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Mitogen-activated protein (MAP) kinase signaling cascades orchestrate diverse cellular activities with common molecular players. To
achieve specific cellular outcomes in response to specific signals, scaffolding proteins play an important role. Here we investigate the role
of the scaffolding protein JNK interacting protein-1 (JIP1) in neuronal signaling by a conserved axonal MAP kinase kinase kinase, known
as Wallenda (Wnd) in Drosophila and dual leucine kinase (DLK) in vertebrates and Caenorhabditis elegans. Recent studies in multiple
model organisms suggest that Wnd/DLK regulates both regenerative and degenerative responses to axonal injury. Here we report a new
role for Wnd in regulating synaptic structure during development, which implies that Wnd is also active in uninjured neurons. This
synaptic role of Wnd can be functionally separated from the role of Wnd in axonal regeneration and injury signaling by the requirement
for the JIP1 scaffold and the p38b MAP kinase. JIP1 mediates the synaptic function of Wnd via p38, which is not required for injury
signaling or new axonal growth after injury. Our results indicate that Wnd regulates multiple independent pathways in Drosophila
motoneurons and that JIP1 scaffolds a specific downstream cascade required for the organization of presynaptic microtubules during
synaptic development.

Introduction
Neurons use mitogen-activated protein kinase (MAPK) signaling
cascades to regulate many different processes, including synaptic
development and plasticity, axonal growth, and survival. A con-
served upstream regulator of MAPK signaling, named Wallenda
(Wnd) in Drosophila and dual leucine kinase (DLK) in verte-
brates and Caenorhabditis elegans, has received much recent at-
tention for its roles in regulating neuronal responses to axonal
injury. This kinase becomes activated by axonal injury and me-
diates different downstream responses depending on the cell type
and context: regenerative axonal growth, cell death, axonal de-
generation, and protection from degeneration (for review, see
Tedeschi and Bradke, 2013).

In contrast to these postdevelopmental roles, previous studies
have suggested that Wnd/DLK is highly regulated during devel-

opment and that this regulation is important for neuronal migra-
tion, axon termination, apoptosis, and synaptic development
(Chen and Tan, 2000; Collins et al., 2006; Hirai et al., 2006;
Bloom et al., 2007; Grill et al., 2007; Ghosh et al., 2011).

How can a single kinase mediate such diverse and dichoto-
mous functions in neurons? Wnd is a member of the mixed lin-
eage family of kinases, which has been shown to function as
upstream regulators of the stress-activated MAPKs, c-Jun NH2-
terminal kinase (JNK) and p38 (Fan et al., 1996). Toward under-
standing the mechanism for the multiple functions of Wnd, we
investigated the role of scaffolding proteins. By coordinating in-
teractions between specific MAPKs and their activators, inactiva-
tors, or substrates, scaffolding proteins can influence when and
where MAPKs become activated, as well as the downstream con-
sequences of their activation (Morrison and Davis, 2003; Dha-
nasekaran et al., 2007).

We focused our study on the JNK interacting proteins
(JIPs), which have been implicated in a number of JNK-
regulated processes in neurons (Whitmarsh, 2006; Koushika,
2008). The Drosophila genome encodes two JIP proteins: JIP1
(APLIP1) and JIP3, also known as Sunday Driver (Syd). In
both vertebrate and Drosophila cells, it has been shown that
JIP1 mediates the activation of JNK by Wnd/DLK (Whitmarsh
et al., 1998; Nihalani et al., 2001; Whitmarsh, 2006; Horiuchi
et al., 2007). Both JIP1 and JIP3/Syd are carried by kinesin
motors in axons (Verhey et al., 2001) and influence the process
of axonal transport (Bowman et al., 2000; Byrd et al., 2001;
Taru et al., 2002; Horiuchi et al., 2005). Because functional
axonal transport machinery is required for injury signaling
(Abe and Cavalli, 2008; Xiong et al., 2010), we needed to con-
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sider the relationship between JIP1 and the roles of Wnd in
axonal transport and signaling.

Our findings suggest that these processes can be functionally
separated. Characterization of jip1 null mutants has revealed a
new role for Wnd in regulating the structure of synaptic micro-
tubules during development of the Drosophila neuromuscular
junction (NMJ). This developmental role, which requires JIP1
and the downstream p38b MAPK, is distinct from the roles of
Wnd in axonal transport and injury signaling, which do not re-
quire p38. Hence, the JIP1 scaffold promotes a specific synaptic
function for Wnd and MAPK signaling.

Materials and Methods
Generation of jip1 mutant. The jip1ex allele was created by the imprecise
excision of the P-element insertion P-Aplip1DG20707, which lies in the 3�
UTR of JIP1/Aplip1. Approximately 260 independent lines were screened
by PCR to uncover one deletion that removed the entire JIP1/Aplip1
locus.

