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Baclofen is a GABAB receptor agonist commonly used to relief spasticity related to motor disorders. The effects of baclofen on voluntary
motor output are limited and not yet understood. Using noninvasive transcranial magnetic and electrical stimulation techniques, we
examined electrophysiological measures probably involving GABAB (long-interval intracortical inhibition and the cortical silent period)
and GABAA (short-interval intracortical inhibition) receptors, which are inhibitory effects mediated by subcortical and cortical mecha-
nisms. We demonstrate increased active long-interval intracortical inhibition and prolonged cortical silent period during voluntary
activity of an intrinsic finger muscle in humans with chronic incomplete cervical spinal cord injury (SCI) compared with age-matched
controls, whereas resting long-interval intracortical inhibition was unchanged. However, long-term (�6 years) use of baclofen decreased
active long-interval intracortical inhibition to similar levels as controls but did not affect the duration of the cortical silent period. We
found a correlation between signs of spasticity and long-interval intracortical inhibition in patients with SCI. Short-interval intracortical
inhibition was decreased during voluntary contraction compared with rest but there was no effect of SCI or baclofen use. Together, these
results demonstrate that baclofen selectively maintains use-dependent modulation of largely subcortical but not cortical GABAB neuro-
nal pathways after human SCI. Thus, cortical GABAB circuits may be less sensitive to baclofen than spinal GABAB circuits. This may
contribute to the limited effects of baclofen on voluntary motor output in subjects with motor disorders affected by spasticity.

Introduction
Baclofen is a GABAB receptor agonist commonly used to reduce
the symptoms of spasticity after spinal cord injury (SCI) and
other motor disorders (Aydin et al., 2005; Roy and Edgerton,
2012). Its effects on synaptic transmission have been attributed to
decreasing neurotransmitter release from primary afferent termi-
nals (Curtis et al., 1997) and to increasing the sodium current to
a larger extent than reducing the calcium inflow by postsynaptic
effects in motoneurons (Li et al., 2004).

Studies in humans with SCI have shown a decrease in cor-
tical (Shimizu et al., 2000; Saturno et al., 2008; Roy et al., 2011)
and subcortical (Calancie et al., 1993; Faist et al., 1994; Ay-
mard et al., 2000) GABAergic inhibition, which may be part of
a compensatory effect to the loss of descending and ascending
motor and sensory pathways. Although these studies were
done in a resting condition, it is thought that baclofen reduces
the symptoms of spasticity by increasing GABAergic inhibi-

tion (Orsnes et al., 2000; Kumru and Kofler, 2012). Baclofen
decreases the synaptic effectiveness of afferent fibers (Jiménez
et al., 1991; Quevedo et al., 1992) and has inhibitory or excit-
atory effects in motoneurons depending on the dose (Li et al.,
2004).

The effects of long-term use of baclofen on transmission in
specific GABAergic neuronal circuits during voluntary activity
remain unknown. In uninjured individuals, transmission in cor-
tical and subcortical inhibitory pathways mediated by GABAB

receptors during voluntary activity contributes to modulate ex-
citability of corticospinal and spinal motoneurons involved in the
intended movement (Pierrot-Deseilligny and Burke, 2005; Reis
et al., 2008). GABAB receptors are abundantly present in the ce-
rebral cortex and dorsal horn of the spinal cord (Price et al., 1984,
1987; Misgeld et al., 1995; Yang et al., 2001); therefore, baclofen
may affect GABAB inhibition in both cortex and spinal cord.
Some lines of evidence suggest, however, a more selective effect of
baclofen on subcortical pathways. In animals, administration of
baclofen affect to a lesser degree synaptic efficacy of descending
motor pathways compared with sensory afferent fibers (Jiménez
et al., 1991; Quevedo et al., 1992). In humans, the effects of
baclofen on spasticity are stronger after intrathecal compared
with oral administration (Penn et al., 1989; Azouvi et al., 1996) in
patients with complete and partial SCI (Burke et al., 1971) with
limited effects in voluntary motor function (Burke et al., 1971;
Latash et al., 1989; Domingo et al., 2012). Thus, we hypothesized
that long-term use of baclofen in patients with SCI will maintain
transmission in subcortical but not cortical GABAB neuronal cir-

Received April 10, 2013; revised May 18, 2013; accepted June 8, 2013.
Author contributions: M.D.B., K.L.B., R.C., and M.A.P. designed research; M.D.B., K.L.B., R.C., and M.A.P. per-

formed research; M.D.B., K.L.B., R.C., and M.A.P. contributed unpublished reagents/analytic tools; M.D.B., K.L.B.,
R.C., and M.A.P. analyzed data; M.D.B., K.L.B., R.C., and M.A.P. wrote the paper.

This work was funded by the National Institute of Neurological Disorders and Stroke, National Institutes of Health
(Grant R01-NS-076589-1 to M.A.P.).

The authors declare no competing financial interests.
Correspondence should be addressed to Dr Monica A. Perez, Department of Physical Medicine and Rehabilitation,

Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261. E-mail: perezmo@pitt.edu.
DOI:10.1523/JNEUROSCI.1552-13.2013

Copyright © 2013 the authors 0270-6474/13/3312898-10$15.00/0

12898 • The Journal of Neuroscience, July 31, 2013 • 33(31):12898 –12907



cuits during voluntary activity compared with uninjured con-
trols. We also predicted that the effects of baclofen will be specific
neuronal pathways mediated by GABAB receptors.

To test our hypothesis, we used transcranial magnetic and
electrical stimulation to examine excitability in cortical and sub-
cortical electrophysiological pathways probably mediated by
GABAB and GABAA receptors. Baclofen effects on clonus present
during voluntary activity and muscle spasms were measured. We
demonstrate that SCI results in increased subcortical and cortical
GABAB inhibition during voluntary activity compared with un-
injured controls, whereas long-term (�6 years) use of baclofen
maintains use-dependent modulation of subcortical but not cor-
tical GABAB neuronal pathways.

