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Summary
A prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic
gripping sub-Saharan Africa, but remains elusive. A major challenge is the extreme viral sequence
variability among strains. Systematic means to guide immunogen design for highly variable
pathogens like HIV are not available. Using computational models, we have developed an
approach to translate available viral sequence data into quantitative landscapes of viral fitness as a
function of the amino acid sequences of its constituent proteins. Predictions emerging from our
computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested
against new in vitro fitness measurements, and were consistent with previously defined in vitro
measurements and clinical observations. These landscapes chart the peaks and valleys of viral
fitness as protein sequences change, and inform the design of immunogens and therapies that can
target regions of the virus most vulnerable to selection pressure.

Introduction
A cheap, easily-administered prophylactic or therapeutic vaccine represents the best hope
for arresting the global HIV-AIDS epidemic (Baker et al., 2009), but remains elusive after
three decades of effort. The recent discovery of antibodies that can neutralize diverse HIV
strains (Walker et al., 2011) and evidence that a cytotoxic Tlymphocyte (CTL)-based
vaccine has the potential to abort infection (Hansen et al., 2011; Hansen et al., 2009) offer
hope, but important challenges remain. Prominent among these is the ability of the virus to
mutate to new variants that do not carry a significant penalty in replicative fitness (Autran et
al., 2008; Goulder & Watkins, 2004). The replicative fitness of the virus is correlated with
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disease pathogenesis: infection with low fitness viruses or the emergence of immune
pressure-mediated low fitness viruses is associated with improved control of the viral load
(Miura et al., 2010). It has been suggested, therefore, that vaccine-induced immune
responses should be focused on vulnerable regions of the virus, within which mutations
impose a high fitness cost (Goulder & Watkins, 2004; Streeck et al., 2007; Walker et al.,
2011).

Highly conserved residues have long been suggested as a target for effective CTL responses
(Letourneau et al., 2007; Rolland et al., 2007; Streeck et al., 2007), but studies have shown
that viral fitness is also strongly influenced by couplings between multiple simultaneous
mutations (Allen et al., 2005; Brockman et al., 2010; Brockman et al., 2007; Brumme et al.,
2009; Dahirel et al., 2011; Draenert et al., 2004; Ferrari et al., 2011; Leslie et al., 2004;
Letourneau et al., 2007; Martinez-Picado et al., 2006; Miura et al., 2009; Miura et al., 2009;
Schneidewind et al., 2008; Schneidewind et al., 2007; Troyer et al., 2009; Walker et al.,
2011). These couplings may arise, for example, due to the structural proximity of groups of
residues within the three dimensional protein structure, or participation of the group in a
particular viral function involving multiple proteins. The coupling between multiple
mutations may be compensatory – where in the fitness of the viral strain containing multiple
mutations is higher than would be expected from the mutations occurring independently – or
deleterious – where in the multiple mutant is less fit than would be predicted from the single
point mutations. Rare individuals capable of controlling HIV infection without therapy (elite
controllers) naturally target multiple residues in groups of residues within which multiple
simultaneous mutations are particularly detrimental to viral fitness (Dahirel et al., 2011).
Together, these studies suggest that groups of residues containing deleterious mutational
couplings are promising new targets for vaccine-induced immune attack (Dahirel et al.,
2011).

A comprehensive knowledge of the fitness of viral strains containing multiple mutations
would reveal many more regions of the viral proteome containing groups of residues
vulnerable to immune targeting. This would open the possibility of designing immunogens
containing these vulnerable regions which could be presented by people with diverse HLAs
to induce effective CTL responses (similar to elite controllers). The ability to determine the
fitness of any viral strain could also inform the design of therapies based on antibodies and
small molecule inhibitors.

Systematic identification of regions where multiple mutations are deleterious requires an
approach that assigns a quantitative measure of the replicative fitness to any viral strain
containing multiple mutations. First postulated by Sewall Wright in 1932 (Wright, 1932),
the fitness landscape describes the replicative capacity of the virus as a function of its amino
acid sequence. Effective antibody responses would target epitopes in the Env protein defined
by narrow peaks, as they are likely to be conserved across strains. CTL responses should
target combinations of epitopes or protein residues where mutations drive the virus from the
high-fitness peaks into the valleys where its compromised fitness impairs its ability to
replicate and inflict damage to the host. Furthermore, a potent vaccine would also elicit
additional responses to block viral escape to nearby high-fitness strains identified by the
fitness landscape. Thus, viral fitness landscapes offer an unprecedented means to identify
vulnerable regions of the virus, and guide the design of efficacious vaccine immunogens and
therapies for diverse viruses. Here, we present a method to determine the fitness landscape
of viruses, and apply it to HIV.

The Shannon entropy (a measure of sequence variability) of single residues and targeted
epitopes is correlated with the emergence of escape mutations, and has been proposed as a
measure of the fitness cost of escape (Allen et al., 2005; Ferrari et al., 2011). This measure,
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however, is restricted to localized groups of residues, and therefore largely ignores
mutational couplings that are known to be important determinants of viral replicative fitness.
Dahirel et al. recently presented a means to qualitatively identify groups of sites possessing
strong mutational couplings (Dahirel et al., 2011), but this approach does not furnish
quantitative measures of viral fitness required to construct the fitness landscape. Regression
models have been fitted to in vitro HIV fitness measurements as a function of amino acid
sequence (Hinkley et al., 2011; Kouyos et al., 2012). However, such approaches require
extensive and laborious in vitro fitness measurements.