Genetics. The following strains were used in this study: Canton S [wild-
type (WT)], puc–lacZ E69 (Martín-Blanco et al., 1998), BG380–Gal4
(Budnik et al., 1996), m12–Gal4 [P(Gal4) 5053A] (Ritzenthaler et al.,
2000), RRa(eve)–Gal4 (Fujioka et al., 2003), OK6–Gal4 (Aberle et al.,
2002), wnd1, wnd2, wnd3 (Collins et al., 2006), hiwND8 (Wan et al., 2000),
hiw�N (Wu et al., 2005), UAS–Fos DN (Eresh et al., 1997), UAS–
Bsk(Jnk) DN (Weber et al., 2000), �p38a (Craig et al., 2004), p38b�45,
p38b�25;�p38a (Vrailas-Mortimer et al., 2011), UAS–p38b DN (Adachi-
Yamada et al., 1999), sydZ4, syd2H (Bowman et al., 2000), and jip1ek4,
UAS–JIP1�KBD, genomic JIP1 (Horiuchi et al., 2005). Df(3L)ED229
(wnd), Df(3L)Fpa2 ( jip1), Df(2L)b80e3 ( p38b), UAS–bsk–RNAi (TRiP–
JF01275), UAS–p38b–RNAi (TRiP–JF03341), UAS–wnd–RNAi (TRiP–
JF02675), p38bKG01337, P-Aplip1DG20707, and Futsch EP(x)1419 were
obtained from the Bloomington Stock Center. UAS–wnd–RNAi (26910)
was acquired from the Vienna RNAi Center (Dietzl et al., 2007). UAS–
Dcr2 was a gift from Stefan Thor (Linkoping University, Linkoping, Swe-
den). GeneSwitch elav–Gal4 driver (GSelav) was used to control
temporal expression of UAS transgenes in neurons (Osterwalder et al.,
2001). To activate the GSelav driver, flies were reared on standard food
that contained 20 �g/ml RU-486 (11�-[p-(dimethylamino)phenyl]-
17�-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), a nonlethal dose of
the drug. Male larvae were used for all experiments using the BG380–
Gal4 driver. For other experiments, larvae of both sexes were used.

Immunocytochemistry. Larvae were dissected in PBS and fixed in either
4% paraformaldehyde in PBS or Bouin’s fixative for 15–30 min, depend-
ing on the antibodies used. Antibodies were used at the following dilu-
tions in PBS with 0.3% Triton X-100 and 5% normal goat serum: mouse
anti-Futsch, 1:100 (22c10; Developmental Studies Hybridoma Bank);
rabbit anti-Drosophila vesicular glutamate transporter (DVGLUT)
(Daniels et al., 2004), 1:5000; rat anti-elav (7E8A10; Developmental
Studies Hybridoma Bank), 1:50; mouse anti-acetylated tubulin (Sigma-
Aldrich), 1:100; Cy3 goat anti-HRP (Jackson ImmunoResearch), 1:500;
Cy5 goat anti-HRP (Jackson ImmunoResearch), 1:100; and Alexa Fluor
488 rabbit anti-GFP (Invitrogen), 1:1000. For secondary antibodies, Cy3
and Alexa Fluor 488-conjugated goat anti-rabbit, anti-mouse, and anti-
rat (Invitrogen) were used at 1:1000.

Imaging and quantification. Confocal images were collected at
room temperature on an Improvision spinning-disk confocal system
(PerkinElmer Life and Analytical Sciences). All imaging and quantifica-
tion were conducted with Volocity software (PerkinElmer Life and An-
alytical Sciences). Similar settings were used to collect all compared
genotypes and conditions.

To quantify the mean intensity of puc–lacZ expression, we used the
protocol described previously (Xiong et al., 2010).

Futsch bundling was quantified as described previously (Viquez et al.,
2006). Briefly, larvae were stained with Futsch and DVGLUT antibodies
to label both the cytoskeleton and the synaptic boutons, respectively.
Futsch staining that colocalized with DVGLUT was classified as either
unbundled (looped, splayed, punctate, or missing) or bundled Futsch
(tightly wound filamentous Futsch staining). The synaptic area of un-

bundled and bundled Futsch were measured, and the area of unbundled
Futsch was divided by the total Futsch area.

The axonal transport severity index was ranked by qualitative assess-
ment of the number and size of axonal accumulations for the synaptic
vesicle marker DVGLUT, while blind to genotype. Individual nerves
were given a score of 0 to 4 depending on severity, with 4 being the
greatest amount of axonal accumulations.

The regeneration ratio was quantified as the fraction of injured axons
that exhibited sprouting (at least five branches) per genotype, while blind
to the genotype, as described by Xiong et al. (2010).

Nerve crush assay. The segmental nerves of third-instar larvae were
subjected to nerve crush injury as described previously (Xiong et al.,
2010).

Results
Comparison of JIP1 and JIP3 in axonal transport and
injury signaling
To study the role of JIP1/APLIP1 in Wnd signaling, we generated
a null allele via imprecise excision of the P-Aplip1DG20707 trans-
poson. jip1ex removes the entire jip1 coding region, leaving the
flanking genes LysX and mwh intact (Fig. 1A). Unlike the larval
lethality observed for mutations in the JIP3 homolog Syd (Bow-
man et al., 2000), jip1ex/jip1ex and jip1ex/Df mutants develop into
fully viable adults. Defects in axonal transport, as measured by
accumulations of the synaptic vesicle marker DVGLUT in seg-
mental nerves, were also less severe for jip1ex mutants compared
with jip3 mutants (Fig. 1B,C). The axonal transport defect of
jip1ex can be rescued by the presence of a transgene containing
one copy of genomic jip1 (Fig. 1C).

