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Recent findings from developmental neuroimaging studies suggest
that the enhancement of cognitive processes during development
may be the result of a fine-tuning of the structural and functional
organization of brain with maturation. However, the details regard-
ing the developmental trajectory of large-scale structural brain net-
works are not yet understood. Here, we used graph theory to
examine developmental changes in the organization of structural
brain networks in 203 normally growing children and adolescents.
Structural brain networks were constructed using interregional cor-
relations in cortical thickness for 4 age groups (early childhood:
4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–
14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed
prominent changes in topological properties, specifically a significant
reduction in local efficiency, modularity, and increased global effi-
ciency, suggesting a shift of topological organization toward a more
random configuration. An increase in number and span of distribution
of connector hubs was found in this age group. Finally, inter-regional
connectivity analysis and graph-theoretic measures indicated early
maturation of primary sensorimotor regions and protracted develop-
ment of higher order association and paralimbic regions. Our finding
reveals a time window of plasticity occurring during late childhood
which may accommodate crucial changes during puberty and the
new developmental tasks that an adolescent faces.

Keywords: adolescence, connectivity, connector hub, cortical thickness,
maturation

Introduction

Converging evidence from behavioral, imaging, and post-
mortem studies on human and non-human primates have
demonstrated dramatic structural and functional brain
changes during development from infancy to adulthood that
extend till the third decade of life (Huttenlocher and Dabholk-
ar 1997; Giedd et al. 1999; Sowell et al. 2003; Casey et al.
2010; Lebel and Beaulieu 2011; Petanjek et al. 2011). Longi-
tudinal magnetic resonance (MR) scans of typically develop-
ing children and adolescents have demonstrated increasing
white matter (WM) volumes and inverted U-shaped trajec-
tories of gray matter (GM) volumes with increasing age
(Giedd et al. 1999; Gogtay et al. 2004). This process of struc-
tural brain maturation extends beyond adolescence to adult-
hood, as evident from human imaging studies (Sowell et al.
2003; Lebel and Beaulieu 2011) and circuitry reorganization
in post-mortem tissue (Petanjek et al. 2011).

Several recent studies have postulated that the measu-
rable enhancement of cognitive skills occurring with typical

development may be the result of a process of fine-tuning of
brain structure and function, which may underlie brain
changes as described above. A fine-tuning may involve pro-
gression from an immature and less organized brain in early
life toward a mature organizational structure during develop-
ment (Changeux and Danchin 1976; Casey et al. 1997; Brown
et al. 2005; Durston et al. 2006). A process of fine-tuning is
supported by post-mortem studies on humans and non-
human primates (Rakic et al. 1994) as well as imaging studies
(Giedd et al. 1999; Paus 2005; Kuhn 2006; Fair et al.
2008, 2009; Dosenbach et al. 2010; Tamnes et al. 2010). A
synaptic fine-tuning process was first proposed by Changeux
and Danchin (1976) as a mechanism of synaptic stabilization
during development. The basic assumption of this hypothesis
was that though connections were genetically programmed,
neuronal activity determined the final wiring pattern by refin-
ing those connections through synaptic elimination. Structural
and functional imaging studies have also suggested circuitry
reorganization during development. Structural imaging
studies have indicated GM loss occurring earliest at lower
order primary sensorimotor areas and later in higher order
association areas in typical development, suggesting a pro-
gressive refinement of neural connections through ongoing
neural regressive events (such as pruning and elimination;
Paus 2005; Kuhn 2006). During the same developmental time
period, there is increasing WM volume, presumably reflecting
ongoing myelination of axons by oligodendrocytes that would
contribute to enhanced conduction (Giedd et al. 1999;
Tamnes et al. 2010). Consistent with structural imaging find-
ings, functional MR imaging (fMRI) studies have shown weak-
ening of short-range and strengthening of long-range
functional connections during development that contribute to
brain maturity (Fair et al. 2008, 2009; Dosenbach et al. 2010).
Therefore, collectively, current evidence indicates that struc-
tural and functional changes observed with typical brain
development may reflect a process of fine-tuning that sup-
ports enhanced cognitive function with increased brain matu-
ration (Amso and Casey 2006).