In contrast to these approaches, we have devised a method to obtain fitness landscapes by
direct analysis of available protein sequence databases, without appealing to experimental
fitness measurements. We apply our methodology to proteins within the key HIV-1
structural polyprotein, Gag, and validate the inferred fitness landscape by direct comparison
to new and existing experimental data, and clinical observations. To illustrate one utility of
the inferred fitness landscapes, we use the landscapes to design a Gag immunogen that is
predicted to prime efficacious CTL responses in persons with diverse HLA haplotypes.

Results
Model Development

Only a limited number of full genome HIV sequences are currently available. Analyses of
these few sequences do not provide sufficient statistical power for the development of a
unified fitness landscape for the entire HIV proteome, necessitating that we pursue models
for individual proteins. However, our approach is directly extensible to the translation of full
genome sequence data to fitness landscapes as more sequences become available.
Conceptually, it is useful to visualize this information as a topographical map (Figure 1),
where the amino acid sequence of the virus determines the location of the viral strain on the
map, and the height of the landscape prescribes its replicative fitness.

The HIV-1 structural polyprotein Gag is a promising target for CTL responses, containing
multiple peptides that are presented by HLA class I molecules, and regions that are
mutationally restricted by structural and functional restraints (Dahirel et al., 2011; Goulder
& Watkins, 2004; Schneidewind et al., 2008; Schneidewind et al., 2007; Troyer et al., 2009).
A number of Gag residues exhibit deleterious mutational couplings (Dahirel et al., 2011).
Thus, to develop and illustrate the accuracy of our approach, we have inferred fitness
landscapes for the four principal Gag proteins: p6, p7 (nucleocapsid), p17 (matrix) and p24
(capsid).

Multiple sequence alignments (MSA) for the four Gag proteins in HIV-1 clade B were
downloaded and processed from the Los Alamos National Laboratory HIV database (http://
www.hiv.lanl.gov) as described in the Supplemental Computational Procedures. These data
are compilations of consensus sequences drawn from infected patients. Our goal is to infer
the viral fitness landscape from these data.

We described each sequence in the MSA using a binary code. If the amino acid at a
particular residue in a protein sequence is the wild-type amino acid, it is denoted by 0; if the
residue is any one of the 19 “mutant” amino acids, it is denoted by 1. Neglecting the
particular identity of the mutant amino acid greatly reduces the computational cost of
extracting fitness landscapes, and is a good approximation for the relatively well-conserved
Gag polyprotein (cf. Supplemental Computational Procedures). The disadvantage is loss of
residue-specific resolution, so that the fitness landscapes cannot differentiate between
mutant viral strains containing different amino acids in the mutated positions.
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The sequence data contain information on the probability of occurrence of each single,
double, triple, and higher order mutation. A mathematical model reproducing these
probability distributions describes the evolutionary space accessible to HIV. Since each
protein comprises tens to hundreds of residues, the number of possible double, triple,
quadruple, etc., mutations is extraordinarily large, making it intractable to fit a model
describing the probability distributions of mutations of all orders. Instead, we follow the
maximum entropy principle (Jaynes, 1957) to seek the least biased model capable of
reproducing the observed probabilities of occurrence of every single and double mutation
(Mora & Bialek, 2011; Tkacik et al., 2006; Tkacik et al., 2009), and use it to predict higher
order mutations. As described in Computational and Experimental Procedures, this leads us
to infer a model where the probability of occurrence of a particular sequence is described by
a well-studied model in physics, known as the infinite-range Ising spin glass (Binder &
Young, 1986).

We found that mathematical models inferred in this way not only reproduce the pattern of
single and double mutations, but also predict with high accuracy the observed probabilities
of occurrence of triple and quadruple mutants, and the probability of observing a sequence
containing any particular number of mutations (cf. Supplemental Computational
Procedures). In fact, depending upon the Gag protein, our mathematical models capture 70–
99% of the information content on correlated mutational interactions contained in the
available sequences derived from patients. Thus, our models have achieved the goal of
capturing the mutational patterns exhibited by the virus within the MSA.

Having fitted models for each protein, a quantity, E, can be assigned to viral strains
containing any combination of mutations (cf. Computational and Experimental Procedures).
In analogy with the physics literature, we refer to E as the “energy”. The value of E
corresponding to a particular mutant strain is related to the probability of observing this
strain within the population of all possible mutants, whereby low-energy strains are highly
prevalent, and high-energy strains comparatively rare. We assume that highly prevalent –
and therefore low energy – sequences in the population correspond to strains with high
intrinsic replicative fitness. Our model suggests that log(f), where f is the fitness of any
mutant strain, should be negatively correlated with its energy (cf. Equation 1). Under
relatively restrictive assumptions, Sella and Hirsh have precisely derived the connection
between E and fitness (Sella & Hirsh, 2005). However, the complex interactions between
HIV and the immune systems of diverse individuals makes it difficult to mathematically
demonstrate that our model obtains intrinsic viral fitness landscapes. Accordingly, in the
following sections we present strong evidence that E is indeed a good proxy for fitness by
testing our model predictions against new and existing in vitro experimental data, and
clinical observations from HIV infected persons.

The inferred fitness landscape compares well with in vitro replicative fitness data
If our model for the fitness landscape inferred from sequence data is a measure of intrinsic
replicative viral fitness, we should observe a negative correlation between measured in vitro
fitness of mutant viral strains and our proposed metric of fitness, the energy, E,
corresponding to that strain. This is because our model predicts that low E corresponds to
high fitness (see above). To test this hypothesis, we predicted the energy of 19 viral strains
with single and double mutations in the p24 protein. These mutations were introduced to the
HIV-1 clade B NL4-3 backbone, and the in vitro replicative capacity of each strain was
measured (cf. Computational and Experimental Procedures). Each residue was mutated to
the most common mutant amino acid at that position observed in the sequence data.