Materials and Methods
Subjects. Sixteen patients with cervical SCI and 18 age-matched right-
handed controls (SCI: mean age � 46.8 � 12.8 years, 2 female; Table 1;
controls: mean age � 39.4 � 15.4yr, 9 female; p � 0.14) participated in
the study. All subjects gave informed consent to experimental proce-
dures, which were approved by the local ethics committee at the Univer-
sity of Pittsburgh. Patients had a chronic (�1 year), cervical (C4 –C8)
injury with remaining sensory innervation of the C6 dermatome for light
touch and pin-prick tests using the American Spinal Injury Association
(ASIA) classification. Fourteen patients had a traumatic injury whereas
two had a degenerative disease (Patients 13 and 16; Table 1). Three pa-
tients were classified as ASIA A due to lack of sacral sparing (Marino et al.,
2003) but were able to perform voluntary contraction with their index
finger, and 13 were classified as ASIA C or D. Eight patients took baclofen
[SCI (Baclofen)] as part of their daily drug therapy for 6.5 � 5.4 years
(Table 1, Baclofen dose) and eight never took baclofen since their diag-
nosis [SCI (No-Baclofen)]. All patients were able to exert an isometric
maximal voluntary contraction (MVC) by moving their index finger into
abduction against resistance. Electromyographic (EMG) activity exerted
during MVCs was larger in controls than in patients [controls � 646.4 �
33.6 �V, SCI (Baclofen) � 300.5 � 21.9 �V, SCI (No-Baclofen) � 398 �
22.7 �V, F � 4.6, p � 0.01]. Thus, testing was completed by matching
voluntary activity as a percentage of MVC across groups.

EMG recordings. EMG was recorded from the first dorsal interosseous
muscle (FDI) of the right side in controls and from the less affected hand
in participants with SCI through surface electrodes (Ag–AgCl, 10 mm
diameter) arranged in a monopolar configuration. One electrode was
secured to the skin over the belly of the FDI with a reference electrode
positioned over the proximal interphalangeal joint of the index finger.

The signals were amplified (Neurolog System, NL844, NL820, Digi-
timer), filtered (30 –1000 Hz, Neurolog System NL844, NL136, Digi-
timer), and sampled at 2 kHz for off-line analysis using Signal 4.09
software (CED 1401, Cambridge Electronic Design).

Experimental paradigm. Subjects were seated in chair with the tested
arm flexed at the elbow at 90°, forearm pronated, wrist restrained by
straps, and with the index finger resting against a custom lever (Fig.
1A). At the start of the experiment participants performed three brief
MVCs for 3–5 s into index finger abduction, separated by 30 s. The
maximal forces were used to set targets for subsequent submaximal
contractions. Testing was completed at rest and when individuals
performed 25% of MVC into index finger abduction. During volun-
tary contraction, integrated EMG signal (Neurolog System, NL703,
Digitimer) was displayed continuously on an oscilloscope and verbal
feedback was provided to the subjects (Fig. 1A, top traces) to assure
that physiological measurements in the FDI were acquired during the
same level of background EMG activity at all times. A familiarization
trial was completed at the beginning of each experiment to ensure that
subjects were able to complete the task. A total of 5.0 � 5.2% trials in
which the mean rectified EMG was �2 SD of the mean resting EMG,
measured 200 ms before the stimulus artifact, were excluded from
further analysis (Bunday and Perez, 2012).

Transcranial magnetic stimulation. Transcranial magnetic stimuli were
delivered from a Magstim 200 stimulator (Magstim) through a figure-
eight coil (loop diameter, 7 cm; type no. 16342) with a monophasic
current waveform. Transcranial magnetic stimulation (TMS) was deliv-
ered to the optimal scalp position for activation of the left or right FDI
muscle. The scalp position for FDI was determined with the coil held
tangential to the scalp and the handle pointing backward and 45° away
from the midline. With this coil position the induced current flowed in a
posterior-medial direction and probably produced D and early I wave
activation of corticospinal neurons (Sakai et al., 1997). During testing,
the TMS coil was held to the head of the subject with a custom coil holder
with the head held with straps against a headrest to restrict movements.
TMS measurements included resting motor threshold (RMT) and active
motor threshold (AMT), maximal motor-evoked potential (MEP-max)
size, long-interval intracortical inhibition (LICI), cortical silent period
(CSP), and short-interval intracortical inhibition (SICI).

MEPs. RMT [controls � 49.3 � 8.0%, SCI (Baclofen) � 68 � 21.8%,
SCI (No-Baclofen) � 55.1 � 7.7%, F � 6.6, p � 0.01] was defined as the
minimal stimulus intensity required to induce MEPs �50 �V peak-to-
peak amplitude in 5 of 10 consecutive trials in the relaxed FDI muscle and
AMT [controls � 40.3 � 5.6%, SCI (Baclofen) � 56.5 � 18.0%, SCI
(No-Baclofen) � 56.9 � 22.3%, F � 5.1, p � 0.01] was defined as the

Table 1. SCI participant demographics

Pt Level
Age,
years Gender Aetiology

Injury,
years ASIA

Motor
score
(FDI,/5)

Light
touch (12)

Pin-prick
(12)

Baclofen
dose
(mg/d)

Years
taking
baclofen

Spasm
frequency
score

SCI (Baclofen) 1 C7 51 M T 11 C 5/5 2 2 60 2 3
2 C6 30 M T 6 A 5/5 1 1 60 6 4
3 C7 57 F T 13 D 3/5 2 2 120 13 2
4 C5/6 39 M T 10 C 1/5 1 1 500* 10 3
6 C4 59 M T 7 D 3/5 1 2 160 15 4
7 C7 51 M T 1 D 4/5 2 2 80 2.5 4
8 C5 38 M T 1 D 4/5 2 1 120 1 2

