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Abstract
Plasmodium falciparum merozoites engage the erythrocyte surface through several receptor
(host)–ligand (parasite) interactions during a brief exchange that results in parasite invasion of the
red blood cell. Tens of thousands of these events occur during the initial cycle of blood-stage
infections but advance towards billions as the parasite becomes visible to microscopists attempting
to diagnose the underlying cause of illness in febrile patients. Advancing blood-stage infection
leads to massive proportions of erythrocytes that rupture during repetitive cycles of asexual
reproduction. As the infection leads to illness, non-immune or semi-immune individuals can suffer
from life-threatening consequences of severe malarial anemia that play a leading role in
pathogenesis. Through natural selection, some erythrocyte membrane polymorphisms are likely to
have reduced the invasion success of the P. falciparum merozoite and increased the fitness of the
human host population.

In the mid-1970s, initial insights into the molecular nature of the interactions between
erythrocyte surface proteins and malaria parasites were gained using Plasmodium knowlesi,
a simian parasite amenable to in vitro culture [1]. These studies ultimately led to the
discovery that the erythrocyte membrane protein carrying the Duffy blood group was a
crucial invasion receptor for Plasmodium knowlesi and the related human parasite
Plasmodium vivax [2,3]. These seminal experiments performed by Louis Miller and his
colleagues paved the way to the exploration of two key concepts that underlie susceptibility
of the red blood cell to malaria infection [4]. First, specific proteins on the erythrocyte
surface are co-opted by the merozoite to activate and promote parasite invasion [5,6]. This
hypothesis implies that parasite proteins somehow bind erythrocyte receptors and work in
partnership as the merozoite pulls itself into the cell and forms the parasitophorous vacuole.
Second, polymorphisms that modify the structure or level of expression of erythrocyte
membrane proteins alter the efficiency of invasion and, ultimately, susceptibility to malaria.
As malaria kills millions of children each year in endemic areas, mutations that diminish the
efficiency of the invasion process would confer a selective advantage to the host and might
be expected to increase in frequency over time through natural selection. Given the
relatively short generation time of malaria compared with humans (asexual stages of 2–4
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days and life cycle from 1–4 months for Plasmodium spp. versus 20 years for humans) and
an appreciation of the genetic diversity of malaria species, it is reasonable to consider that
the parasite has adapted in response to the polymorphic erythrocyte landscape in which it
lives. The blueprint for recent investigations of erythrocyte membrane polymorphisms in
Papua New Guinea (PNG) is based upon these concepts. Results from these studies provide
evidence that the Gerbich-negative (Ge−) blood group phenotype, highly prevalent in
malarious regions of PNG, has arisen to confer protection from P. falciparum merozoite
invasion [7,8].

Gerbich-negativity and field studies in PNG
The Ge− phenotype is caused by the deletion of exon 3 in the glycophorin C gene
(GYPCΔex3; human chromosome 2q14-q21) and is found in Hardy–Weinberg equilibrium
in malaria holoendemic regions of PNG [7–13]. Glycophorin C (128 amino acid residues,
apparent 35 kDa, integral membrane sialoglycoprotein) [10] is a physiologically important
monomer that interacts with the peripheral membrane protein 4.1 to mediate attachment of
the sub-membranous cytoskeleton to the erythrocyte membrane. Our recent study conducted
in the Wosera region of East Sepik Province revealed an association between GYPC
genotypes and ovalocytic erythrocyte morphology [8]. An increased proportion of
ovalocytic erythrocytes were observed in blood smears from individuals who were
heterozygous or homozygous for GYPCΔex3 compared with individuals who were
homozygous GYPC wild-type. It is important to note that levels of ovalocytes were higher
in Papua New Guineans than North American control individuals regardless of GYPC
genotype. Furthermore, this association was independent of the 27 base-pair deletion in the
band 3 gene (SLC4A1Δ27) that deletes nine amino acids from the intracellular NH2-
terminal region of this abundant integral membrane protein [14]. Mgone et al. have
previously described a strong correlation between SLC4A1Δ27 heterozygosity and
Southeast Asian ovalocytosis [15]. As no individuals who are homozygous for SLC4A1Δ27
have yet been identified, it is presumed that the mutation in both copies of the gene is lethal
during fetal development [16]. Overall, these findings suggest that multiple erythroid
polymorphisms and as-yet unidentified environmental factors influence erythrocyte
morphology.