Following the prescription of our model (cf. Equation 1), we plot the energy of strain i
relative to the wild-type, (Ei − Ewt), against the logarithm of its measured relative fitness,
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log (fi/fwt). We observe a statistically significant negative correlation (Figure 2A, Pearson
correlation coefficient, ρ = −0.52 (p = 0.02, two-tailed Fisher test)). The direct relationship
between Ei and fi also exhibits a strong negative correlation (Figure S1A, ρ = −0.68 (p = 9 ×
10−4)). Since our fitness assays were performed in vitro in the absence of immune pressure,
these results suggest that our inferred landscapes describe the intrinsic replicative fitness
effects of mutations in Gag.

To further test our model, we compiled 50 previously published experimental measurements
of the in vitro replicative fitness of engineered p24 Gag mutants containing up to five
polymorphisms (Brockman et al., 2007; Crawford et al., 2007; Miura et al., 2009;
Schneidewind et al., 2008; Schneidewind et al., 2007; Troyer et al., 2009). Since in inferring
our model we do not distinguish between any of the 19 possible mutant amino acids at each
position observed in the MSA, our model is statistically most accurate in describing the
fitness effects of mutant strains containing the most probable mutant amino acids at mutated
positions. Accordingly, we first compared our model to those 25 fitness measurements in
which the engineered polymorphism corresponds to the single most probable mutant amino
acid at that position observed in the MSA. As for comparisons with our own experimental
data, we observed a strong negative correlation between our predictions of the energy of a
strain and its measured in vitro replicative fitness (Figure 2B, ρ = −0.81 (p = 2 ×10−7)). The
relationship between Ei and fi also exhibits a strong negative correlation (Figure S1B, ρ=
−0.75 (p = 6 ×10−6)). Despite the inaccuracy of the binary approximation for the other 25
published data points, the negative correlation was maintained upon considering all 50 data
points (Figure S1C–D). In the Supplemental Computational Procedures, we describe an
extension of our model that does not require making the binary approximation.

The viral sequences used to parametrize our model were extracted from infected individuals,
each of whom possess a unique adaptive immune response targeting different regions of the
HIV proteome. Thus, the effectively fittest viral strains in each individual are expected to
differ. Why, therefore, do we see good correspondence between E and in vitro intrinsic
replicative fitness? Assuming the representation of HLA alleles to approximately follow that
of United States Caucasians (Gonzalez-Galarza et al., 2011), the recognition frequencies of
the most common HLA restricted p17 and p24 epitopes (Streeck et al., 2009) indicate that,
of the 363 residues in p17 and p24, only 46 are targeted by more than 10% of the
population, no single residue is targeted by more than 23%, and 146 are not targeted at all. If
we may assume that a diverse range of HLA class I haplotypes are represented within the
population from which the sequences were obtained, and that infecting strains rapidly revert
to replicatively more fit strains if the immune pressure in a new host does not attack the
region in which a mutation was forced in the infecting host (Davenport et al., 2008;
Friedrich et al., 2004; Henn et al., 2012), then our models represent averages over
haplotypes in the population. This averaging may explain why our models appear to reflect
the underlying intrinsic viral fitness, rather than “footprints” of adaptive immune pressure
(Matthews et al., 2009).

Clinically documented escape strains correspond to high fitness strains
Viral strains can escape CTL recognition by establishing one or more point mutations
within, or flanking, the target epitope. It is expected that the clinically observed escape
strains will be those that permit the virus to evade immune recognition with minimal cost to
its replicative fitness, and should correspond to low-energy strains in our model.

Published accounts of escape strains sequenced from HIV infected individuals and statistical
analyses of proximate HLA associated polymorphisms allowed us to compile a list of p17
and p24 escape mutations against which to test our inferred fitness landscape (Brockman et
al., 2010; Brockman et al., 2007; Brumme et al., 2009; Draenert et al., 2004; Leslie et al.,
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2004; Martinez-Picado et al., 2006; Miura et al., 2009; Schneidewind et al., 2008;
Schneidewind et al., 2007; Troyer et al., 2009). In p24 we gathered a set of 10 single and 8
double mutants, and in p17, a set of 5 double mutants and 1 triple mutant. In contrast to
Shannon entropy-based approaches that consider the variability of single residues or
epitopes in isolation (Allen et al., 2005; Ferrari et al., 2011), our method permits quantitative
ranking of any multi-residue mutant according to the value of E (proxy for fitness) assigned
by our model. The particular mutants, HLA associated epitopes, and computed energies are
listed in Table S1. The energy assigned to each mutant by our model is shown in Figure 3.

Of the p24 single mutants, 9 out of 10 possess energies within the bottom 11.7% of the
spectrum of 231 possible single mutant strains (E < 8.4). The remaining candidate, carrying
a mutation at position 264, possesses an energy E = 19.4, placing it at the 29th percentile of
the energy spectrum. The low fitness (high energy) apparently tolerated by this mutant is
explained by the observation that mutations of this residue are never observed in isolation,
but only in concert with a mutation at position 268 (Schneidewind et al., 2007). We find that
the interaction coupling between these residues is compensatory, leading to a high-fitness
double mutant with a low energy (E = 11.0) corresponding to the bottom 1.3% of the
spectrum. A third compensatory mutation is also frequently observed at position 173
(Schneidewind et al., 2007), leading to further compensation, and a highly fit triple mutant
(E = 2.9). This progression of compensatory interactions demonstrates the ability of our
model to capture couplings between multiple simultaneous mutations throughout the protein,
which cannot be achieved by the Shannon entropy of single residues or epitopes.

