomyces cerevisiae. The average length of a 
protein sequence in this set was 489.2 residues, and 
the total length was 489,217 residues. SARP was as 
accurate as the algorithm described by Harrison and 
Gerstein. It found 100% of the LPSs identified by the 
original algorithm, and the boundaries of those LPSs 
were principally the same as for the original algo-
rithm (Fig. 3, Supplementary File S1). The exception 
was cases of LPSs that were longer than the maxi-
mum window size. In contrast with the original LPS 
algorithm, SARP does not have an upper limit of win-
dow size, enabling the prediction of longer LPSs than 
the original algorithm can handle. We found only 1 
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that was inaccurate but it was very close to the origi-
nal prediction of LPS boundaries for a very long LPS 
with an amino acid frequency that was lower than 
average for protein with GI 6319255.

We compared computation times between the 
original LPS algorithm and SARP. As expected, SARP 
demonstrated dramatic reductions in computation 
time. The tested set of 1000 proteins was processed in 
1465 seconds of running time, ie, approximately half 
an hour, whereas for the original LPS algorithm, this 
index was 341,914 seconds (approximately 4 days). 

Sequence:

Sliding windows:

Groups:

Subgroups:

16-AAAMA-20

16-AAAMA-20  P = 0.0000296

16-AAAMA-20  P = 0.0000296

Merge

Merge

15-TAAAMA-20  P = 0.00008
14-NTAAAMA-20  P = 0.00018

Lowest probability:
16-AAAMAA-21  P = 0.0000018
Lowest probability:

16-AAAMAA-21  P = 0.0000018
Lowest probability:

16-AAAMAA-21  P = 0.0000018

LPS: 16-AAAMAA-21  P = 0.0000018

Lowest probability:

1-WNCHGLANINKYVNTAAAMA-20  P = 0.0022

17-AAMAA-21
14-NTAAA-18 13-VNTAA-17

19-MAAKL-23
20-AAKLV-24

15-TAAAM-19
18-AMAAK-22

Extension

First in the subgroup

To the beginning:

16-AAAMAA-21  P = 0.0000018
16-AAAMAAK-22  P = 0.0000059

16-AAAMAAKLV-24  P = 0.0000321

To the end:

Subgroups: Subgroups:

1-WNCHGLANINKYVNTAAAMAAKLV-24

1-WNCHG-5   P = 0.774

Pa = 0.05

P = 0.0000296 P = 0.0011 P = 0.021

2-NCHGL-6  P = 0.774

3-CHGLA-7  P = 0.204

Last in the subgroup

Figure 2. The scheme of search for LPS in example sequence with SARP for the amino acid alanine (A). The groups of the fragments with equal 
probability and the subgroups are shown. The process of extension is demonstrated for the first group.

Thus, SARP is approximately 230-fold faster than the 
original algorithm. A summary of the time consumed 
by each algorithm to find the LPSs in 1000 yeast pro-
teins is presented in Table 1.

Computation time strongly depends  
on protein length
It is clear that the computation time required to 
find the LPSs within a protein sequence depends 
on the length of the sequence. Over the range of 
protein lengths in our testing set (Fig.  4C), the 
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for proteins grouped by size is shown in Figure 4D. 
Because the difference in computation time for 
SARP and the original LPS algorithm is too large to 
illustrate both in the same histogram, an additional 
histogram for SARP alone is included (Fig. 4E). As 
discussed above, the upper limit of runtime of the 
original algorithm is close to l2. Comparing the run-
ning times for SARP and the original LPS algorithm 
for groups of different protein lengths (Fig. 4F), we 
have shown that the ratio between the running times 
for the original LPS algorithm and SARP depends on 
the length of protein linearly. Thus, the dependence 
between the SARP runtime and sequence length 
is closer to linear than for original LPS algorithm. 
Taken together, SARP provides significantly faster 
performance, and its advantage is most prominent 
for long sequences.