Up to now, evidence from structural imaging studies for
the fine-tuning hypothesis of brain development has been
based on examining structure at the regional level, though
recent evidence also implicates the presence of structural
changes occurring at the global (large-scale) level during
maturation (Zielinski et al. 2010; Raznahan et al. 2011). As
yet, large-scale analysis of structural brain networks that
would provide us with an improved conceptual understand-
ing of developmental fine-tuning has not been undertaken.
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Graph-theoretic tools are ideal for such an analysis as they
have been extensively used for investigating large-scale brain
networks in healthy and diseased populations (Bullmore and
Sporns 2009; He and Evans 2010). The principal goal of this
study was therefore to assess the maturational changes in the
organization of structural brain networks using graph theory
as well as inter-regional connectivity analyses. We hypoth-
esized that graph theory metrics would support a process of
fine-tuning in typical structural brain development. Specifi-
cally, we predicted that structural brain networks inferred
from cortical thickness, a measure of GM, would show
age-related developmental trajectories consistent with pre-
vious regionally based analyses, whereby lower order primary
sensorimotor networks would show maturation by early
childhood, while higher order association areas and their cor-
responding pathways subserving higher cognitive abilities
would show the most protracted maturation.

Materials and Methods

Subject Sampling and Recruitment
Data were obtained from the Pediatric MRI Data Repository (database
release 2.0) created for the NIH MRI Study of Normal Brain Develop-
ment. Details are available in Evans (2006). Single scans of 203 sub-
jects were used for the study; the demographics of the subjects are
given in Table 1.

Cortical Thickness Measurements
Using a 9-parameter linear transformation (Collins et al. 1995), native
MRI images were corrected for non-uniformity artifacts using the
N3 algorithm (Sled et al. 1998) and registered into stereotaxic space
(Talairach and Tournoux 1988). Using an advanced neural net classi-
fier (Zijdenbos et al. 2002), the registered and corrected images were
further segmented into GM, WM, cerebrospinal fluid, and back-
ground. From each MR volume, the inner and outer GM surfaces
were then automatically extracted using the Constrained Laplacian-
based Automated Segmentation with Proximities (CLASP) algorithm
(MacDonald et al. 2000; Kim et al. 2005). Cortical thickness was then
measured in native space using the linked distance between the 2 sur-
faces at 81 924 vertices throughout the cortex (Shaw et al. 2006). Vali-
dation of the CLASP cortical thickness algorithm has been done using
both manual measurements (Kabani et al. 2001) and simulation
approaches (Lerch and Evans 2005; Lee et al. 2006).

Cortical Parcellations
We used the automatic anatomical labeling (AAL) atlas that is widely
used for brain parcellation (Tzourio-Mazoyer et al. 2002). Since our
analysis is based upon a cortical surface model, we have included
only those 78 AAL regions that are defined for the neocortex. Cortical
thickness for each brain region was calculated as the average thick-
ness of all vertices in that region (He et al. 2007).

Construction of Structural Cortical Networks

Network Edges
Since our structural brain networks are constructed on the basis of
cortical thickness covariance in a “group” of subjects (see below), we
divided our population sample into 4 age groups (early childhood:
Group-I: n = 51, age = 4.8–8.4 years; late childhood: Group-II: n = 51,
age = 8.5–11.3 years; early adolescence: Group-III: n = 51, age = 11.4–
14.7 years; late adolescence: Group-IV: n = 50, age = 14.8–18.3 years;
Table 1).

Structural connectivity was defined as the statistical similarity
between 2 brain regions, with respect to cortical thickness, a
method which has been described previously (He et al. 2007).
The presence of an (undirected) edge connecting 2 regions is deter-
mined by obtaining the Pearson correlation coefficient for their
respective mean cortical thicknesses, across a group of subjects.
This produces a correlation matrix Cij where i, j = 1, 2,…N, here
N = 78. Prior to this correlation analysis, a linear regression was
performed at every region to remove the effects of age, gender,
and mean regional cortical thickness. The correlation matrix for
each group was thresholded into a binarized matrix Bij = [bij], where
bij is 1 if the absolute value of the correlation matrix Cij between
regions i and j is larger than a given correlation threshold, and 0
otherwise.