All 8 of the p24 double mutants reside within the bottom 4.2% of the energy spectrum of all
possible 26,565 doubly mutated strains. Similarly, the energies of 4 of the 5 p17 double
mutants lie in the bottom 6.1% of the 8,646 possible double mutants. The remaining double
mutant resides in the 31st percentile. While the p17 triple mutant possesses an energy E =
16.99, flipping one particular residue back to wild-type results in a highly fit (E = 1.03)
double mutant that is the 13th lowest energy strain of all 8,646 possible double mutants
(0.15% energy percentile) (cf. Table S1). We note that we identified the p17 triple mutant
from a statistical analysis of polymorphisms in the vicinity of the A11-TI9 epitope at
Gag84-92 (Brumme et al., 2009), rather than an observation of this strain within an infected
person.

By cross-referencing the list of best-defined HIV CTL epitopes (the CTL “A list”) (Frahm et
al., 2008), with a compilation of statistically significant HLA associated polymorphisms
(Brumme et al., 2009), we identified 25 epitopes in p17 and p24 with defined CTL escape
mutations. If we assume that all point mutations within, or flanking, these epitopes lead to
equally efficient CTL escape, our inferred fitness landscape predicts that escape mutations
should correspond to those residues in epitopes that incur the smallest energy penalty upon
mutation, and thus maximally preserve viral fitness.

As illustrated in Figure 4, the well-documented B*57 associated escape mutations at
positions 242 and 248 in the TW10 (Gag240-249) epitope in p24 (Brumme et al., 2009)
coincide precisely with the point mutations leading to the lowest fitness penalty (lowest
energy cost). Similar results for the 24 remaining examples are presented in Figure S2. In 21
of 25 cases, the observed escape mutation – or one such mutation in epitopes where multiple
escapes are observed – occurs at precisely the least costly, or next least costly, position. Of
the 4 remaining cases, 2 of the documented escape mutations identified by statistical
analyses are defined as “indirect” HLA associations (Brumme et al., 2009), implying that
they may exist as compensatory mutations elicited by a prior mutation in other proteins,
rather than as primary escapes to evade CTL pressure. Our models have been constructed for
single proteins, and are therefore capable of capturing mutational couplings between

Ferguson et al. Page 6

Immunity. Author manuscript; available in PMC 2014 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



residues within the same protein. As more whole genome sequences become available, our
method can be applied to identify the fitness effects of inter-protein couplings.

The fact that the preponderance of escape mutations observed in people with different
genotypes are high fitness (low energy) strains further supports the hypothesis that the
inferred fitness landscape reflects intrinsic viral fitness, and not immune footprints of
individuals with particular HLAs. Not all high fitness mutant strains are clinically observed,
due in part to finite sampling of the circulating strains, redundancy in the genetic code
rendering mutations of some amino acids intrinsically more difficult than others, and that
not all positions are subject to immune pressure driven mutations.

Temporal patterns of mutations in individual patients follow high-fitness routes
As a further, stringent test of whether our models reflect intrinsic viral fitness, we compared
our predictions to recently reported longitudinal deep sequencing within a single host over
the first four years of HIV infection (Henn et al., 2012). Three of the six sequenced CTL
Gag epitopes in this individual exhibited sequence adaptation over the course of infection.
Comparison of the observed sequence adaptations to the fitnesses (energies) computed from
our model show that they populate the high fitness (low energy) states of the inferred
landscape (Figure 3) and, the temporal adaptation courses follow high fitness (low energy)
routes (Figure 5).

As illustrated in Figure 5A, the infecting strain contained two mutations within the KW9
(Gag28-36) epitope, presumably driven by immune pressure in the previous host (Henn et al.,
2012). They occur at the second and third energetically least costly positions predicted by
our model, and the energy of this double mutant is in the bottom 3.3% of all double mutants.
By day 1543 of infection, 79.5% of the population had reverted to wild-type. The LY9
(Gag78-86) epitope of the infecting strain (Figure 5B) contained a point mutation at the least
costly position. By day 1543, 31.3% of strains had reverted to wild-type, with the remaining
strains split between three other states that we predict to be highly fit. The energies of these
four states are very close, suggesting that stochastic fluctuations may have populated the
marginally less fit states. Finally, the GY9 (Gag71-79) epitope in the infecting strain (Figure
5C) carried a single mutation at the second least costly position. By day 165 the wild-type
transiently emerged in 30.8% of strains, to be replaced in 62.2% of the population by day
1543 with a highly fit double mutant residing within the bottom 1% of all double mutants. In
Figure 5D, we show the temporal adaptation courses of the three epitopes. Of the three
epitopes, a CTL response was reported against only GY9 (Henn et al., 2012). This response
may render the wild-type strain effectively less fit than higher energy mutants that are able
to evade immune pressure. Accordingly, in the presence of this immune pressure, the wild-
type may be outcompeted by a highly fit double mutant, offering a plausible rationalization
for its observed transient emergence and disappearance.

That the strains observed during sequence adaptation within a single host correspond to the
high fitness (low energy) mutations predicted by our model, further substantiates our
inferred landscapes as reflections of intrinsic viral fitness.

CTL targeting of peptides presented by elite controllers incur the largest fitness costs
A diversity of HIV mutant viral strains exists within an infected host (Lee et al., 2008). Viral
populations containing strains with lower replicative fitness have been correlated with better
disease control (Miura et al., 2010). We hypothesized that our model may be able to identify
effective CTL immune responses as those which give rise to mutations that significantly
decrease the average fitness of the viral population within a host.
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The results we have reported strongly suggest that the energy, Ei, of a particular viral strain,
i, is a good measure of its intrinsic replicative fitness. To simulate the diversity of viral
strains that may exist within an infected host, we used the energies predicted by our model
to generate a large ensemble of mutant strains in which each is represented in proportion to
its fitness (cf. Equation 1 and Supplemental Computational Procedures). The average fitness
of an ensemble of sequences should correlate with its average energy, <E> = Σi P(i) Ei,
where P(i) is the prevalence of strain i in the ensemble.