Wnd regulates a transcriptional response to axonal injury,
which can be measured by the induction of the puc–lacZ reporter
(Martín-Blanco et al., 1998) in response to a larval segmental
nerve crush (Xiong et al., 2010). Injury signaling in jip1ex mutant
animals is slightly reduced at 8 h but reaches levels similar to WT
animals within 24 h after injury (Fig. 1D). In contrast, injury
signaling was dramatically inhibited in the jip3 mutant animals at
both 8 and 24 h after injury (Fig. 1D). These results suggest that
JIP3/Syd plays an essential role in the injury signaling mecha-
nism, whereas JIP1 is dispensable. It has been shown previously
that general inhibition of axonal transport can diminish the in-
duction of puc–lacZ (Xiong et al., 2010); therefore, the divergent
phenotypes for jip1 and jip3 in injury signaling may be an indirect
consequence of their different effects on axonal transport (Fig.
1B,C). Because axonal transport plays a fundamental role in neu-
rons and its disruption would affect many cellular pathways, this
was an important concern in understanding the function of JIP1.
Therefore, we asked whether JIP1 played other roles in neurons
that could be functionally or phenotypically separated from its
role in axonal transport.

JIP1 promotes the development of presynaptic boutons
The most striking phenotype observed for jip1ex mutants was the
enlargement of the synaptic boutons at the larval NMJ (Fig. 2A,B).
The most proximal boutons were particularly enlarged, showing an
approximately twofold increase in diameter compared with WT
synapses (Fig. 2B). We also measured a greater than twofold increase
in the total number of boutons that exceeded 5 �m/NMJ: WT ani-
mals had an average of one bouton per NMJ that reached this size,
but jip1 mutants had an average of three boutons per NMJ that were
�5 �m (SEM of 0.54, p � 0.03) (data not shown). In contrast to the
enlarged bouton sizes, we observed no differences in the overall
number of boutons or branches (see Fig. 6B).

Surprisingly, jip1ek4 mutants, which carry a point mutation
within the kinesin binding domain (Horiuchi et al., 2005) and
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Figure 1. Comparison of JIP1 and JIP3 in injury signaling and axonal transport. A, Schematic of the JIP1/APLIP1 genomic region depicting the jip1ex excision deletion mutation. The jip1/Aplip1
locus with flanking genes LysX and mwh. The jip1ex null allele was created by imprecise excision of P-Aplip1DG20707. B, Segmental nerves from third-instar larvae immunostained with DVGLUT. Small
punctae of DVGLUT are observed in WT nerves. jip1ex null mutation caused accumulations of DVGLUT in nerves consistent with defective axonal transport. A similar amount of accumulations were
observed in the jip1ek4 hypomorphic allele. jip3 mutants (sydZ4/syd2H) displayed an increase in the number of DVGLUT accumulations compared with jip1 mutants. C, Quantification of the axonal
transport severity index. The severity of the DVGLUT accumulation phenotype was ranked by qualitative assessment of the number and size of axonal accumulations (see Materials and Methods).
Note that defects in jip1 and jip3 mutants are stronger than the strongest observed phenotype in wnd mutants. D, Quantification of puc–lacZ. The mean intensity (Figure legend continues.)
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displayed comparable defects in axonal transport as jip1ex (Fig.
1B,C), did not affect bouton morphology (Fig. 2B). This obser-
vation suggested that the role of JIP1 in controlling synaptic mor-
phology may be separable from its role in axonal transport.
Similarly, neuronal expression of a JIP1 transgene lacking the
kinesin binding domain (UAS–JIP1�KBD) also had no effect on
bouton morphology (Fig. 2B,C), although these animals display
strong defects in axonal transport (Horiuchi et al., 2005). In jip3
mutants, which exhibit the strongest defect in axonal transport,
the bouton diameter was actually slightly decreased compared
with control synapses (Fig. 2A,B). Because the synaptic pheno-
types did not correlate with the axonal transport phenotypes,
they suggest an independent function for JIP1 in the regulation of
synaptic structure.

To verify that the enlarged bouton phenotype was specific for
JIP1, we used the UAS/Gal4 system to drive expression of a UAS–
JIP1 transgene using the neuronal BG380 –Gal4 driver in a jip1ex

mutant background. This rescued the enlarged bouton pheno-
type (Fig. 2A,C). Expression of the JIP1 transgene alone in a WT
background also resulted in a slight but significant increase in the
maximum bouton diameter (Fig. 2C). The similarity between
gain-of-function and loss-of-function phenotypes for jip1 was
observed previously for defects in axonal transport (Horiuchi et
al., 2005), and, given the hypothesized role of JIP1 as a scaffolding
protein (Whitmarsh and Davis, 1998; Whitmarsh et al., 1998),
these results are not unexpected.

To determine whether the enlarged boutons in jip1 mutant
animals resulted from a failure to maintain synaptic structure or
whether JIP1 played a role in synaptic development, we examined
the synaptic morphology of jip1 mutant synapses in younger an-
imals. We found that second-instar animals, similar to third-
instar animals, had an average of 2.5 enlarged boutons (�5 �m)
per NMJ, but these enlarged boutons were slightly smaller in
diameter (Fig. 2D and data not shown) than in third-instar larvae
(Fig. 2B). We interpret that the abnormal boutons form early in
NMJ development and become larger with time. These observa-
tions implicate a role for JIP1 in regulating the development of
synaptic boutons at the NMJ.