Sparsity Threshold
In general, the binary graph G(N,E) is represented by the binary
matrix Bij, where N is the number of nodes and E is the number of
edges. The nodes and edges represent cortical regions and undirected
links between them, which correspond to the nonzero elements in Bij.
We denote such a graph based upon cortical thickness as GCT(N,E).
As in earlier studies (He et al. 2008), a range of sparsity thresholds
was used to characterize the topological differences between the
groups of networks. Sparsity refers to the connectedness of a graph
and is here defined as the total number of edges E in a graph divided
by the maximum possible number of edges N (N− 1)/2. A fixed spar-
sity threshold (e.g. x% threshold implies x% of the topmost connec-
tions preserved) ensures that the graphs for different groups have the
same number of edges (Achard and Bullmore 2007). A range of spar-
sity thresholds 5%≤ Sτ≤ 25% were used, as in earlier studies (Bassett
et al. 2008).

Network Analysis
To investigate the global topological properties of the networks
obtained for the different age-related groups, we used a number of
network parameters: Global efficiency, local efficiency, and modular-
ity. Each of these network parameters can provide insights into the
global topological properties of network groups.

The global efficiency EGlobal of a graph G(N,E) is defined as (Latora
and Marchiori 2001)

EGlobalðGÞ ¼ 1
N ðN � 1Þ

X
i=j[G

1
dij

;

where dij is the shortest path length between node i and node j in G.
Small-world behavior for the graph G is assessed according to the

following criteria:

1. EGlobal(Gregular) < EGlobal(G) < EGlobal(Grandom)
2. ELocal(Grandom) < ELocal(G) < ELocal(Gregular)

where EGlobal(Gregular), EGlobal(Grandom), ELocal(Gregular), and ELocal
(Grandom) are the global and local efficiency values of node- and
degree-matched regular and random networks.

For a graph G, a module is defined as the subset of nodes that are
more densely connected to each other in the same module. Given a
configuration of modular organization m with nm modules, the

Table 1
Demographics of subjects

Groups Early childhood Late childhood Early adolescence Late adolescence

N 51 51 51 50
Age (year) 4.8–8.4 8.5–11.3 11.4–14.7 14.8–18.3
Gender (M/F) 25/26 24/27 25/26 23/27

Note: The population sample consisted of 203 subjects (one scan per subject) and was
classified into 4 age groups. Since structural brain networks were constructed by calculating the
inter-regional cortical thickness across subjects, we selected the same number of subjects
(n= 51) for each group, except late adolescence (n= 50).
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modularity Q(m) is defined as (Newman and Girvan 2004):

QðmÞ ¼
Xnm

s¼1

ls
L
� ds

2L

� �2
" #

;

where L is the total number of edges of G, ls is the total number of
edges in module s and ds is the sum of the degrees of the nodes in
module s.

To have a summary metric and a comparative measure that can be
used for all the networks groups, we used the normalized integrals of
the network parameters, specifically:

Ð b
a EGlobal

b� a
;

Ð b
a ELocal

b� a
; and

Ð b
a QAv

b� a
;

where a and b are the lower and upper limits of sparsity (here, a = 5
and b = 25).