We suggest that an effective immune response will significantly increase the average energy
(decrease the average fitness) of the ensemble of viral strains in an individual. Such
responses will preferentially eliminate high-fitness viral strains, leaving behind unfit strains
that are less able to replicate and damage the host. Conceptually, this corresponds to deletion
of those strains residing near the peaks of the fitness landscape, causing the ensemble as a
whole to be pushed into the low-fitness valleys (cf. Figure 1). The fitness cost upon targeting
a particular CTL epitope was quantified as the change in <E>,Δ<E>, upon removing from
the ensemble all viral strains with wild-type amino acids in the targeted epitope, simulating
the effect of CTL elimination of these strains. Our model predicts that targeting epitopes
associated with larger values of Δ<E>should result in better control of HIV infection.

Using this criterion, we rank-ordered the 121 p24 epitopes defined in the Los Alamos HIV
Molecular Immunology Database (http://www.hiv.lanl.gov/content/immunology) listed in
Table S2. We define a particular HLA associated epitope to be immunodominant if its
cognate CTL response is observed in more than 50% of patients expressing this HLA in
either the chronic or acute phase of infection (Streeck et al., 2009). Available
immunodominance data allowed us to identify 12 such epitopes, of which 8 are associated
with protective HLA alleles that clinical and genome wide association studies have linked
with superior ability to control HIV infection (Hendel et al., 1999; Pereyra et al., 2010;
Streeck et al., 2009; Trachtenberg & Erlich, 2001) (Table S2). As illustrated in Figure 6, the
3 immunodominant epitopes that lead to the greatest fitness costs, and 6 of the 7
immunodominant epitopes leading to the greatest fitness costs, are presented by HLA
molecules associated with persons who can naturally control HIV infections (Hendel et al.,
1999; Miura et al., 2009; Pereyra et al., 2010; Trachtenberg & Erlich, 2001). We find,
therefore, that elite controllers target epitopes where mutational escape incurs the largest
fitness costs, consistent with the observation that viral strains extracted from these persons
have impaired replicative capacity (Miura et al., 2009). Notably, the results in Figure 6
pertain to multiple HLA types, providing further support for the assertion that our
landscapes describe intrinsic viral fitness, rather than “footprints” of adaptive immunity
(Matthews et al., 2009). Our results also suggest that we can predict disease pathogenesis
from knowledge of viral strains in a patient because we can determine the average fitness of
the in-host viral population. As an aside, we observe that the negative Δ<E> value
corresponding to epitope 121 reflects an immune pressure that preferentially removes unfit
strains, allowing the remaining fitter strains to occupy a larger fraction of the population.
This effect may suggest a possible interpretation for failed vaccine trials that led to increased
viral loads and a reduction in time to antiretroviral treatment resumption (Autran et al.,
2008).

Dahirel et al. identified groups of residues (“sectors”) in Gag subject to mutational couplings
particularly detrimental to viral fitness (Dahirel et al., 2011). The 3 top ranked
immunodominant epitopes in our model contain 5, 6 and 7 residues, respectively, within the
top sector of Dahirel et al. containing the most detrimental couplings, whereas the 9
remaining epitopes each contain 4 residues or fewer. This suggests that our landscapes are
capable of identifying vulnerable protein regions containing deleterious mutational
couplings.
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Not all immunodominant p24 epitopes associated with protective alleles will lead to large
fitness costs, since each allele may mediate its beneficial effect through only a small fraction
of the epitopes it targets. For example, B*27 is a protective allele, with chronic phase escape
from its KK10 (Gag263-272) epitope associated with progression to AIDS (Pereyra et al.,
2010; Schneidewind et al., 2007; Trachtenberg & Erlich, 2001). The relatively low ranking
of this epitope in Figure 6 may be due to (at least) two factors. Firstly, this epitope contains
only 3 residues from Dahirel et al.’ s top sector (Dahirel et al., 2011). Nine B*27 epitopes
are defined within our list of 121 epitopes, containing a total of 11 residues within this
sector. Targeting the KK10 epitope in isolation may lead to only a modest reduction in viral
fitness, whereas targeting multiple B*27 epitopes simultaneously may lead to a more
substantial fitness loss due to additional deleterious couplings. Secondly, the protective
action of B*27 may lie elsewhere in the proteome, as suggested by recent work
demonstrating a strong B*27 response to the KY9 Pol epitope (Friedrich et al., 2011; Payne
et al., 2010).

The available data allowed us to identify only one immunodominant CTL epitope within
p17, and none within p6 and p7, thereby precluding similar analyses for these proteins
(Streeck et al., 2009).

The inferred fitness landscapes can be used for in silico immunogen design
As one illustration of the value of fitness landscapes, we consider the design of CTL Gag
immunogens that may induce potent immune responses in people with diverse genotypes.
We observe that this strategy may be directly extended to guide the design of antibody
immunogens, combinations of potent antibodies, or small molecule inhibitors.