Another question was whether the computing 
time for SARP depends on the frequencies of amino 
acids within the proteome. To test this, we compared 
the speed of LPS detection between proteins from 5 
different species. We selected 250 random proteins 

6226530
6226534
6226541
6319253
6319255
6319276
6319282
6319291
6319295
6319298
6319300
37362611
330443386
6319341
6319355
330443395
6319386
330443405
6319390
6319420
6319424
6319425
6319429
6319442
6319459
6319462
6319464
6319486
6319485
6319490
6319523
6319528
6319533
6319541
330443439
6319553
330443449
6319589
6319611
6319616
6319626
6319638
6319675
330443461
6319689

6319715
6319754
6319756
330443479
330443481
10383762
6319835
42759852
10383780
10383792
6319890
6319912
330443486
6319926
6319931
10383809
10383811
6319968
6319978
330443497
6320034
6320039
6320041
6320049
6320061
6320097
6320115
6320143
6320145
269970297
6320167
6320170
6320179
6320190
6320191
6320192
6320199
6320259
6320260
6320282
6320285
6320286
6320301
6320304

Figure 3. The scheme represents all LPSs found with the original LPS algorithm and with SARP in a set of 1000 yeast proteins. The numbers are the GI 
numbers of proteins in the NCBI database. The horizontal black line represents a protein sequence. Different green regions represent overlapping LPSs 
found with the original algorithm and SARP. Blue regions denote parts of an LPS that were not identified by the original algorithm. Vertical red dashes 
denote an exact match of the LPS boundaries found with the original LPS algorithm and SARP.

Table 1.  A comparison of the efficiency between SARP 
and the original LPS algorithm.

Parameter LPS algorithm SARP
Total protein length, aa 489217 489217
Total time, ms 341914177 1464619
Average protein  
length, aa

489.2 489.2

Average time per  
protein, ms

341914.2 1464.619

Times faster* 1 233.45

Note: *This parameter illustrates the ratio of running times between the 
LPS algorithm and SARP, in which the running time of the LPS algorithm 
is set to 1.

computation time of the original algorithm increases 
very quickly, reaching up to approximately 2 hours 
for a sequence of 2800 residues (Fig. 4B), whereas 
SARP required only approximately 12  seconds 
for the same sequence length (Fig.  4A). To better 
understand this dependence, we sorted all sequences 
into several groups by length with an increment of 
200 residues (Fig. 4C). A comparison between SARP 
and the original LPS algorithm in processing times 
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Figure 4. (A) A distribution of computation times for separate proteins of different lengths using SARP. Lengths of protein sequences (aa) and times of com-
putation (ms) are shown. (B) The same as A. for the original LPS algorithm. (C) A histogram of relative numbers of proteins from the set of 1000 sequences 
that were analyzed grouped by their lengths. (D) A comparison of CPU running times for the original LPS algorithm and SARP dependent on the length of 
proteins. The columns of SARP results are nearly invisible due to its very fast computation time relative to the original algorithm. The results are indicated 
as the mean ± the confidence interval (P $ 0.95). (E) Special histogram for SARP computation times. The results are indicated as the mean ± confidence 
interval (P $ 0.95). (F) Ratio between the CPU times for the original LPS algorithm and SARP in the groups of proteins arranged by their length (aa).

from Homo sapiens, Drosophila melanogaster, 
Caenorhabditis elegans, Nanoarcheum equitans and 
Saccharomyces cerevisiae. Those species are from 
different taxonomic groups, live in different habi-
tats and possess different compositions and average 
protein lengths (Fig. 5). The average protein lengths 
for the selected organisms vary from 285 residues for 
N. equitans to 661 for D. melanogaster (Fig. 5B), with 
a large spread of amino acid frequencies between the 
5 sets of proteins tested (Fig. 5A). We compared the 
running times for the original algorithm and SARP 

separately for each of the 5  sets of proteins. If the 
average protein length is the major factor defining the 
performance of the algorithm, the approximate ratio 
of running times should be the same as the ratio of 
average sizes. If the running time depends mostly 
on the distribution of amino acids, we may expect 
a violation of this correlation. Our analyses dem-
onstrated that for both SARP and the original LPS 
algorithm, the CPU running time strongly correlates 
with the average protein length and does not depend 
on the composition of amino acids (Fig. 5C and D). 
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The runtimes for the subsets containing proteins of 
the same length from different organisms were very 
close to each other (data not shown). Taken together, 
these data confirm the efficiency of SARP for the pro-
cessing of large datasets.