In addition to the EGlobal, ELocal, and Q parameters, we also derived
metrics for the intra- and inter-modular connectivity. A fast modularity
algorithm (Clauset et al. 2004) was used to find the optimal configur-
ation of modules, after which the intra-modular and inter-modular
connectivity patterns can be computed using the normalized intra-
modular degree, which determines how densely a node i connects to
other nodes in the same module, and the participation index P(i),
which determines how densely a node i connects to nodes in other
modules (Guimera et al. 2005). These parameters are defined as:

zðiÞ ¼ kni � �kn
O�kn

PðiÞ ¼ 1�
Xnm

s¼1

ksi
ÊðiÞ

where kni is the number of edges connecting the ith node to other
nodes in its module, referred to as intra-modular node degree; �kn and
O�kn are the mean and standard variance of intra-modular node
degrees of all nodes in the nth module; ksi is the number of edges
connecting the ith node to module si, and ÊðiÞ is the number of edges
that connect node i to all other nodes. Nodes with z(i) > 2.5 are classi-
fied as modular hubs and are otherwise classified as non-hubs. The
nodes with P(i) > 0.62 are classified as connector hubs (Guimera et al.
2005).

Statistical Analysis
The effect of age on cortical thickness was analyzed for the whole
population using a vertex-wise general linear model in which age and
gender were taken into account. T-statistic was used to test the main
effect of age on cortical thickness correcting for gender using SurfStat
(http://www.math.mcgill.ca/keith/surfstat/). Random field theory was
used for correction of multiple comparisons of the vertex data (Taylor
and Worsley 2007).

For group comparison of network parameters, we generated 1000
bootstrap samples (with replacement) from each age group (Efron
and Tibshirani 1993) and computed a thickness correlation matrix for
each sample. Global efficiency, local efficiency, and modularity were
computed from the correlation matrix of each bootstrap sample, over
a range of sparsity thresholds (5%≤ Sτ≤ 25%) and their summary
metrics, hereafter, denoted as

�EGlobal ¼
Ð b
a EGlobal

b� a
; �ELocal ¼

Ð b
a ELocal

b� a
; and �QAv ¼

Ð b
a QAv

b� a
;

with a = 5, b = 25, then used to compare the age groups. The distri-
butions of the 1000 summary graph metrics were checked for normal-
ity and a false discovery rate (FDR) correction (q = 0.05) for the 4 age
groups was first done (Genovese et al. 2002). Then Student’s t-test
(for normal distribution) and Kolmogorov–Smirnov test (for non-
normal distribution) were used to examine the significant difference
of a summary graph metric between 2 groups.

Analysis of Significant Correlations
An FDR of q = 0.05 was applied to all correlation matrices and then
the significant correlations for all age groups were computed. The
number of significant correlations for each of the correlation matrix
corresponding to the bootstrap samples was counted, and the distri-
bution was used for statistical comparisons. We also computed the
ratio of the number of significant positive correlations to the number
of significant negative correlations. A positive correlation between 2
cortical regions indicates both cortical regions to either get thicker or
thinner together; while a negative correlation indicates one cortical
region to get thicker and the other to get thinner.

Analysis of Interregional Topological Properties and Structural
Connectivity
To investigate the interregional changes in topological properties and
connectivity, we used the functional brain divisions described by
Mesulam (1998). The 78 brain regions were grouped into 3 major div-
isions: Association, paralimbic, and primary sensorimotor. Association
division consisted of 46 brain regions, paralimbic had 24, and
primary sensorimotor had 8 brain regions (Supplementary Table S1).
First, we calculated the regional efficiency for the specified sparsity
range for each brain region (5–25%) from which we computed the
summary metric of regional efficiency,

�ERegional ¼
Ð b
a ERegional

b� a
:

Next, we combined the summary metrics for all the brain regions that
belong to a major division and, the mean and standard error were
calculated. Group comparisons were then made for each of the 4
major divisions across age groups using one-way ANOVA for normal
distributions (Kruskal–Wallis for non-normal distributions), and sig-
nificant difference between 2 groups was checked using Student’s
t-test (Kolmogorov–Smirnov test for non-normal distributions) after
doing an FDR correction for the 4 age groups.

We investigated the developmental changes in interregional con-
nectivity for the 3 major brain divisions. We refer to connectivity
changes as the change in interregional correlations in mean cortical
thickness for the brain divisions. For 2 age groups (early and late
childhood), the correlation coefficients were first z-transformed, and
interregional pairs belonging to 2 brain divisions (primary sensorimo-
tor and association) were compared for significant difference in corre-
lation (Liang et al. 2006; Supekar et al. 2009). If there was a
significant decrease in correlation for an inter-regional pair, one −1
was counted; if there was a significant increase, one +1 was counted.
This step was done for all the possible inter-regional pairs. The sum
total of counts (increased and decreased counts) was normalized by
the number of possible interregional pairs for the 2 major brain div-
isions under study.