SCI (No-Baclofen) 9 C7 41 F T 20 A 3/5 1 1 — — 4
10 C4 58 M T 3 D 5/5 2 2 — — 2
11 C5 50 M T 1 D 5/5 2 2 — — 1
12 C5/6 34 M T 4 D 4/5 2 2 — — 2
13 C6 59 M NT 17 D 5/5 2 2 — — 1
14 C7 45 M T 12 D 5/5 2 2 — — 3
15 C4 66 M T 3 D 5/5 1 2 — — 2
16 C4 64 M NT 6 D 5/5 2 2 — — 2

*Milliquarts via surgically implanted baclofen pump.

M, Male; F, female; T, traumatic; NT, non traumatic; Light touch and pinprick: 1 � impaired, 2 � intact; Spasm frequency score: 0 � no spasms, 1 � one or fewer spasms per day, 2 � between 1 and 5 spasms per day, 3 � 5 to �10 spasms
per day, and 4 � 10 or more spasms per day.
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minimal stimulus intensity able to evoke MEPs
�200 �V peak-to-peak amplitude in at least 5
of 10 consecutive trials during 25% of MVCs
with the FDI muscle (Rothwell et al., 1999).
The MEP-max was defined in all participants at
rest by increasing stimulus intensities in 5%
steps of maximal device output until the MEP
amplitude did not show additional increase.
The MEP-max was different across groups
[controls � 4.2 � 2.5 mV, SCI (Baclofen) �
2.1 � 2.5 mV, SCI (No-Baclofen) � 1.8 � 2.1
�V, F � 3.8, p � 0.03]. Post hoc testing showed
no differences in RMT ( p � 0.2), AMT ( p �
0.9), and MEP-max ( p � 0.7) between patient
groups.

LICI. LICI was tested using previously de-
scribed methods (Valls-Solé et al., 1992; Was-
sermann et al., 1996). A conditioning stimulus
(CS) was delivered by TMS at an intensity that
elicited �40% of inhibition at rest in all groups
[controls � 59.6 � 11.3% of maximal stimulator
output (MSO), n � 18; SCI (Baclofen) �
78.9 � 20% of MSO, n � 8; SCI (No-
Baclofen) � 72.2 � 10.6% of MSO, n � 8;
F � 6.2, p � 0.01]. Post hoc testing showed no
differences in the CS intensity between patient
groups ( p � 0.7). The test stimulus (TS) was
elicited by using TMS and set at an intensity to
produce an MEP of �50% of the MEP-max at
rest [controls � 63.3 � 8.4% of MSO, n � 18;
SCI (Baclofen) � 83.0 � 17.2% of MSO, n � 8;
SCI (No-Baclofen) � 72.5 � 10.4% of MSO,
n � 8; F � 8.5, p � 0.001]. Post hoc testing
showed no differences in the TS intensity be-
tween patient groups ( p � 0.08). The same CS
and TS intensity was used at rest and during
25% of MVC. The CS was delivered 100 ms
before the TS (Fig. 1B1). The CS and TS inten-
sity was different across groups; therefore, LICI
was also tested in controls by adjusting the in-
tensity of the CS and TS to match the intensity
used in patients. Because the size of the MEP
elicited by the CS and the TS increased when
testing was completed during 25% of MVC, LICI was also tested by
adjusting the size of the test MEP and the MEP elicited by the CS in all
groups (condition referred as to 25% of MVCADJ; Table 2). LICI was
calculated by expressing the size of the conditioned MEP as a percentage
of the size of the test MEP [(conditioned MEP � 100)/(test MEP)].
Twenty test MEPs and 20 conditioned MEPs were measured in each
condition. Measurements were repeated two to three times on each con-
dition and averaged.

LICI was also tested using a CS elicited by TMS (at the same intensity
described above) and a TS elicited by transcranial electrical stimulation
(TES; Fig. 1B2; Table 2). The TS evoked by a high-voltage electrical current
(200 �s duration, Digitimer DS7AH) that passed between 9 mm brass elec-
trodes fixed to the scalp with electrode conductive gel. The cathode was
located at the vertex and the anode 7 cm laterally (Rothwell, 1997). The
stimulation intensity was set to elicit an MEP of 3–5% of the maximal motor
response (M-max) at rest tested by supramaximal stimulation of the ulnar
nerve at the wrist and recorded in the FDI muscle [controls � 248.3 � 158.1
mA, n�10; SCI (Baclofen)�306.7�45.1 mA, n�3; SCI (No-Baclofen)�
264.5 � 45.1 mA, n � 3]. The latency of MEPs elicited by TMS and TES were
different in all groups [controls: TMS� 22.3 � 1.9 ms, TES � 20.2 � 1.8 ms,
p � 0.01; SCI (Baclofen): TMS � 26.8 � 1.6 ms, TES � 25.1 � 1.8, p � 0.01;
SCI (No-Baclofen): TMS � 27.1 � 2.2 ms, TES � 25.3 � 2.4, p � 0.04]
indicating that TES activated corticospinal axons bypassing the motor cor-
tex. LICI was calculated using the same formula described above. Ten test
MEPs and 10 conditioned MEPs were measured in each condition. Mea-
surements were repeated two times at rest and during 25% of MVC.