Peptides from regions of HIV that are particularly vulnerable to multiple mutations tend to
be immunodominantly targeted by CTLs in persons possessing protective HLA molecules
(Dahirel et al., 2011). In contrast, non-protective HLA molecules dominantly present
epitopes from regions where mutational escape from immune pressure is relatively easy.
Non-protective HLAs can target peptides from vulnerable regions only sub-dominantly
when the whole proteome is presented (cf. Table S2) (Dahirel et al., 2011; Streeck et al.,
2009). The previous section demonstrates that our landscapes can identify vulnerable
regions of the viral proteome that can be presented sub-dominantly (or dominantly) by
diverse HLAs. An immunogen designed to prime these responses, while excluding
dominantly presented regions from which mutational escape is easy, could, if properly
delivered as a vaccine, elicit effective immune responses within hosts with diverse
haplotypes.

We consider the design of a CTL Gag immunogen for a target population comprising the top
21 haplotypes of North Americans with European ancestry, accounting for 44.6% of this
population (http://www.ncbi.nlm.nih.gov/projects/gv/mhc). Cross-referencing with the list
of optimally defined “A list” CTL epitopes (Frahm et al., 2008), we found that the class I
HLA-A, -B and -C molecules in this population restrict p = 1, 0, 10 and 20 epitopes in p6,
p7, p17 and p24, respectively. For each Gag protein, we constructed all possible
combinations of 1,2,3,…, p epitopes, where each combination represents an immunogen
candidate. There are 1, 1023 and 1,048,575 combinations for p6, p17 and p24, respectively.
The efficacy of each candidate in each of the 21 haplotypes was evaluated by identifying
those epitopes in the immunogen that could be presented by HLA molecules constituting the
haplotype, and the fitness penalties upon simultaneously targeting these epitopes. The
penalty, Δ<E>, was calculated in the manner described in the previous section. The fitness
penalty exacted by forcing mutations within the epitopes comprising each immunogen

candidate, i, in each haplotype, j, is denoted as .
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We evaluated each immunogen candidate, i, derived from each of the three proteins
according to three criteria: (i) the weighted average fitness impact in the target population,

, where ωj is the fraction of haplotype j in the target population, (ii) the
fraction of the target population that respond to at least one epitope in the immunogen
(fractional coverage), and (iii) the number of epitopes in the immunogen. The performance
of all p6, p17 and p24 immunogen candidates according to these three criteria are presented
in Figure 7A–C. With in this candidate pool for each protein, we identified candidates such
that immunogens that are superior to them in any one criterion (increased fitness penalty,
higher population coverage, fewer included epitopes) are inferior in one or more of the other
criteria. These immunogens constitute the “optimal frontier” (or “Pareto frontier”(Arora,
2011)) of the candidate pool, where improvements in any one criterion are necessarily
accompanied by a deterioration in another. Candidates which do not lie on the frontier are
sub-optimal, since improvements may be made in any one criteria without incurring a
penalty in another. For p6, p17 and p24, we identified 1, 25 and 44 optimal candidates for
inclusion in an immunogen. Their epitope compositions are listed in Tables S3–5. The
evaluation criteria may be altered without changing the approach. For example, in Figure
7D–F we show the results of calculations in which criterion (ii) was modified to evaluate the
fraction of the target population that respond to at least two epitopes.

There are (1+1)×(25+1)×(44+1)=2,340 candidate immunogens for the combined [p6, p17,
p24] polyprotein formed from the combination of candidates on the optimal frontier for each
individual protein, plus the “null” immunogen containing no epitopes in a particular protein.
Using the same criteria as before, we identified 95 Gag polyprotein immunogens on the
optimal frontier Figure 7G. Their composition is listed in Table S6. As this table shows, our
strategy permitted the identification of a 12 component (113 residue) immunogen with
100% coverage of the target population (i.e., all members respond to at least one epitope). In
future work, we plan to test the efficacy of our designed Gag immunogens in inducing
potent CTL responses in vitro and in animal models.

Discussion
HIV is a highly mutable virus that also replicates very rapidly. The large diversity of viable
viral strains makes it difficult for the adaptive immune system to mount natural responses
that effectively control the virus (Autran et al., 2008; Goulder & Watkins, 2004). Immune
responses or therapeutic agents that target regions of the viral proteome where mutations
lead to a large cost in replicative fitness can be very effective for viral control or aborting the
infection (Dahirel et al., 2011; Goulder & Watkins, 2004; Streeck et al., 2007). Systematic
means to derive the viral fitness landscape permits the identification of such regions. These
landscapes, therefore, offer an unprecedented guide for the rational design of vaccine
immunogens that could redirect the adaptive immune response towards regions of the virus
most vulnerable to attack. They could also help design optimal combinations of passively-
administered antibodies and small molecule therapeutic inhibitors that could neutralize
diverse strains.

We report a computational method that can translate viral sequence databases into
quantitative landscapes of intrinsic fitness of viral strains containing multiple, potentially
synergistic, mutations. We have applied this approach to proteins contained in Gag, and
positively tested our predictions against experiments and clinical data.

As one illustration of how to leverage the insights furnished by inferred fitness landscapes,
we have designed a Gag immunogen to prime CTL immune responses against vulnerable
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regions of the viral proteome within a target human population. Recent experiments with
mousepox virus suggest that such long-peptide immunogens, if properly delivered, can
redirect the host immune system to mount CTL responses capable of conferring protective
immunity upon mice that are otherwise naturally susceptible to infection (Remakus et al.,
2012). Similarly, Melief, van der Burg, and co-workers have reported the efficacy of long-
peptide immunogens to kill cancerous tumors if they are delivered in a way that results in
highly immunogenic responses (Melief & van der Burg, 2008). We plan to test our
immunogen in animal models with optimized delivery approaches that result in sufficient
immunogenicity.

Subject to continued validation, the approach we have developed provides a general
methodology to translate viral sequence data into fitness landscapes. With both viral
sequencing and computational hardware costs rapidly declining, our methodology offers a
means to compute full-genome fitness landscapes for diverse viral pathogens – and possibly
cancers – as sufficiently large numbers of sequences become available. This methodology
may therefore represent a potentially powerful tool to guide the design of improved
prophylactic and therapeutic strategies.