Results

Cortical Thickness Analysis at Vertex-Wise Level
The effect of age on cortical thickness is shown in Figure 1,
as t-values on the average cortical surface model of the whole
sample. The most significant age-related cortical thinning
with age is observed in parietal and frontal regions, while cor-
tical thickening is seen in temporal regions, consistent with
earlier studies (Sowell et al. 2003, 2004; Gogtay et al. 2004;
Shaw et al. 2008).

Interregional Correlations of Cortical Thickness and
Development
Correlation matrices were calculated for each age group,
based upon mean cortical thickness values from 78 anatom-
ical regions (Fig. 2A). The correlation matrices CM-I, CM-II,
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Figure 1. Effect of age on cortical thickness. (A) Analysis of the effect of age on cortical thickness for the whole population (n=203) using a vertex-wise general linear model
in which age and gender were taken into account. T-statistic was used to test the main effect of age on cortical thickness. (B) Correction of multiple comparisons of the vertex
data using random field theory.

Figure 2. Correlation matrix for age groups. (A) A matrix of Pearson correlation coefficients between inter-regional cortical thickness across subjects after removing for age,
gender and mean thickness, denoted as CM-I for early childhood, CM-II for late childhood, CM-III for early adolescence, and CM-IV for late adolescence. (B) The correlation
matrices after an FDR threshold of q=0.05. Major changes in correlation in CM-II can be observed. (C) Statistical comparison of the number of significant correlations between
the age groups using 1000 bootstrap samples of subjects. (D) Ratio of the number of significantly positive correlations to the number of significantly negative correlations. For
more details, please see Materials and Methods.
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CM-III, and CM-IV refer to that of early childhood, late child-
hood, early adolescence, and late adolescence, respectively.
The correlation patterns exhibited several common features
between age groups. High correlations were observed
between contralateral homologous regions and neighboring
ipsilateral regions (Supplementary Table S2A–D), consistent
with earlier reported studies (Mechelli et al. 2005; He et al.
2007).

Figure 2B shows the significant correlations for each
age group after correction for multiple comparisons (FDR at
q = 0.05). A notable decrease in the number of significant cor-
relations, specifically in the number of significantly negative
correlations, can be observed in the matrix CM-II correspond-
ing to the late childhood (8.4–11.3 years). Using 1000 boot-
strap samples of the age groups, the number of significant
correlations was compared to confirm the above qualitative
finding. A significant decrease (P < 0.05, FDR corrected) in
the number of significant correlations were observed for the
late childhood group (Fig. 2C), indicating that the strength of
correlations is much less in this age group. More specifically,
the ratio of the number of significantly positive to negative
correlations is higher (P < 0.05, FDR corrected) in late child-
hood compared with the other age groups (Fig. 2D),
suggesting that there is a major reduction in the number of
negative correlations during this age range.

Small-World Efficient Brain Networks
The small-world efficient behavior of all the real networks
was analyzed by global and local efficiency for a range of
sparsity values. They were compared with the corresponding
degree-matched random and regular networks for the same
range of sparsity values. All the networks derived in this
study showed small-world efficiency in the sparsity range of
5–25%, as assessed by the criteria explained given in the
section Materials and Methods (Fig. 3A).