Table 2. LICI: MEP amplitudes

Control SCI (Baclofen) SCI (No-Baclofen) p values

LICI (CS and TS elicited by TMS)

Rest
CS (mV) 0.5 � 0.5 0.2 � 0.4 0.3 � 0.3 p � 0.35
TS (mV) 1.3 � 1.1 0.9 � 1.8 0.6 � 0.8 p � 0.37

25% of MVC
CS (mV) 2.6 � 2.3 0.6 � 0.8 0.8 � 1.1 p � 0.02
TS (mV) 4.3 � 2.9 1.5 � 2.3 2.4 � 2.0 p � 0.04

25% of MVCADJ

CS (mV) 1.1 � 0.9 0.7 � 1.2 0.4 � 0.5 p � 0.62
TS (mV) 1.2 � 0.9 1.1 � 1.9 0.7 � 0.7 p � 0.21

LICI (CS elicited by TMS and TS elicited by TES)

Rest
CS (mV) 0.3 � 0.3 0.4 � 0.5 0.3 � 0.4 p � 0.14
TS (mV) 0.9 � 0.6 0.9 � 0.9 0.7 � 0.6 p � 0.71

25% of MVC
CS (mV) TS (mV) 3.3 � 1.9 1.1 � 0.6 1.4 � 2.4 p � 0.23
TS (mV) 5.9 � 2.7 1.1 � 0.8 2.5 � 3.5 p � 0.03

Mean (�SD) size of MEPs elicited by the TS and CS during testing of LICI using TMS and TES stimulation. FDI MEP size
is reported at rest, 25% of MVC, and 25% of MVCADJ in all groups. p values represent ANOVA tests performed across
groups on each condition. Note that size of the MEP elicited by the TS, using TMS, was used was similar at rest and in
the 25% of MVCADJ condition across groups but increased during 25% of MVC. Also, note that that size of the MEP
elicited by the TS using TES was increased during 25% of MVC compared to rest.

Figure 1. Experimental setup. A, Raw EMG traces showing (top left traces) with the index finger into abduction by activating the
FDI muscle and the visual display presented to all subjects (top right traces) during testing. Subjects were instructed by an
oscilloscope to maintain at rest and to perform 25% of MVC with the index finger into abduction. Schematic of the experimental
setup showing the posture of both hands and TMS coil during testing (illustration). Note that control subjects completed the test
with the right dominant hand and patients with SCI used their less affected hand. B, Raw MEP traces elicited by TMS and TES
stimulation recorded from the FDI muscle in a representative subject during all conditions tested. MEPs elicited by the TS (black
traces) and CS (red traces) are indicated by arrows during testing of LICI using TMS (B1) and TES (B2). Note that during testing of
LICI the CS was given 100 ms before the TS (B1, B2). An example of the CSP (B3) elicited by using TMS during 25% of MVC is
presented. The CSP was measured between the stimulus artifact (left dotted line) and the return of background EMG (right dotted
line).
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CSP. We measured the duration of the CSP during 25% of MVC,
whereas the size of MEPs elicited by TMS was maintained similar across
groups [p � 0.26; controls, n � 18; SCI (Baclofen), n � 8; SCI (No-
Baclofen), n � 8]. The duration of the CSP was measured by calculating
the mean amplitude of the rectified EMG activity �100 ms prior the TMS
stimulus artifact and by detecting when the EMG returned to 50% of
prestimulus values from the stimulus artifact for a period of 10 s (Butler
et al., 2012; Fig. 1B3). In addition, the CSP was measured using a custom
script to determine the mean rectified EMG activity averaged 100 ms
before the artifact and the end of the silent period when the mean recti-
fied EMG activity was 2 SD of the baseline. These measurements were
confirmed by visual inspection. The same result in all groups was found
when the data were analyzed with either criterion. Twenty MEPs were
tested in each group. The CSP was also measured after MEPs elicited by
TES during 25% of MVC [controls, n � 10; SCI (Baclofen), n � 3; SCI
(No-Baclofen), n � 3]. Ten MEPs were tested in each group.

SICI. SICI was tested using a previously described method (Kujirai et
al., 1993). A CS was delivered by TMS at subthreshold intensity that
elicited �40% of inhibition at rest in all groups [controls � 34.5 � 4.5,
n � 10; SCI (Baclofen) � 44.6 � 11.9%, n � 6; SCI (No-Baclofen) �
43.2 � 14.0, n � 6; F � 2.5, p � 0.11]. The TS intensity was adjusted to
produce an MEP of �50% of the MEP-max [controls � 67.1 � 7.5, n �
10; SCI (Baclofen) � 81.3 � 19.6%, n � 6; SCI (No-Baclofen) � 68.7 �

17.8, n � 6; F � 1.9, p � 0.17]. The same CS
and TS intensity was used at rest and during
25% of MVC. The CS was delivered 2.5 ms
before the TS. Because the intensity used for
the CS and TS was similar across groups, no
control studies were conducted. Because MEP
size increased during voluntary contraction
SICI was also tested by adjusting the size of the
test MEP to match the MEP amplitude pro-
duced during rest (condition referred to as
25% of MVCADJ). SICI was calculated by ex-
pressing the size of the conditioned MEP as a
percentage of the size of the test MEP [(condi-
tioned MEP � 100)/(test MEP)]. Twenty test
MEPs and 20 conditioned MEPs were tested in
each condition. Measurements were repeated
two to three times on each condition and
averaged.