JIP1 is required for microtubule organization in
synaptic boutons
It is well established that synaptic morphology depends on cyto-
skeletal organization (Jin and Garner, 2008; Goellner and Aberle,
2012) and that vertebrate JIP1 participates in controlling micro-
tubule dynamics in neurons (Chang et al., 2003; Tararuk et al.,
2006). Therefore, we wanted to determine whether the increased
bouton size reflected changes in the synaptic microtubules. A
particularly useful marker for synaptic microtubules is the
neuronal-specific microtubule binding protein Futsch (homolo-
gous to MAP1B), which plays a critical role in microtubule orga-
nization at the Drosophila NMJ (Hummel et al., 2000; Roos et al.,
2000). Another indicator of microtubule stability is the presence
of posttranslational modifications such as acetylated tubulin
(Conde and Cáceres, 2009; Janke and Kneussel, 2010). At the
larval NMJ, both Futsch and acetylated tubulin form a tightly

bundled cable that runs through most of the NMJ (Ruiz-Cañada
and Budnik, 2006; Fig. 3A,B). In jip1 mutants, this cable is dis-
organized (for Futsch) and broken (for acetylated tubulin), par-
ticularly in the largest boutons. Futsch staining becomes splayed
and unbundled, whereas acetylated tubulin accumulated in a
punctate, fragmented pattern, suggesting a breakdown or mis-
regulation of the microtubule cytoskeleton (Fig. 3A,B). This dis-
ruption of the microtubule cytoskeleton is not observed in either
jip1ek4 mutants or animals neuronally expressing the JIP1 trans-
gene lacking the kinesin binding domain (UAS–JIP1�KBD);
hence, is not simply a consequence of defects in axonal transport
(Fig. 3C). Importantly, both the unbundling of Futsch and the
fragmentation of acetylated tubulin are rescued by the presence
of a transgene containing one copy of genomic jip1 (Fig. 3A–C).

Mutations in futsch give rise to enlarged boutons (Roos et al.,
2000); hence, the enlarged boutons in jip1 mutants may be the
result of misregulated microtubules. We tested whether the en-
larged bouton phenotype in jip1 mutants could be suppressed by
increasing the expression of Futsch. Although overexpression of
Futsch (using the BG380–Gal4 driver) did not significantly alter
NMJ morphology in the WT background, it led to a full rescue of
the enlarged bouton phenotype in jip1 mutants (Fig. 4A,B).
These observations suggest that the bouton morphology defect in
jip1 mutants reflects a role for JIP1 in the organization of synaptic
microtubules.

In contrast to the synaptic phenotype, overexpression of
Futsch failed to rescue the axonal transport defect of jip1 mutants
(Fig. 4C,D). These observations further suggest that JIP1 plays at
least two independent roles in motoneurons: (1) one in the reg-
ulation of synaptic structure and (2) another in axonal transport.

The Wnd MAP kinase kinase kinase regulates
synaptic morphology
To understand the mechanism for the synaptic function of JIP1,
we considered the possible role of the Wnd MAP kinase kinase
kinase (MAPKKK) in regulating synaptic morphology. Studies in
vertebrate and Drosophila cells suggest that JIP1 functions as a
scaffolding protein for Wnd/DLK signaling (Whitmarsh et al.,
1998; Nihalani et al., 2001; Horiuchi et al., 2005; Whitmarsh,
2006) and that Wnd/DLK signaling can influence microtubule
structure (Eto et al., 2010; Bounoutas et al., 2011; Hirai et al.,
2011; Ghosh-Roy et al., 2012). Previous characterization of wnd
mutants found no obvious defects in synaptic morphology (Col-
lins et al., 2006), but closer examination of wnd mutant genotypes
(wnd1/wnd2, wnd1/Df, and wnd3/Df; Fig. 5A,B), as well as
neuronal-specific RNAi knockdown (Fig. 5D,E), revealed an en-
larged bouton phenotype similar to jip1 mutants. This enlarged
bouton phenotype for wnd, which is not as strong as the jip1
phenotype, may not have been noticed in a previous study (Col-
lins et al., 2006) because of differences in the measurement
method (see Materials and Methods). The larger boutons in wnd
mutants also displayed Futsch unbundling (Fig. 5A) similar to
jip1 mutants. These observations suggest that JIP1 and Wnd may
function together and suggest a new role for Wnd in regulating
microtubule structure at synapses.

The p38b MAPK regulates synaptic morphology
Previously characterized roles for Wnd, which include the pro-
motion of synaptic overgrowth and injury signaling (Collins et
al., 2006; Xiong et al., 2010), involve downstream activation of
the JNK MAPK and transcription factor Fos. We tested whether
the role of Wnd in regulating the synaptic cytoskeleton could also
involve signaling through these same downstream components.

4

(Figure legend continued.) of puc–lacZ is measured as described in Materials and Methods for
the dorsal midline neurons. At 8 h after injury, puc–lacZ intensity is increased in WT animals.
puc–lacZ intensity for jip1 ( jip1ex/jip1Df) and jip3 (sydZ4/syd2H) mutants is significantly de-
creased compared with control animals. By 24 h after injury jip1ex, puc–lacZ intensity increases
to near WT levels, but puc–lacZ intensity in jip3 mutants is comparable with uninjured control
animals. Error bars indicate mean � SEM. *p � 0.01; ***p � 0.0001. Scale bars, 10 �m.

Klinedinst et al. • Pathways Downstream of the Wnd/DLK MAPKKK J. Neurosci., July 31, 2013 • 33(31):12764 –12778 • 12767



0 

2 

4 

6 

8 

10 

12 

0 

2 

4 

6 

8 

10 

12 

14 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

M
ax

im
um

 b
ou

to
n 

di
am

et
er

 (µ
m

) 

M
ax

im
um

 b
ou

to
n 

di
am

et
er

 (µ
m

) 

M
ax

im
um

 b
ou

to
n 

di
am

et
er

 (µ
m

) 

jip1ex 
Df 

jip1ek4 
Df 

WT jip3 BG380;  
UASJIP1- 

KBD 

jip1ex BG380 BG380; 
 UASJIP1, 

jip1ex 

BG380;  
UASJIP1 

WT jip1ex jip1ex/Df 

2nd instar
**

***

**

*

***

***

*

A

***

B C

D

WT jip1ex

jip3 UASJIP1, jip1ex rescue
HRP

Figure 2. jip1 mutants have a synaptic NMJ phenotype. A, The axonal membrane at muscle 4 NMJ synapses is labeled by immunostaining with anti-HRP antibodies for WT, jip1 mutants
( jip1ex/jip1ex), jip3 mutants (sydZ4/syd2H), and jip1 rescue animals (BG380–Gal4; UAS–JIP1/�; jip1ex/jip1ex). jip1ex mutants display enlarged boutons, and this phenotype can be rescued by
neuronal expression of a JIP1 transgene. Arrows indicate the enlarged boutons �5 �m. B, C, Quantification of maximum bouton diameter. B, jip1ex mutants have larger (Figure legend continues.)