Global Topological Properties and Age-Related
Development
The summary metrics of global network topological proper-
ties (namely, global efficiency, local efficiency, and modular-
ity) showed considerable changes with increasing age,
indicating developmental changes in the networks (Fig. 3B).
There was a significant decrease with age in integrated local
efficiency (P < 0.05, FDR corrected) and a significant increase
in integrated global efficiency (P < 0.05, FDR corrected) from
early to late childhood. We also found that the integrated
local efficiency increased significantly (P < 0.05, FDR cor-
rected) and integrated global efficiency decreased signifi-
cantly (P < 0.05, FDR corrected) from late childhood to early
adolescence, and to late adolescence. There was no significant
difference in the integrated global and local efficiency

Figure 3. Developmental changes in global topological parameters. (A) Global efficiency, local efficiency, and modularity for the 4 age groups as a function of sparsity. (B)
Statistical comparisons of the graph metrics namely, integrated global efficiency, integrated local efficiency, and integrated modularity for sparsity range (5–25%) using 1000
bootstrap samples. The distributions of the 1000 summary graph metrics were checked for normality, and Student’s t-test (for normal distribution) and Kolmogorov–Smirnov test
(for non-normal distribution) were used to examine the significant difference of a summary graph metric between the 2 groups.
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between early and late adolescence (P = 0.35 and 0.41,
respectively). The integrated modularity showed a similar
developmental trajectory to that of local efficiency. The late
childhood group showed significantly lower (P < 0.05, FDR
corrected) modularity than that of the other age groups.

Regional Differences in Network Topology with
Development
To investigate the functional relevance of our observed
network changes, we partitioned the AAL parcellation into 3
major subdivisions (primary sensorimotor, paralimbic, and
association) as defined in Mesulam (1998). The mean inte-
grated regional efficiency values for each of the subdivision
and each age group are shown in Figure 4.

In the primary sensorimotor division, the efficiency values
are significantly higher (P < 0.05, FDR corrected) in early and
late childhood when compared with later age groups. There
was no significant difference in the efficiency values in the
later age groups. For the paralimbic division, there was a sig-
nificant increase in efficiency (P < 0.05, FDR corrected) from
early to late childhood. There was also a significant increase
in efficiency (P < 0.05, FDR corrected) in the association div-
ision from early to late childhood. Taken together, primary
sensorimotor regions showed higher values of regional effi-
ciency in early childhood which decrease with development,
while the paralimbic and association regions displayed a
general pattern of increasing regional efficiency during
development.

Developmental Changes in Regional and Inter-regional
Structural Connectivity
The age-related connectivity changes within and between the
3 major subdivisions were assessed by determining the
change in correlation coefficients across age groups (Fig. 5).
Primary sensorimotor regions were already well-connected
with paralimbic regions by early age of development (early
childhood), and this connectivity was decreased in late child-
hood (P < 0.01, FDR corrected; Fig. 5A). There was an
increase from early to late childhood in connectivity within
both paralimbic and association regions, as well as an in-
crease between paralimbic and association regions (P < 0.01,
FDR corrected; Fig. 5B). Similar increases in connectivity
were observed within paralimbic and association regions, and
between paralimbic and association regions, in the later ages

of development (early and late adolescence; Fig. 5C,D). The
age-related changes in inter-regional connectivity are shown
on a 2-dimensional brain layout (Fig. 5).

Connector Hubs and Age-Related Development
The localization and distribution of connector hubs in the
different age groups (at sparsity = 13%) are shown in Figure 6B
and Table 2. Eleven connector hubs were identified in the
early childhood groups (Table 2A) that include bilateral
superior temporal gyrus, middle temporal gyrus, middle occi-
pital gyrus, cuneus and few frontal regions, rolandic opercu-
lum, rectus gyrus, and olfactory cortex. There was an increase
in the number of connector hubs from early to late childhood
(Table 2B; Fig. 6A for statistical comparisons); 21 hubs were
identified across the entire cortex. The extensive distribution
of connector hubs was also found in early adolescence, albeit
with lesser cingulate regions and emergence of prefrontal
regions; most prominently, bilateral dorso-lateral superior
frontal gyri (Table 2C). In the late adolescence group, connec-
tor hubs are again reduced (15 in total), and localized, to
multi-modal association areas; namely, bilateral medial
superior frontal gyri, bilateral dorso-lateral superior frontal
gyri, right orbital frontal, bilateral superior parietal gyri, bilat-
eral cuneus, and lingual gyrus (Table 2D).