Clonus EMG analysis. Clonus EMG activity
has been reported during voluntary activity in
patients with SCI (Beres-Jones et al., 2003;
Wallace et al., 2012). We detected clonus in the
FDI muscle in some of the trials during volun-
tary contraction in five of eight patients with
SCI not taking baclofen and in one of eight
patients taking baclofen. Using a custom script
EMG burst duration, duration of EMG period
between bursts or interburst (a period of a de-
crease or a relative silence following the burst
of EMG), mean rectified EMG activity during
the interburst, and burst frequency were mea-
sured in individual trials. The custom script
rectified and smoothed EMG data in the FDI
muscle using a time constant of 8 ms. EMG
data were analyzed for 1.5 s after the CSP in
individual frames. Within this period, the burst
onset was defined as the time when the mean
rectified EMG reached a value of 2 SD above
the mean rectified EMG for at least 25 ms. The
burst offset was defined as the time when EMG
activity remained below these values at least 25
ms. Markers representing the burst duration
were created within a memory buffer channel.
The interburst duration was calculated from
the end of one burst to the start of the next
consecutive burst. Mean burst frequency was
calculated by counting the number of burst in

each frame from the beginning of the first burst and the end of the last
burst detects during the 1.5 s period of EMG analysis. Based on previous
criteria (Beres-Jones et al., 2003; Wallace et al., 2012), we defined clonic
EMG to be at least two consecutive EMG bursts (duration from 25 to 130
ms) with a silent period between them (duration from 25 to 280 ms).
Measurements were confirmed by visual inspection.

Data analysis. Normal distribution was tested using the Shapiro–Wi-
lk’s test and homogeneity of variances using the Levene median test.
Repeated-measures ANOVAs were performed to determine the effect of
group [controls, SCI (Baclofen), and SCI (No-Baclofen)] and conditions
[rest, 25% of MVC, and 25% of MVCADJ] on LICI, CSP, SICI, and the
size of the MEP elicited by the CS and TS (during LICI measurements),
and the size of the MEP during CSP measurements. The same analysis
was completed to compare RMT, AMT, MSO intensities for CS and TS,
MEP latencies, MEP-max, mean rectified EMG, and MVCs across
groups. Post hoc Holm–Sidak test was used to test for significant compar-
isons. Unpaired t tests were used to compare the MEP amplitudes across
groups, and paired t tests were used to compare LICI between rest and
25% of MVC during the intensity control experiments, and LICI tested
by TES. Pearson correlation analysis was used as needed. Significance
was set at p � 0.05. Group data are presented as the means � SD in the
text.

Figure 2. LICI using TMS. A, LICI tested in the resting FDI in a representative control subject (control, top left traces) and in a
patient with SCI taking [SCI (Baclofen), top middle traces] and not taking [SCI (No-Baclofen), top right traces] baclofen when the
conditioning and test stimulus were given by TMS. The test MEP (black traces) and conditioned MEP (Cond MEP, red traces) are
indicated by black arrows. Traces show the average 20 test MEP and 20 Cond. MEP. B, Group data (controls, n � 18, bottom left;
SCI Baclofen, n � 8, bottom left; SCI No-Baclofen, n � 8, bottom right). The abscissa shows all conditions tested (rest, black bars;
25% of MVC, light gray bars; 25% of MVCADJ, dark gray bars). The ordinate shows the magnitude of the conditioned MEP expressed
as a percentage of the test MEP. The horizontal dashed line represents the size of the test MEP. Note that LICI decreased during
index finger abduction compared with rest in controls and in patients taking baclofen but remains unchanged during voluntary
contraction and rest in patients not taking baclofen. Error bars indicate SEs; *p � 0.05.
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Results
LICI
Figure 2A illustrates raw data from LICI
measured in the FDI muscle in a control
subject (left) and in a patient with SCI tak-
ing (middle) and not taking baclofen
(right). Note that LICI decrease during
voluntary contraction (25% of MVC and
25%MVCADJ) compared with rest in the
control subject and in the SCI patient tak-
ing baclofen but not in the patient that
never took baclofen.

Repeated-measures ANOVA showed a
significant effect of group (F � 7.29, p �
0.01), conditions (F � 28.5, p � 0.001),
and in their interaction (F � 6.1, p �
0.001) on LICI. Post hoc testing showed
that LICI was decreased during 25% of
MVC compared with rest in controls
(rest � 30.6 � 9.2% and 25% of MVC �
61.0 � 27.3%, p � 0.001; Fig. 2B, left) and
in patients taking baclofen (rest � 27.9 �
14.1% and 25% of MVC � 63.3 � 36.4%,
p � 0.001; Fig. 2B, middle) but not in
those not taking baclofen (rest � 36.3 �
10.3% and 25% of MVC � 29.7 � 18.6%,
p � 0.52; Fig. 2B, right). During voluntary
contraction mean background rectified
EMG activity in the FDI remained similar
across conditions (p � 0.10) and groups
(p � 0.32).

Because MEP size increased during
voluntary contraction in all groups (p �
0.001) LICI was also tested by adjusting
the size of the MEPs evoked by the TS dur-
ing 25% of MVC to match resting values
(25% of MVCADJ). Similar to our previ-
ous results, during 25% of MVCADJ LICI was decreased com-
pared with rest in controls (p � 0.001) and in patients taking
baclofen (p � 0.001) but not in those patients not taking baclofen
(p � 0.42). When the CS and TS intensity were increased in
controls to match the intensity used in patients we found that
LICI was decreased during 25% of MVC (61.7 � 37.9%) com-
pared with rest (29.6 � 20.6%, p � 0.03). When LICI was tested
by comparing the conditioned MEP during voluntary activity
to the test MEP elicited at rest, we found that LICI was de-
creased to a similar extent in all groups [controls � 207.1 �
102.6; SCI (Baclofen) � 181.1 � 134.3%; SCI (No-
Baclofen) � 160.9 � 151.3, F � 0.4, p � 0.6].