To assess the effect of GYPC genotype on susceptibility to blood-stage infection, we
examined the malaria infection status of a population in the Wosera at monthly intervals
over a seven-month period. The frequency and intensity of blood-stage P. falciparum or P.
vivax infection were not associated with GYPC genotype [8]. This lack of, or equivocal,
correlations between erythroid polymorphisms and malaria infection status have been
reported for other erythroid polymorphisms. In a previous study in PNG, Allen et al. found
that α-globin polymorphisms associated with α+ -thalassemia that have reached genetic
fixation in malaria endemic regions of PNG, were protective against severe malaria, but
werenot associated with reduced parasitemia [17]. In regard to the balanced SLC4A1Δ27
polymorphism, although two independent studies have observed significant association
between this polymorphism and protection from severe malaria [18,19], the polymorphism
was not consistently associated with reduced infection prevalence or parasitemia [18,19].
These findings are not unusual to PNG as numerous studies from Africa on the β-globin
hemoglobin S (HbS) (sickle cell) [20] and HbC polymorphisms [21,22], human leukocyte
antigen (HLA) [20] and glucose-6-phosphate dehydrogenase deficiency variants [23] have
reported protection against severe malaria morbidity with equivocal reduction in
susceptibility to infection.
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Erythrocyte receptors and parasite-binding ligand interactions
Early results identifying the Duffy blood group antigen as the invasion receptor for P.
knowlesi and P. vivax [2,3] implicated the blood group proteins as merozoite targets of
human Plasmodium parasite species. Strategies using protease and neuraminidase treatment
to cleave and alter polypeptide and sialic acid side-chains, respectively, have identified at
least four major erythrocyte receptor pathways leading to P. falciparum invasion [6,24].
These include pathways that use glycophorin A (GYPA; trypsin sensitive, neuraminidase
sensitive), glycophorin B (GYPB) and receptor Y (trypsin resistant, neuraminidase
sensitive), and receptor X (trypsin sensitive, neuraminidase resistant). Identification of
Plasmodium erythrocyte-binding ligands (EBL) or antigens (EBA) is gaining momentum as
these proteins exhibit genomic and structural similarities (e.g. single-copy genes, conserved
multi-exon gene organization, intron–exon boundaries, and amino- and C-terminal cysteine-
rich domains). A recent review by Adams et al. provides an update of this growing list of
related molecules [25]. These findings are summarized in Fig. 1.

Parasite ligands known to interact with specific host receptors include the P. knowlesi and P.
vivax Duffy-binding proteins (Pk- and Pv-DBP) and the Duffy blood group antigen, P.
falciparum EBA175 and GYPA. Recently, data mining of the P. falciparum chromosome 13
DNA sequence by three groups identified a new 140 kDa EBL, termed EBA140
(alternatively, BAEBL or EBP-2) [26–28]. Evidence suggesting that the erythrocyte receptor
for EBA140 is human GYPC has included traditional strategies
usingerythrocytesfromdonorswithbloodgroupdeficiencies and enzyme modifications of
erythrocyte cell surfaces [24].

In our more recent study [29], we have provided additional proof that GYPC is the receptor
for EBA140. By overlaying parasite proteins shed into culture supernatant onto western
blots of erythrocyte membrane proteins, we showed that EBA140 bound to the wild-type
GYPC protein, butnottoGYPCoffivePapuaNewGuineanshomozygousfor GYPCΔex3.
Evidence that the EBA140–GYPC interaction is physiologically important was revealed by
experiments that used P. falciparum strains 3D7 and W2mef, the respective isogenic
EBA140 knockout progeny, Ge+ and Ge− negative erythrocytes, antibodies against the
EBA140 F2 domain (predicted GYPC-binding region [30]) and chymotrypsin treatment (to
limit non-GYPC invasion pathways). Overall, we found that antibodies to EBA140 inhibited
merozoite invasion most effectively when invasion of wild-type parasites was restricted to
the GYPC pathway, suggesting that, when available, the EBA140–GYPC interaction is
important during the process of parasite invasion. That relative invasion efficiencies were
not influenced by EBA140 antibody in experiments using Ge− erythrocytes or EBA140-
knockout parasites suggests that P. falciparum invades erythrocytes by alternative pathways
when GYPC is not available as a receptor.

A recent study by Lobo et al. [31] adds further support to the prediction that the GYPC
(receptor)–EBA140 (ligand) interaction is an important invasion pathway for P. falciparum.
However, their observations suggesting that the binding region for EBA140 resides in a
nine-amino-acid region encoded by exon 2 of the GYPC gene appear to conflict with our
studies using erythrocytes from GYPCΔex3 homozygous (Ge−) donors from PNG. Potential
explanations for these differences include the possibility that deletions of either GYPC exon
2 or exon 3 would either remove sialic acid epitope(s) necessary for EBA140 binding or
alter the presentation of sialic acid epitope(s) in a neighboring region of the GYPC protein.
Additional experiments using erythrocytes characterized for various Gerbich phenotypes and
underlying GYPC gene polymorphisms, along with additional EBL control interactions, will
be helpful in sorting out these differences.
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Concluding remarks
Ongoing studies continue to investigate how malaria parasites in PNG interact with the
erythrocyte membrane polymorphic proteins that have already been identified. Evidence for
EBA140 polymorphism and differences in GYPC binding have already been observed [29–
32]. Given the number of erythrocyte membrane polymorphisms observed in PNG so far,
the availability of a more global proteomic analysis [33] could provide further insight into
how malaria is involved in selection of erythrocyte membrane protein polymorphisms.
Finally, given the impact of the SLC4A1Δ27 mutation on protection from severe malaria in
PNG, it is clearly important to investigate how GYPCΔex3 influences malaria pathogenesis
through case control studies.
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Fig. 1.
Pathways of erythrocyte invasion. Plasmodium falciparum uses protein and polysaccharide
epitopes to engage erythrocytes using a multi-protein invasion complex (reviewed in Ref.
[34]). Enzyme treatments modify erythrocytes to accentuate specific generalized pathways
by limiting or eliminating access to epitopes that are sensitive to treatment. The pathway
denoted by receptor ‘x’ represents erythrocyte invasion that is accentuated by neuraminidase
pre-treatment of erythrocytes. The pathway denoted by GYPB and receptor y is accentuated
by trypsin or chymotrypsin pre-treatment of erythrocytes. Yellow circles and blue triangles
indicate polypeptide epitopes and polysaccharide epitopes, respectively. Abbreviations:
EBA, erythrocyte-binding antigen; GYP, glycophorin.
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