Discussion
The role of amino acid composition was first dis-
cussed many years ago.15 Since then, shifts in the 
composition of protein sequences have been attrib-
uted to a large number of interesting phenomena of 
the living world, including adaptations to extreme 
ecological niches by Archaea and bacteria,1,2 prions 
and amyloids6,16 and many others. Analysis of com-
position is used to characterize the structure,13 func-
tions and evolution of proteins.8,17 There is evidence 
suggesting that the composition of amino acids is a 
unique “molecular signature” of each species, similar 
to the GC content of genomes.1 However, unlike GC 
content, the amino acid composition of proteomes 
has been studied very poorly to date, primarily due 
to the relatively weak elaboration of algorithms 

for systemic annotation of compositional biases in 
proteins. It is noteworthy that there are a lot of papers 
describing shifts in the composition of entire pro-
teomes or individual proteins, but that the number of 
papers dedicated to the systematic analysis of CBs 
in proteins is much lower. One of the most conve-
nient algorithms allowing such analysis is the LPS 
algorithm.6 It was successfully utilized in the original 
paper for the annotation of potentially amyloidogenic 
and prionogenic proteins based on their enrichment 
in asparagine and glutamine, which is the common 
feature of prions. Furthermore, this algorithm was 
used for the “Prion Home” (http://libaio.biol.mcgill.
ca/prion)14 and “LPS annotate” (http://cedra.biol.
mcgill.ca/lps-annotate.html) databases13 and for a 
series of studies dedicated to the characterization of 
CB regions. These implications of the LPS algorithm 
confirm its relevance. Our algorithm, SARP, can also 
be used in such studies with the advantage of very 
fast processing times. Our algorithm permits the 
annotation of LPSs in eukaryotic proteomes within 
several hours of CPU running time on a single CPU 
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machine without using high-performance computer 
systems. SARP may be useful for any web resources 
demanding permanent annotation of novel LPSs, 
such as “LPS annotate”, because compared with the 
LPS algorithm, it strongly reduces the required com-
putation capacity.

To conclude, we herein described the use of 
SARP, a novel algorithm for assessing compositional 
biases. This algorithm was shown to have high fidel-
ity, allowing the precise identification of CB regions in 
proteomes. Indeed, comparing the original LPS algo-
rithm and SARP for 1000 yeast proteins, we found 
only 1 protein for which the original algorithm was 
more precise than SARP. We did not filter the LPSs by 
the frequency of residues of type x within them. So, 
the output of the both algorithms contained LPSs of 2 
kinds, with increased and with decreased abundance 
of residues of type x. The inaccurate LPSs found 
by SARP belong to the second class. All LPSs with 
increased abundance of the x-type residues were 
found accurately by SARP. So, this inaccuracy can 
be easily overcome by searching not for LPSs with 
decreased abundance of the x-type residues, but 
for LPSs with increased abundance of non-x-type 
residues.

The general advantage of this algorithm is its 
significantly faster performance. The basis of such 
a performance improvement is the method of iden-
tification of LPSs. In contrast with the previously 
published LPS algorithm, SARP does not use enu-
meration of subsequences but directly ranks their 
probabilities and uses a new procedure of opti-
mization of window lengths. A performance test 
showed that CPU running time with SARP was 
approximately 230-fold faster than the original LPS 
algorithm. For the set of 1000 yeast’s proteins we 
achieved the reduction of the runtime up to approxi-
mately 95 hours, using SARP instead of the original 
algorithm. We could expect that the typically used 
data sets are the whole proteomes, which are much 
larger. The whole proteome of S. cerevisiae is about 
6000 proteins, and the proteomes of mammals are 
even bigger, up to approximately 35000 proteins 
for human proteome. Therefore, the gain of runtime 
would be even bigger for normal data sets.

Thus, SARP is a powerful tool for the annota-
tion of LPSs in large datasets, which is important for 
comparative, functional and evolutional proteomics.
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