12768 • J. Neurosci., July 31, 2013 • 33(31):12764 –12778 Klinedinst et al. • Pathways Downstream of the Wnd/DLK MAPKKK



Inhibition of JNK and Fos, by either strong expression of
dominant-negative (DN) transgenes (JNK DN and Fos DN) or
RNAi targeted knockdown, did not result in any changes to bou-
ton morphology (Fig. 5F), suggesting that other factors may
function downstream of Wnd and JIP1 at synapses.

Therefore, we tested the role of the p38 MAPKs, because it has
been reported previously that Wnd/DLK signals through p38 in
C. elegans (Hammarlund et al., 2009; Nix et al., 2011). Also, JIP

family members have been shown to scaffold p38 MAPKs as well
as JNK MAPKs in vertebrate cells (Schoorlemmer and Goldfarb,
2001; Buchsbaum et al., 2002; Lee et al., 2002; Kelkar et al., 2005).
In Drosophila, the two p38 MAPK genes p38a and p38b (Han et
al., 1998; Adachi-Yamada et al., 1999; Suzanne et al., 1999;
Zhuang et al., 2006), have been extensively studied in relation to
stress (Inoue et al., 2001; Craig et al., 2004; Sano et al., 2005; Cully
et al., 2010; Vrailas-Mortimer et al., 2011) and the fly immune
system (Han and Ip, 1999; Davis et al., 2008; Ha et al., 2009;
Shinzawa et al., 2009). p38 has also been shown to participate in
developmental processes, including axial polarity during oogen-
esis, intestinal stem cell proliferation and differentiation, and dpp
regulated stem cell morphogenesis (Adachi-Yamada et al., 1999;
Suzanne et al., 1999; Park et al., 2009).

Using a null mutation of p38a (p38a�) that is deleted for the
entire p38a locus (Craig et al., 2004), we found no significant role
for p38a in the regulation of bouton size (Fig. 5B). However,
additional genetic interactions with Wnd (Fig. 6) still imply a

4

(Figure legend continued.) [and a greater number of oversized (data not shown)] boutons
compared with control animals. jip1ek4 synapses look similar to WT animals. jip3 synapses
display smaller boutons compared with controls. Expression of the jip1�KBD transgene lacking
the kinesin binding domain (UAS–JIP1�KBD) did not result in an enlarged bouton phenotype.
C, Rescue of the jip1ex bouton phenotype. Neuronal expression of a JIP1 transgene results in synapses
withslightly largerboutonscomparedwithWTanimals,butrescuestheenlargedboutonsobservedin
jip1ex mutants. D, Quantification of maximum bouton diameter in second-instar larvae. Boutons are
enlarged in jip1ex and jip1ex/Df mutants even at this earlier developmental stage. Error bars indicate
mean � SEM. *p � 0.01, **p � 0.001, ***p � 0.0001. Scale bars, 10 �m.
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enlarged boutons of jip1 mutants, acetylated tubulin has a discontinuous, punctate pattern, which can be rescued with one copy of a genomic JIP1 transgene. C, Quantification of the percentage of
unbundled Futsch for different genotypes (see Materials and Methods). C, Error bars indicate mean � SEM. ***p � 0.0001. Scale bars, 10 �m.
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function for p38a at the synapse (discussed further below). To
examine the role of p38b, we used two different alleles: (1) a null
allele that removes most of the coding region (p38b�) (Vrailas-
Mortimer et al., 2011) and (2) a transposon insertion allele
(p38bKG01337). In contrast to p38a, p38b mutants displayed a
prominent bouton morphology defect that resembled both jip1
and wnd mutants in the increase in maximum bouton size (Fig.
5A,B), as well as the number of boutons exceeding 5 �m (Fig. 5A
and data not shown). Double mutants for p38a� and p38b� did
not enhance this phenotype. Inhibition of p38b, by either RNAi
knockdown (Fig. 5D,E) or the expression of a DN allele
(p38b DN), specifically in neurons also resulted in enlarged bou-
tons (Fig. 5F), indicating a cell-autonomous role for p38b in
regulating bouton morphology. The loss of p38b also resulted in
an increase in the overall percentage of unbundled Futsch (Fig.
5A,G), similar to what was observed in jip1 mutants (Fig. 3C).
These findings signify a new role for p38b in regulating bouton
morphology and microtubule structure at Drosophila synapses.

To further probe the hypothesis that Wnd and p38 regulate
synaptic boutons through a common pathway, we asked whether
wnd and p38b genetically interact. Figure 5C shows that, although
animals missing one copy of either wnd or p38b have no pheno-
type, animals missing one copy of both wnd and p38b display
enlarged boutons (and misregulated cytoskeleton; data not
shown) similar to complete loss-of-function mutations in wnd
and p38b. Additional genetic interactions are described further
below.