Figure 3A illustrates examples of LICI tested using TES for the
TS across conditions in representative subjects. Note that LICI
was decreased during 25% of MVC in the control subject and in
the patient taking baclofen but not in the participant not taking
baclofen. Similarly, in all subjects, LICI was decreased during
25% of MVC compared with rest in the control group (rest �
39.2 � 15.6% and 25% of MVC � 66.3 � 32.1%, p � 0.02) and
in patients taking baclofen (rest � 41.2 � 24.4% and 25% of
MVC � 107.8 � 18.1%, p � 0.01). In contrast, LICI remained
the same in both conditions in patients not taking baclofen
(rest � 40.2 � 16.3% and 25% of MVC � 26.5 � 30.8%, p �
0.57). Mean background rectified EMG activity in the FDI re-
mained similar across groups (p � 0.23). Overall, together these

results together show that the magnitude of LICI was decreased
during voluntary activity compared with rest in controls and pa-
tients taking baclofen but not patients who never took baclofen
regardless if LICI was tested using a TS elicited by TMS or TES.

CSP
Figure 4 illustrates examples of the CSP elicited by TMS and TES
during 25% of MVC in representative participants. Note that the
duration of the CSP was increased in patients compared with a
control subject when the CSP was elicited by TMS but not by TES.
Repeated-measures ANOVA showed a significant effect of group
(F � 7.3, p � 0.01) on the duration of the CSP. Post hoc testing
showed that the CSP duration was increased during 25% of MVC
in patients taking (213.5 � 50.1 ms, p � 0.01) and not taking
baclofen (224.3 � 55.7 ms, p � 0.01) compared with controls
(169.3 � 19.1 ms). No differences were observed between patient
groups (p � 0.3). The duration of the CSP elicited by TES was
similar across groups [controls � 141.1 � 33.5 ms; SCI
(Baclofen) � 135.2 � 51.9 ms; SCI (No-Baclofen) � 142.8 �
44.8 ms, p � 0.9]. Overall, these results show that the duration of
the CSP tested by TMS was longer in patients that controls, re-
gardless of their intake of baclofen, but the duration of CSP tested
by TES was similar across groups.

SICI
Figure 5 illustrates representative examples of SICI measured
in the FDI muscle across conditions tested. Note that SICI

Figure 3. LICI using TES. A, LICI tested in the resting FDI in representative subjects when the conditioning stimulus was given by
TMS and test stimulus was given by TES [control, top left traces; SCI (Baclofen), top middle traces; SCI (No-Baclofen), top right
traces]. The test MEP (black traces) and conditioned MEP (red traces) are indicated by black arrows. Traces show the average 10 test
MEP and 10 Cond. MEP. B, Group data (controls, n � 10, bottom left; SCI Baclofen, n � 3, bottom left; SCI No-Baclofen, n � 3,
bottom right. The abscissa shows all conditions tested (rest, black bars; 25% of MVC, light gray bars). The ordinate shows the
magnitude of the conditioned MEP expressed as a percentage of the test MEP. The horizontal dashed line represents the size of the
test MEP. Note that LICI decreased during index finger abduction compared with rest in controls and in patients taking baclofen but
remains unchanged in participant’s not taking baclofen. Error bars indicate SEs; *p � 0.05.

12902 • J. Neurosci., July 31, 2013 • 33(31):12898 –12907 Barry et al. • Baclofen and GABAB Mechanisms After SCI



was decreased during voluntary contraction compared with rest in
all subjects. Repeated-measures ANOVA showed a significant effect
of conditions (F � 56.8, p � 0.001), but not group (F � 0.9, p �
0.43) nor in their interaction (F � 1.8, p � 0.15) on SICI. Post hoc
testing showed that SICI was decreased during 25% of MVC com-
pared with rest in all groups [controls: rest � 37.8 � 10.9%, 25% of
MVC � 91.6 � 10.1%, p � 0.01; SCI (Baclofen): rest � 45.2 �
19.0%, 25% of MVC � 78.4 � 5.1%, p � 0.001; SCI (No-Baclofen):
rest � 31.1 � 10.7%, 25% of MVC � 69.6 � 22.1%, p � 0.001].
Similarly, SICI was decreased during 25% of MVCADJ compared
with rest in controls (p � 0.001) and in patients taking (p � 0.001)
and not taking (p � 0.001) baclofen. Mean background rectified
EMG activity in the FDI remained similar across voluntary contrac-
tions (p � 0.21) and groups (p � 0.78).

Clonus EMG
Mean burst frequency in the FDI muscle was 6.9 � 1.0 Hz (range,
5.7– 8.8 Hz) in patients not taking baclofen and 7.3 � 0.6 Hz

(range, 6.3– 8.6 Hz) in the patient taking
baclofen. The burst duration was 49.6 �
20.8 ms (range, 31.1–113.3 ms) and inter-
burst duration was 103.0 � 23.7 ms
(range, 63.0 –138.6 ms) in patients not
taking baclofen. Similarly, burst duration
was 34.7 � 6.3 ms (range, 27.4 –52.2 ms)
and interburst duration was 103.4 � 37.7
ms (range, 72.6 –139.8 ms) in the patient
taking baclofen. A negative correlation
was found between interburst duration
and the magnitude of changes (percentage
change from rest to active) in LICI (r �
�0.72, p � 0.01; Fig. 6B) but not the CSP
(r � 0.09, p � 0.75; Fig. 6C) in patients
not taking baclofen. The magnitude of
changes (percentage change from rest to
active) in LICI (r � �0.72, p � 0.01; Fig.
6B) was negatively correlated with the
spasm score (r � �0.76, p � 0.02) in pa-
tients not taking baclofen.