Discussion

In the present study, graph theory was applied to cortical
thickness measurements from structural MRI to investigate
global topological properties of structural brain maturation in a
large population of typically developing children within 4 de-
velopmental age groups. Our work reveals: 1) Changes in
inter-regional correlation with age, including prominent
decreases in negative correlations in late childhood, 2) changes
in topological properties of brain networks in late childhood,
such as reduced local efficiency, modularity, and increased
global efficiency indicating a shift of topological organization
toward a more random configuration, 3) variation in the distri-
bution of connector hubs during development, and 4) evol-
ution of connectivity patterns whereby early connectivity is
focused on sensorimotor areas, followed by greater connec-
tivity in association with the areas in later development. Taken
together, these findings indicate significant developmental
changes in organization occurring at the large-scale structural

Figure 4. Regional efficiency of brain divisions. The integrated regional efficiencies of all cortical regions belonging to a functional brain division are aggregated and the same is
used as a metric to compare between age groups. The standard error is represented by the bar and P-values were calculated using Student’s t-test.
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Figure 5. Developmental to in inter-regional connectivity. (A) Changes in connectivity from early to late childhood are computed by comparing the mean correlation of cortical
regions belonging 2 brain divisions (for details, see Materials and Methods). Decreased connectivity is observed between primary sensorimotor and paralimbic regions and
visualized on a 2D brain layout. (B) Increased connectivity is observed between association and paralimbic, and within association, paralimbic regions from early to late childhood.
(C) From late childhood to early adolescence, increased connectivity is observed between association and paralimbic, and within paralimbic and association regions. (D) From
early to late adolescence, increased connectivity is observed between association and paralimbic, and within paralimbic, and association regions.
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brain network level that is consistent with a process of fine-
tuning of immature brain system into a mature one.

Inter-regional Correlations
Our work highlights prominent changes in inter-regional cor-
relations with development. Earlier studies have shown that
interregional correlations in cortical thickness are associated
with neuroanatomical pathways in the human brain (Lerch
et al. 2006; He et al. 2007). Though the exact neurobiological
processes behind coordinated interregional variation are not
known, it has been attributed to mutually tropic effects or
environment-related plasticity (Andrews et al. 1997; Mechelli
et al. 2005; Bohbot et al. 2007). Similarly, negative corre-
lations are believed to arise from weakened interregional
inhibitory relationships among cortical regions (Mechelli et al.
2005; He et al. 2007). Comparison of the inter-regional corre-
lations in cortical thickness for our 4 age groups revealed a
reduction in the number of significant correlations in the late

childhood group, specifically, a major decrease in the number
of significantly negative correlations. Interestingly, significant
negative correlations emerge again in early and late adoles-
cence age groups. Earlier studies have shown that most corti-
cal regions attain peak cortical thickness around this late
childhood period (Gogtay et al. 2004; Shaw et al. 2008). Since
most cortical regions grow together toward peak thickness,
one can speculate that the negative correlations would be pre-
dominantly weaker during this age range. The observed
reduction in interregional negative correlations in late child-
hood might also arise from weakened inhibitory influences.

Global Topological Properties
A surge of recent graph-theoretic studies have shown that
structural and functional brain networks are small-world effi-
cient using topological parameters like clustering coefficient,
path length, and global and local efficiency (Bullmore and
Sporns 2009; He and Evans 2010). Moreover, disruptions in

Figure 6. Developmental changes in connector hub distribution. (A) Statistical comparison of connector hubs for the age groups using 1000 bootstrap samples. Student’s t-test
is used for checking significance between 2 age groups. (B) Connector hub distribution for the age groups. Yellow ones represent cortical regions that are identified as connector
hubs (with participation index, P> 0.62; for details, see Materials and Methods), while blue ones are the rest of the cortical regions.
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small-world efficiency in several disease conditions (Bassett
et al. 2008; He et al. 2008) and aging (Gong et al. 2009; Wu
et al. 2012) have also been shown. Graph-theoretic studies of
development have mainly focused on functional brain net-
works (Fair et al. 2008, 2009; Supekar et al. 2009; for a detail
review, see Power et al. 2010), with very few studies on ana-
tomical networks (Hagmann et al. 2010; Fan et al. 2011). One
of the several conclusions that can be drawn from these
studies is that the graph structures of anatomical and

functional networks for children and adults, consistently
showed small-world efficient behavior with high global and
local efficiency and modular organization. Our results using
cortical thickness also showed small-world behavior for all
age groups suggesting an efficient organization of brain from
early development; and are consistent with the small-world
behavior seen in the previous anatomical and functional
network studies during development.