JIP1 and p38 mediate synaptic growth and nuclear signaling
downstream of Hiw
One of the most striking documented regulators of synaptic
growth is Hiw, a conserved E3 ubiquitin ligase (Schaefer et al.,
2000; Wan et al., 2000; Zhen et al., 2000). At the Drosophila NMJ,
mutations in hiw cause a dramatic increase in the number of
synaptic boutons and branches at the larval NMJ (Wan et al.,
2000; Collins et al., 2006; Fig. 6A,B). This synaptic overgrowth
phenotype is caused by an increased activity of Wnd, whose levels
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in axons and synapses is regulated by Hiw (Collins et al., 2006).
We found that this synaptic gain-of-function phenotype for wnd
could be suppressed by mutations in either jip1 or p38b (Fig.
6A,B). In addition, p38a mutants, which did not have a loss-of-
function phenotype on their own at the NMJ (Fig. 5B), sup-
pressed the hiw synaptic overgrowth phenotype (Fig. 6B). These
observations revise a previous conclusion based on DN con-
structs for p38 (Collins et al., 2006) and imply a role for both p38a
and p38b in synaptic growth. This role may function indepen-
dently of the regulation of microtubules and bouton size. Alter-
natively, the function of p38a may be specific to situations when
Wnd signaling levels are high. These findings further support the
model that JIP1 and the p38 MAPK function together with Wnd
to regulate the morphology of the presynaptic axon terminus.

Of note, the genetic interactions revealed reciprocal suppres-
sion of phenotypes for hiw, jip1, and p38: not only did mutations
in either jip1 or p38 suppress the hiw synaptic overgrowth phe-
notype (Fig. 6A,B), mutations in hiw also suppressed the en-
larged bouton (Fig. 6A,C) and Futsch unbundling (data not
shown) phenotypes of jip1 and p38 mutants. Similarly, overex-
pression of Wnd also suppressed the bouton morphology pheno-
type of jip1 mutants (Fig. 6D). This suppression interaction is
consistent with the hypothesized role of JIP1 as a scaffold for
Wnd signaling: its function in assisting the activation of Wnd can
be overcome if Wnd levels are increased. However, the suppres-
sion of p38b by hiw suggests that the relationships are more com-
plex than a simple linear pathway. One possibility is that, when
Wnd levels are high, then p38a can substitute for p38b. Overall,
these genetic interactions suggest that Wnd, JIP1, and p38 func-
tion together to regulate synaptic morphology.

Previous studies of Hiw indicate that the synaptic overgrowth
phenotype is mediated by a Wnd-regulated nuclear signaling cas-
cade, which is overactive in hiw mutants. This leads to a strong
induction of the puc–lacZ reporter (Xiong et al., 2010; Fig. 6E),
which also becomes induced after axonal injury (Xiong et al.,
2010; Fig. 1D). In both injured neurons and hiw mutants, the
induction of puc–lacZ is mediated by Wnd (Xiong et al., 2010).
Although jip1 is not required for the induction of puc–lacZ after
injury (Fig. 1D), we found that it is partially required for the
induction of puc–lacZ in hiw mutants (Fig. 6E). The differences in
requirement for JIP1 suggest that there may be multiple mecha-
nisms for activating Wnd in neurons. Axonal injury activates
Wnd signaling through a mechanism that does not require JIP1
(Fig. 1D). In contrast, in uninjured neurons, Wnd regulates a
signaling pathway that controls the structure of synaptic boutons,
and this pathway is significantly diminished in the absence of JIP1
(Fig. 6E).

Wnd regulates synaptic structure and injury responses
through independent signaling mechanisms
Our findings support the model that Wnd regulates multiple
functions in neurons via independent downstream signaling
pathways. To further test this model, we asked whether p38a and
p38b, which are required for the synaptic roles of Wnd (Fig. 6),
are required for axonal transport, injury signaling, and axonal
regeneration after injury. In contrast to wnd, p38a� and p38b�, as
well as p38a�, p38b� double mutants, displayed only mild defects
in axonal transport (Fig. 7A). Also in contrast to Wnd, neither
p38a nor p38b are required for the induction of puc–lacZ after
injury (Fig. 7B). Similarly, mutations in p38a or p38b did not
impair the ability of injured axons to form new axonal branches
after injury (Fig. 7C,D). This contrasts to the essential roles for
Wnd and JNK in controlling this regenerative sprouting response
to injury (Xiong et al., 2010). These findings imply that different
downstream functions of Wnd depend on different and func-
tionally separable downstream mechanisms.

Discussion
Requirement for the JIP1 scaffold reveals independent
pathways downstream of Wnd
Wnd/DLK signaling regulates multiple processes in neurons, in-
cluding axonal transport, neuronal migration, developmental
apoptosis, axonal regeneration, axonal degeneration, and cell
death after injury (Hirai et al., 2006; Bloom et al., 2007; Horiuchi
et al., 2007; Chen et al., 2008; Hammarlund et al., 2009; Miller et
al., 2009; Yan et al., 2009; Xiong et al., 2010; Ghosh et al., 2011;
Itoh et al., 2011; Xiong and Collins, 2012; Watkins et al., 2013;
Welsbie et al., 2013). Our data suggest the existence of a new role
for Wnd in regulating the structure of synaptic microtubules. A
major question is how a single MAPKKK can achieve these dif-
ferent and often dichotomous functions in both neuronal devel-
opment and maintenance. We find that the role of Wnd in
synaptic development can be functionally separated from its role
in responding to axonal injury. The regulation by Wnd of synap-
tic development requires both the scaffolding protein JIP1 as well
as the downstream MAPK p38. In contrast, p38 is not required
for the role of Wnd in injury signaling and the promotion of new
axonal growth after injury. Therefore, in Drosophila motoneu-
rons, Wnd regulates at least two independent pathways: (1) one
that promotes responses to axonal damage and (2) another that
regulates synaptic morphology in uninjured neurons. JIP1 plays
an essential role in the second pathway but not the first (Fig. 7E).