Discussion
The present study investigated the effect
of long-term use of baclofen on GABAB-
mediated inhibition during voluntary ac-
tivity after chronic incomplete SCI. We
examined electrophysiological measures
probably involving GABAB (LICI and
CSP) and GABAA (SICI) receptors. These
physiological inhibitory effects are medi-
ated by subcortical and cortical mecha-
nisms. We found that patients with SCI
showed increased LICI during voluntary
muscle contraction and prolonged CSP
duration compared with uninjured con-
trols. Long-term (�6 years) use of
baclofen maintained active LICI to similar
levels as controls and did not affect the
duration of the CSP. The interburst dura-
tion during clonus and the number of
muscle spasms were inversely correlated
with LICI, suggesting an association be-
tween signs of spasticity and GABAB-
mediated inhibition. SICI was decreased
during voluntary contraction compared

with rest in all groups. Our results indicate that baclofen selec-
tively maintains use-dependent modulation of largely subcortical
but not cortical GABAB neuronal pathways after human SCI.

Baclofen maintains subcortical but not cortical GABAB

inhibition after SCI
Despite the fact that GABAB receptors in the mammalian CNS are
extensively distributed in the cerebral cortex and spinal cord dor-
sal horn (Price et al., 1984, 1987; Misgeld et al., 1995; Yang et al.,
2001), our results indicate that baclofen selectively maintains
modulation of largely subcortical but not cortical GABAB inhibi-
tion during voluntary activity after SCI. We demonstrate that
LICI was decreased during small levels of isometric voluntary
contraction compared with rest in controls (Wassermann et al.,
1996; Hammond and Vallence, 2007; McNeil et al., 2011) and in
patients taking baclofen but not in participants who never took
baclofen. Recent studies showed that subcortical pathways are

Figure 4. CSP. A, Raw MEP traces in representative subjects showing the CSP duration (indicated by dashed lines) after the MEP
during 25% of MVC [control, top traces; SCI (Baclofen), middle traces; SCI (No-Baclofen), bottom traces] baclofen. Traces show the
average 20 MEPs tested by TMS and 10 MEPs tested by TES. B, Group data tested by TMS [controls, n �18, black bar; SCI (Baclofen),
n�8, light gray bar; SCI (No-Baclofen), n�8, dark gray bar], and TES [controls, n�10, black bar; SCI (Baclofen), n�3, light gray
bar; SCI (No-Baclofen), n � 3, dark gray bar]. The abscissa shows all groups tested and the ordinate shows the duration of the CSP.
The duration of the CSP elicited by TMS was longer in patients compared with controls. Note that the duration of the CSP elicited by
TES during voluntary contraction was similar across groups. Error bars indicate SEs; *p � 0.05.
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involved in LICI (McNeil et al., 2009,
2011) in addition to cortical mechanisms
(Nakamura et al., 1997; Chen et al., 1999;
Di Lazzaro et al., 2002). Our data are in
agreement because we found that LICI
was modulated to a similar extent when
the TS was elicited by TMS or TES. Be-
cause TES activates axons of pyramidal
tract cells in the subcortical white matter
(Burke et al., 1993; Di Lazzaro et al., 1998)
it is most likely that the changes we ob-
served here involved subcortical influ-
ences. Pharmacological studies indicate a
role of GABAB receptors in mediating
LICI (Werhahn et al., 1999; McDonnell et
al., 2006); therefore, it is possible that the
prolonged use of baclofen contributed to
modulate LICI in patients taking baclofen
to similar level as controls. Baclofen can
bind to presynaptic GABAB receptors
leading to a decrease in the release of
GABA by negative feedback (Deisz, 1999)
altering GABAergic synaptic transmis-
sion according to physiological needs
(Ohliger-Frerking et al., 2003). Impor-
tantly, LICI remained increased during
voluntary activity in patients who never
took baclofen. Our results are in line with
animal studies showing that GABAergic
inhibitory events occurring at the spinal
cord level are increased after SCI (Tilla-
karatne et al., 2000; Diaz-Ruiz et al., 2007;
Sadlaoud et al., 2010). Moreover, we
found little evidence that motor cortical
inhibition could have contributed to the
increased LICI during voluntary contrac-
tion in these patients. First, the size of the
conditioned MEP tested during LICI dur-
ing voluntary activity was larger than the
unconditioned MEP elicited at rest in all
groups, suggesting that additional motor
cortical elements that can be activated by
TMS are facilitated. Second, we found that motor cortical SICI, a
probably GABAA-mediated effect, decreases during voluntary activ-
ity in all groups. Although, LICI and SICI inhibitory effects are prob-
ably mediated by GABAergic connections involving GABAB and
GABAA receptors the involvement of different receptor subtypes
does not exclude the possibility that a common neuronal population
mediate these inhibitory effects.

Studies in humans have shown that GABAergic inhibition is
decreased after SCI (Calancie et al., 1993; Faist et al., 1994; Ay-
mard et al., 2000). At first sight these results might seem in con-
tradiction to our findings and raise the question of how
GABAergic inhibition is affected after SCI. It is important to
consider that previous studies tested measurements at rest, did
not separate patients according to the use of baclofen, and tested
another measurement of GABAergic inhibition by examining
presynaptic inhibition of Ia afferents. Animal (Stuart and Red-
man, 1992) and human (Orsnes et al., 2000) studies on spasticity
have shown that baclofen has no effect on classical presynaptic
inhibition. Presynaptic inhibition of Ia afferents, accompanied by
primary afferent depolarization, is caused by axo-axonal GABAA
synapses and activation of GABAA receptors via GABAergic in-

terneurons (Rudomin and Schmidt, 1999). At present, the pre-
cise role of GABAB receptors in mediating presynaptic inhibition
is not clear. Thus, changes in GABAergic inhibition after injury
need to be considered in a task-dependent context with attention
to the type of GABA receptors involved and the medication take
by patients.