Computational and Experimental Procedures
Fitness Landscape Inference

Under the binary approximation, the sequence of an m-residue protein may be specified by
the m-dimensional vector z⃗, the elements of which, , indicate whether the amino acid at
position i is wild-type, zi = 0, or mutant, zi = 1. The maximum entropy model that fits the
one and two-body mutational probabilities is the Ising spin glass model (Binder & Young,
1986). The probability of observing a particular sequence, z⃗, within the population of all
possible mutants is,

Eqn. 1

In analogy with spin glasses, we refer to E as a dimensionless “energy”, and the normalizing

factor  as the partition function. The hi and Jij model parameters are inferred
from the one and two-point mutational probabilities observed in the protein sequence data
using a semi-analytical extension of the iterative gradient descent implemented by Mora and
Bialek (Mora & Bialek, 2011). We detail this procedure in the Supplemental Computational
Procedures, along with a description of the Monte-Carlo procedure used to sample from the
fitted models for each of the four Gag proteins.

Replicative Fitness Assays
The following mutations and mutation combinations were introduced into a HIV-1 subtype
B NL4-3 plasmid using the QuikChange II XL Site-Directed Mutagenesis kit (Stratagene,
La Jolla, CA), as previously described (Wright et al., 2012): 146P, 147L, 146P/147L, 219Q,
242N, 219Q/242N, 186I, 310T, 295E, 182S, 179G, 229K, 331R, 190I, 302R, 315G, 168I,
326S, 310T/326S. To generate the mutant viruses, 10μg of mutant plasmids were
electroporated into an HIV-1-inducible GFP-reporter T cell line using conditions described
previously (Huang et al., 2011) and virus growth was subsequently monitored by detection
of GFP-positive cells by flow cytometry (Brockman et al., 2010; Wright et al., 2012).
Replication capacities of mutant viruses were similarly assayed in the GFP-reporter T cells
by flow cytometry (Brockman et al., 2010; Wright et al., 2012). Briefly, cells were infected
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at a MOI of 0.003 and the exponential slope of increase in the percentage infected cells
between days 3 and 6 post-infection was calculated as the measure of viral replication
capacity. Replication capacities of mutant viruses were expressed relative to that of the wild-
type NL4-3 virus, included as a control in every assay, such that a replication capacity of 1
indicated replication equal to that of NL4-3. Assays were performed in triplicate and the
results averaged.
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Highlights