It is intriguing to note that jip3/Syd mutants have a comple-
mentary phenotype to jip1 mutants: JIP3 is required for injury
signaling but not for regulating synaptic microtubules. The
model that JIP3 scaffolds the injury signaling pathway is sup-
ported by studies of vertebrate JIP3/Syd, which interacts with
phosphorylated JNK in axons, and is retrogradely transported in
response to axonal injury (Cavalli et al., 2005). Therefore, the
JIP1 and JIP3 scaffolds can mediate independent roles for Wnd
through distinct downstream signaling mechanisms.

Wnd/DLK regulates synaptic microtubules via p38
A number of studies of Wnd/DLK homologs in both C. elegans
and vertebrate neurons suggest that this kinase may regulate the
microtubule cytoskeleton via both JNK (Hirai et al., 2002; Eto et
al., 2010; Hirai et al., 2011) and p38 (Lewcock et al., 2007;
Bounoutas et al., 2011; Ghosh-Roy et al., 2012) signaling, both of
which are known to have microtubule-associated substrates, in-
cluding Tau, MAP1B, MAP2B, and stathmin (Gelderblom et al.,
2004; Corrêa and Eales, 2012). Moreover, the JIP1 scaffold is

4

(Figure legend continued.) in maximum bouton diameter and the number of boutons �5
�m (data not shown). p38a null mutants do not have a synaptic morphology defect. p38b
mutants have an enlarged bouton phenotype that is similar to both wnd and jip1 mutants. p38a
and p38b double mutants display enlarged boutons similar to the p38b null mutant alone. C,
Trans-heterozygous genetic interaction between wndDf/� and p38b�/�. D, E, Neuronal ex-
pression of either wnd or p38b RNAi knockdown constructs resulted in animals with significantly
larger boutons compared with control animals (GSelav–Gal4/�). F, Neuronal expression of
either DN transgenes or RNAi knockdown of JNK or Fos does not result in animals that have
larger boutons. Expression of a DN transgene for p38b resulted in animals with enlarged bou-
tons. G, Quantification of the percentage of unbundled Futsch. Both p38b null and p38bKG01337

insertion animals have a significant increase in the amount of unbundled Futsch. wnd mutants
display unbundled Futsch in large boutons, but the total amount of unbundled Futsch is un-
changed compared with controls. Error bars indicate mean � SEM. *p � 0.01, **p � 0.001,
***p � 0.0001. Scale bar, 10 �m.
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number (black bars) and bouton number (gray bars). p38a, p38b, and jip1 can all rescue the synaptic overgrowth phenotype of hiw mutants. C, D, Quantification of suppression of maximum bouton
diameter. hiw and neuronally expressed Wnd (BG380–Gal4;UAS-wnd/�) can rescue the enlarged bouton phenotype in jip1 and p38b ( p38bKG/Df) mutants. E, Quantification of puc–lacZ. jip1 is
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known to play an important role in the regulation of microtu-
bules by MAPK signaling (Goedert et al., 1997; Reynolds et al.,
1997a,b; Chang et al., 2003; Gdalyahu et al., 2004; Tararuk et al.,
2006). Although the direct downstream effectors of Wnd/DLKs
actions on synaptic microtubules remains to be fully character-
ized, important functional consequences may include the facili-
tation of axon formation during the early stages of neuronal
polarization (Eto et al., 2010; Hirai et al., 2011), regulation of
a transcriptional response to depolymerized microtubules
(Bounoutas et al., 2011), and regulation of microtubule dynamics
within injured axons (Ghosh-Roy et al., 2012), which are impor-
tant for an injured axon to initiate regenerative growth (Gordon-
Weeks, 2004; Erez et al., 2007; Stone et al., 2010; Chen et al., 2012;
Hur et al., 2012).

In C. elegans, p38 appears to play a role in all the known
functions of DLK, including both synapse formation (Nakata et
al., 2005; Grill et al., 2007) and regeneration after injury (Ham-
marlund et al., 2009; Yan et al., 2009; Nix et al., 2011). In contrast,
we observed that, in Drosophila, p38b mediates a synaptic role for
Wnd, but p38a and p38b are not required for injury signaling and
axonal sprouting after injury. Although downstream signaling
pathways and the mechanisms of activation may diverge in evo-
lution, we acknowledge that the assay for the requirement of p38
in axonal regeneration is more stringent in C. elegans than in our
sprouting assay after nerve crush in Drosophila, because the
sprouting axons in Drosophila nerves fail to reach their final tar-
get (Xiong et al., 2010). Therefore, it remains possible that p38
will be required for steps in axonal regeneration that could not be
addressed in our current assay. The puc–lacZ induction likely
reports a specific aspect of Wnd pathway activation, and this is
useful for teasing apart multiple downstream events.