We also found that CSP durations were similar in patients
regardless of baclofen use and were longer than controls. The first
part of the CSP may be mediated by spinal contributions, whereas
the later part results from suppression of neural output by in-
terneurons at the cortical level (Fuhr et al., 1991; Chen et al.,
1999; Tergau et al., 1999). Our results show that the duration of
the CSP tested with TES was similar across groups, suggesting
that differences observed between patients and controls (when
the CSP was tested by TMS) involve cortical mechanisms. This
agrees with previous results showing that GABAergic inhibition
tested during voluntary activity is increased in patients with SCI
compared with controls (Freund et al., 2011; Bunday and Perez,
2012). GABAB receptors play a role in the inhibition tested during
the CSP (Ziemann et al., 1996; Siebner et al., 1998); thus, our
findings suggest that GABAB-mediated effects by cortical circuits

Figure 5. SICI. A, SICI recorded from the resting FDI in a representative control subject (top left traces) and in a patient taking
(top middle traces) and not taking (top right traces) baclofen. The test MEP (black traces) and conditioned MEP (red traces) are
indicated by black arrows. Traces show the average 20 test MEP and 20 Cond. MEP. B, Group data [controls, n � 10, bottom left;
SCI Baclofen, n � 6, bottom left; SCI No-Baclofen, n � 6, bottom right]. The abscissa shows all conditions tested (rest, black bars;
25% of MVC, light gray bars; 25% of MVCADJ, dark gray bars). The ordinate shows the magnitude of the conditioned MEP expressed
as a percentage of the test MEP. The horizontal dashed line represents the size of the test MEP. Note that SICI decreased during
index finger abduction compared with rest in all groups tested. Error bars indicate SEs; *p � 0.05.
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are less sensitive to baclofen than GABAB-mediated subcortical
circuits. This agrees with animal studies showing that baclofen
affect synaptic efficacy of descending motor axons, including py-
ramidal neurons (Kato et al., 1978), to a lesser extent than sensory
afferents (Jiménez et al., 1991; Quevedo et al., 1992). This may in
part be related to the larger density of GABAB receptors found in
terminals of afferent axons compared with the terminals of de-
scending axons (Jiménez et al., 1991).

LICI and CSP measures can be influenced by stimulation pa-
rameters and the strength of voluntary contraction (Reis et al.,
2008; McNeil et al., 2011). In our study, background EMG activ-
ity was maintained similar across groups and stimulation param-
eters were controlled; therefore, it is unlikely that these aspects
contributed to our findings. Although in our study patients were
not randomized due to the nature of the study, the groups
showed similar sensory and motor scores, as well as maximal
voluntary EMG outcomes, making it less likely that difference in
these aspects affected our results. Taking these considerations
together, our results indicate that the effects of long-term use of
baclofen are largely mediated at subcortical rather than cortical
levels; although the precise duration and dose of baclofen-use
needed for these changes to occur remains to be tested.

Functional considerations
Approximately 70% of individuals with SCI develop symptoms
of spasticity. As in previous reports we found clonus in patients
with SCI during voluntary activity (Palmer et al., 1998; Beres-
Jones et al., 2003; Wallace et al., 2012). It is not surprising that
clonus was present only in one patient taking baclofen since this
medication decreases these symptoms (Latash et al., 1989; Penn
et al., 1989). The interburst duration during clonus, but not the
frequency or burst duration, was inversely correlated with LICI
but not the CSP, suggesting that this period of decreased EMG
activity might by affected by increased inhibition in subcortical
GABAB-mediated neuronal pathways. As patients with SCI with
lesser muscles spams showed pronounced LICI, we speculate that
the increase in LICI might represent a compensatory mechanism
to attempt to decrease spastic symptoms during voluntary activ-
ity after SCI.

A critical question is if these electrophysiological changes
present during voluntary activity may have an impact on volun-
tary motor function. Previous studies showed that baclofen has
limited effects on voluntary motor output (Burke et al., 1971;
Latash et al., 1989; Domingo et al., 2012), decreases contractile
properties of motor units of partially paralyzed muscles (Thomas
et al., 2010), and has side effects, such as drowsiness and drug
tolerance (Rösche, 2002). We argue that the lack of effects of
long-term use of baclofen on cortical GABAB inhibition might
contribute to the limited effects of baclofen on voluntary motor
outcomes. Indeed, in humans, intake of the GABAB receptor ag-
onist baclofen in controls decreases long-term potentiation, such
as motor cortical plasticity (McDonnell et al., 2007), motor learn-
ing processes (Willerslev-Olsen et al., 2011), and voluntary force
(Hornby et al., 2004). This is consistent with the view that atten-
uation in GABAergic signaling contributes to increase recovery of
motor function after SCI (Tillakaratne et al., 2002). Our results,
as with others studies, raised some issues that may caution the use
of baclofen as an antispastic medication in individuals with mo-
tor disorders; a combination of baclofen with other medications
(D’Amico et al., 2013) or approaches challenging motor cortical
circuits might increase the efficacy of baclofen in the control of
spasticity and voluntary movements after SCI, highlighting the
need for future research in this area.

Figure 6. Clonus during voluntary contraction. A, Raw EMG traces recorded from the FDI
muscle in a patient not taking baclofen during 25% of MVC. Traces show the rectified EMG in
representative trials. Graphs show a correlation analysis between the average duration of peri-
ods of decreased EMG activity between bursts of clonus (interburst duration) and the magnitude
of LICI (B), and CSP duration (C). In all graphs, the abscissa shows the duration of periods of
decreased EMG activity between burst of clonus during 25% of MVC. The ordinate shows the
magnitude of LICI (percentage change from rest to active) (B) and the CSP duration (C). Each
symbol represents a different patient and repetition a symbol indicates multiple measurements
in the same patient. Note that there was an inverse correlation between interburst duration and
LICI but not the CSP. Thus, patients who showed more pronounced LICI during voluntary con-
traction also showed more prolonged periods of EMG silence during clonus in the FDI muscle.
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