• Quantitative fitness landscapes were extracted from viral sequence databases

• We developed a landscape for HIV Gag using a model from statistical physics

• Predictions show good agreement with new in vitro and existing clinical data
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Figure 1.
Cartoon schematic of a viral fitness landscape. The replicative fitness of a viral strain is a
function of its amino acid sequence. This information can be visualized as a topographical
map where the amino acid sequence specifies a location on the landscape, and the height of
the landscape prescribes viral fitness. For visualization purposes, this cartoon pertains to a
virus consisting of only two residues. For multi-residue viral proteins, the fitness landscape
is traced out in higher dimensions. The broken line indicates a hypothetical high-fitness
mutational escape pathway from the global fitness maximum, to a nearby local maximum.
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Figure 2.
Comparison of our theoretical metric of fitness (E) and experimental in vitro replicative
fitness data. (A) In vitro replicative fitness was measured for 19 Gag single and double
mutants (cf. Computational and Experimental Procedures). A Pearson correlation coefficient
of ρ = −0.52 (p = 0.02) reveals a statistically significant negative correlation between the
energy difference of the engineered mutants relative to the wild-type strain computed from
our model, (E − Ewt), and the logarithm of the measured relative fitness of the mutant, log (f/
fwt). (B) Replicative fitness data was compiled for 25 engineered Gag mutants containing up
to five point mutations (Brockman et al., 2007 (Jurkat cell), Miura et al., 2009, Troyer et al.,
2009, Schneidewind et al., 2007, Schneidewind et al., 2008). This data also exhibits a strong
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negative correlation ρ = −0.81 (p = 2 ×10−7). In each panel, a linear least squares fit is
provided to guide the eye, and error bars delineating estimated uncertainties in the relative
fitness are provided where available.
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Figure 3.
Clinically documented mutant strains correspond to low energy (high fitness) states within
our inferred model. Circles: Energies assigned by our model to the 10 p24 single mutants, 8
p24 double mutants, and 5 p17 double mutants listed within Table S1, which identifies the
particular mutants, HLA associated epitopes, and computed energies. Squares: Energies of
the strains of three p17 epitopes observed to undergo sequence adaptation in longitudinal
deep sequencing of an HIV infected host (Henn et al., 2012). In all cases, residues outside
the epitope are treated as wild-type in the assignment of energies.
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Figure 4.
Comparison of point mutant energy costs with documented B*57 associated escape
mutations in the TW10 (Gag240-249) epitope in p24. The 10 residues constituting the epitope
are indexed along the abscissa, and the energy cost associated with making a point mutation
at each position, ΔE, along the ordinate. The greater the energy cost, the higher the fitness
penalty. Mutations at position 246 were not observed within our sequence alignments,
leading to the specification within our model of an infinite energy cost of a point mutation at
this position, which we denote by *. The observed escape mutations at 242 and 248
(Brumme et al., 2009) occur precisely at the two positions carrying the lowest energy cost
(smallest fitness penalty).
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Figure 5.
Longitudinal deep sequencing within a single infected host identified three p17 CTL Gag
epitopes as undergoing sequence adaptation during the first four years of HIV infection
(Henn et al., 2012). In panels A–C, the title provides the location of each CTL epitope
within Gag (e.g., Gag28-36), the HLA association (e.g., A24), and the name of the epitope
(e.g., KW9). On the left side we present bar charts illustrating our inferred h parameter (c.f.
Computational and Experimental Procedures) at each position in the epitope. On the right,
we list the strains observed by deep sequencing at the six time points (Henn et al., 2012), the
fraction of the deep sequencing reads corresponding to each strain (Henn et al., 2012), and
the energy of each strain assigned by our model. Red letters indicate point mutations relative
to our MSA consensus; all residues outside the epitope are treated as wild-type in the
computation of energies from our model. In panel D, we present the temporal adaptation
courses tracking the energy assigned by our model to the mutant strains of each epitope
sequenced at each time point.(A) The infecting strain contains two mutations in the KW9
epitope (Gag28-36) at positions 28 and 34, corresponding to the positions with the second
(h28 = 1.50) and third (h34 = 2.12) lowest h values and a compensatory J coupling (J28,34 =
−0.15, c.f. Computational and Experimental Procedures), lowering the energy of the double
mutant relative to the two independent point mutations. By day 476, 61.5% of the viral
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population has reverted to the lower energy single mutant (h28 = 1.50). By day 1543, 79.5%
of viral strains have reverted to the lowest energy (E=0) wild-type state. The remaining
20.5% occupy the third least costly singly mutated state (h34 = 2.12). The lowest (h30 =
0.55), second lowest (h28 = 1.50) and third lowest (h34 = 2.12) singly mutated states are
similar in energy.(B) The LY9 epitope (Gag78-86) enters with a single mutation in the
infecting strain at the single lowest energy position (h82 = 0.17). No sequence adaptation is
observed until day 1543, at which time 31.3% of the population has reverted to the lowest
energy (E=0) wild-type. 57.1% of the population occupy the second lowest energy singly
mutated state (h79 = 0.97), while 6.3% occupy a low energy doubly mutated state (h79 =
0.97, h82 = 0.17, J79,82 = 0.25), and 5.4% remain in the infecting state. (C) The GY9 epitope
(Gag71-79) entered with a single mutation at the second least costly position in the epitope
(h76 = 1.30), nearly equi-energetic with the least costly point mutation (h79 = 0.97). By day
165, the wild-type strain transiently emerged in 30.8% of the population, but has vanished
by day 476. At day 1543, 37.8% of the population remains in the infecting state. The
remaining 62.2% possess mutations at the second least costly (h79 = 0.97) and least costly
(h76 = 1.30) positions, and a small compensatory coupling (J76,79 = −0.04). This double
mutant is of very low energy, lying within the lowest 1% of all 8,646 possible p17 double
mutants. Of the three epitopes considered, only for GY9 is a significant fraction of the day
1543 population not observed in the lowest energy wild-type state, although it transiently
emerges in day 165. Of the three epitopes, GY9 was the only one against which a CTL
response was reported (Henn et al., 2012), consistent with a situation in which the wild-type
state is effectively less fit than a competing mutant strain capable of evading immune
pressure.(D) Temporal adaptation courses follow high fitness (low energy) routes for each of
the three epitopes: KW9 (red circles), LY9 (green squares), and GY9 (blue triangles).
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Figure 6.
Rank ordered bar chart of 121 p24 class I HLA epitopes according to the computed energy
penalty, Δ<E>, imposed upon the viral ensemble. The particular epitopes considered are
listed in Table S2. Epitopes associated with a reported immunodominant response within a
particular HLA class I allele (Streeck et al., 2009) are designated by colored bars and labeled
with the epitope location and HLA association. Red bars indicate that the corresponding
HLA allele has been linked with enhanced HIV control, whereas blue bars denote those that
have not (Miura et al., 2009; Pereyra et al., 2010; Trachtenberg & Erlich, 2001). The
immunodominance data pertaining to the B*57 KF11 epitope Gag162-172were assumed to
also apply to the epitope formed from its nine residue subset, Gag164-172. Six of the seven
immunodominant epitopes leading to the greatest fitness cost are associated with protective
HLA alleles; the dashed line at Δ<E> = 1.54 represents the cutoff above which all
immunodominant responses are associated with protective alleles.
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Figure 7.
Evaluation of immunogen candidates. (A–C) Scatter plots of (A) p6, (B) p17 and (C) p24
vaccine candidates in the three-dimensional design space spanned by: (i) the weighted
average fitness impact in the target population, , (ii) fraction of the target population
that respond to at least one epitope in the immunogen (fractional coverage), and (iii) the
number of components in the vaccine. The target population comprised the 21 most
prevalent haplotypes in North Americans of European ancestry, accounting for 44.6% of this
population. Respectively, 1, 1023 and 1,048,575 immunogen candidates were tested for p6,
p17 and p24 (black crosses), of which 1, 25 and 44 candidates were located on the Pareto
frontier (red circles). The composition of these Pareto efficient immunogens is listed in
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Tables S3–5. (D–F) Scatter plots analogous to those in panels A–C for (D) p6, (E) p17, and
(F) p24, in which criterion (ii) was modified to the fraction of the target population that
respond to at least two epitopes in the immunogen; 1, 31 and 62 candidates are located on
the Pareto frontier. (G) Scatter plot of the 2,340 combination Gag vaccine candidates in the
three-dimensional design space spanned by: (i) the weighted average fitness impact in the
target population, , (ii) fraction of the target population that respond to at least one
epitope in the immunogen (fractional coverage), and (iii) the number of components in the
vaccine. The compositions of the 95 Pareto efficient candidates are listed in Table S6.
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