In C. elegans, an additional MAPKKK, mixed-lineage kinase-1
(MLK-1), functions in parallel to DLK to promote axonal regen-
eration (Nix et al., 2011). The Drosophila homolog of MLK-1,
Slpr (Stronach and Perrimon, 2002; Sathyanarayana et al., 2003),
is not required for the induction of puc–lacZ after injury (Xiong
et al., 2010), but this does not rule out other potential functions
for Slpr in neurons. Because the synaptic phenotype of jip1 mu-
tants is more severe than the phenotype of wnd mutants, a poten-
tial role for additional MAPK regulators, such as Slpr, in the
regulation of synaptic microtubules should also be considered.

Separating roles in signaling from roles in axonal transport
The JIP scaffolding proteins interact with both the kinesin-I and
dynein motors (Verhey et al., 2001; Cavalli et al., 2005; Horiuchi
et al., 2005; Kelkar et al., 2005; Nguyen et al., 2005; Arimoto et al.,
2011; Sun et al., 2011) and may play a role in mediating the
regulation of these motors by MAPK signaling (Morfini et al.,
2006, 2009; Stagi et al., 2006; Horiuchi et al., 2007). Indeed, loss-
of-function studies of JIP1/APLIP1 and JIP3/Syd suggest that
both play roles in axonal transport (Bowman et al., 2000; Byrd et
al., 2001; Taru et al., 2002; Horiuchi et al., 2005). Because JIPs are
physically carried by kinesin and dynein motors, the converse

relationship may also be true: motor proteins may regulate the
signaling complexes that are scaffolded by JIPs, by delivering the
signaling complexes to specific subcellular locations. This ap-
pears to be the case for Wnd signaling, because the downstream
cascades for both injury signaling and synaptic growth appear to
depend on functional axonal transport machinery. The localiza-
tion of JIP1 to the axon terminus requires Kinesin-1 (Verhey et
al., 2001; Reed et al., 2006), and we propose that this localization
mediates a specific role for Wnd signaling at the synapse. Con-
versely, the interaction of JIP3/Syd with dynein is thought to
mediate retrograde signaling in response to axonal injury (Cavalli
et al., 2005).

An essential role for the axonal transport machinery within
neurons makes it difficult to delineate the precise function for any
individual molecule involved in this process. A mutant that ex-
hibits axonal transport defects may affect multiple signaling
pathways, which may rely either directly or indirectly on the ax-
onal transport machinery. Therefore, it is remarkable that the jip1
mutants exhibit such a specific synaptic phenotype given their
axonal transport impairment. Of the many other known muta-
tions in Drosophila that inhibit axonal transport in motoneurons,
including subunits of kinesin-1, kinesin-3, dynactin, and dynein,
as well as jip3/Syd, none display the enlarged bouton phenotype
observed for jip1 mutants (Fig. 2A,B; Hurd and Saxton, 1996;
Eaton et al., 2002; Pack-Chung et al., 2007). We were further able
to dissociate a role for JIP1 signaling in synaptic development
from axonal transport, because the enlarged bouton phenotype
of jip1 mutants could be suppressed independently of the axonal
transport defect. Although we expect that the roles of JIP1 in both
axonal transport and synaptic development are intimately linked,
they can nevertheless be genetically separated.

A role for Wnd/DLK in uninjured synapses
Our studies of JIP1 have led to the discovery of a new role for
Wnd signaling in regulating synaptic development via JIP1 and
p38b. Previous studies in Drosophila and C. elegans have failed to
detect such a function for Wnd/DLK. Instead, the previously
described synaptic phenotypes were gain-of-function because of
the loss of regulation by the Hiw ubiquitin ligase. Since the dis-
covery of the role of Wnd/DLK in axonal regeneration (Ham-
marlund et al., 2009; Yan et al., 2009; Ghosh-Roy et al., 2010;
Xiong et al., 2010; Nix et al., 2011; Shin et al., 2012; Xiong and
Collins, 2012), it has been hypothesized that its main function in
neurons is to detect axonal injury. The current data now suggest
otherwise. JIP1 promotes the activation of a signaling cascade
that specifically regulates the structure of presynaptic boutons.
This further suggests that Wnd becomes activated in uninjured
neurons by unknown upstream factors. Because Wnd and JIP1
can localize to presynaptic boutons (Verhey et al., 2001; Muresan
and Muresan, 2005; Collins et al., 2006; data not shown), they
may potentially act locally to regulate presynaptic events during
synaptic development and/or plasticity. Consistent with a synap-
tic function for Wnd, recent behavioral studies of hiw mutants
imply that the regulation of Wnd in mushroom body neurons is
important for constraining the formation of long-term memories
(Huang et al., 2012). An important future direction will be to
identify the mechanisms that mediate and regulate the function
of Wnd/JIP1/p38b signaling at synapses.

Notes
Supplemental material for this article is available at http://labs.mcdb.lsa.
umich.edu/labs/collins/files/SupplementaryFigures.pdf. Figure 1 shows
the quantification of the number of boutons �5 �m for different alleles

4

(Figure legend continued.) forms extensive new branches by 15 h after injury. Sprouting after
injury is inhibited in a wnd mutant background (wnd1/wnd2). New sprouting forms at the
proximal stumps in both p38b and p38a mutants similar to control axons. D, Quantification of
regeneration ratio 15 h after injury. The fraction of injured axons that displayed sprouting was
measured while blinded to the genotype. E, Model: Wnd promotes the development of synaptic
structure and injury signaling through separate pathways that differ in their requirement for
p38b and the JIP1 scaffolding protein. Error bars indicate mean � SEM. *p � 0.01, ***p �
0.0001. Scale bar, 10 �m.
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of jip1. Figure 2 shows the quantification of the number of boutons �5
�m for different alleles of wnd, p38a, and p38b. This material has not
been peer reviewed.
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