The functional network studies have consistently shown no
statistical difference in global topological properties between
children and adults (Fair et al. 2008, 2009; Supekar et al.
2009), while graph-theoretic studies using gray matter volume
(Fan et al. 2011) and diffusion MRI tractography (Hagmann
et al. 2010) have shown age-dependent changes in the global
topological properties. Our results of global topological prop-
erties showed a non-linear age-dependent developmental tra-
jectory of the global topological properties, with significantly
decreased local efficiency and modularity and increased
global efficiency found in the late childhood group. The in-
consistency in the developmental trajectory of topological
properties might be explained as follows. First, the findings
from functional studies must be interpreted cautiously as most
of these functional studies have been done with limited ages
and also with few regions of interest (ROIs) limited to select
brain regions (Fair et al. 2008, 2009). Also, extensive statistical
comparisons in global topological properties have not been
done in these functional studies, thus detailed investigations
into the differences in topological properties are not available
(for a detail review, see Power et al. 2010). Another specu-
lation for the different developmental trajectories of global to-
pological properties is that these graph theoretic studies on
development are from different imaging modalities that
capture different tissue types and brain structures.

Global efficiency mainly reflects long-range connections
that enable rapid information transfer between remote brain
regions and are believed to form the integrative basis of many
cognitive processes. In contrast, local efficiency predomi-
nantly reflects short-range connections between neighboring
brain regions that facilitate localized information-processing
(Latora and Marchiori 2001). Our findings of increased global
efficiency and decreased local efficiency in late childhood
indicate that structural brain networks may take on a more
random configuration during this developmental period,
whereas increased local efficiency and decreased global effi-
ciency in adolescence may point to a return to a more optimal
configuration with further development.

Distribution of Connector Hubs
We found changes in the location of structural connector
hubs between age groups that correspond to regions that sub-
serve major cognitive developmental milestones. The early
and late childhood ages between 5 and 11 years are times of
major advances in cognitive and language development (Frie-
derici 2006). It is within these age groups that we found pro-
minent hubs in the language-related temporal, parietal, and
inferior frontal regions (Price 2010). These hubs are less pro-
nounced in our early adolescent group and almost disappear
in the late adolescent group. At the same time, large hubs
appear in the frontal lobes in the early adolescent group (i.e.
during the time of puberty) and remain prominent in late ado-
lescence. An impact of puberty on frontal lobe development

Table 2
Connector hubs with development

S. No. ROI Participation coefficient (P)

(A) Early childhood
1 SMA.R 0.72
2 STG.R 0.72
3 ROL.R 0.71
4 STG.L 0.69
5 OLF.L 0.68
6 SPG.L 0.67
7 MTG.L 0.64
8 REC.R 0.64
9 MOG.L 0.64
10 CUN.R 0.62
11 SMG.L 0.62

(B) Late childhood
1 SPG.R 0.77
2 PCUN.R 0.76
3 MTG.L 0.72
4 ANG.L 0.72
5 LING.L 0.72
6 FFG.L 0.71
7 ORBsup.L 0.69
8 SMG.R 0.68
9 PCUN.L 0.68
10 TPOsup.L 0.67
11 STG.R 0.67
13 PoCG.R 0.65
14 ORBinf.L 0.65
15 TPOmid.R 0.63
16 PHG.L 0.63
17 PCG.R 0.62
18 SMA.R 0.62
19 TPOsup.R 0.62
20 ACG.L 0.62
21 ORBsup.R 0.62

(C) Early adolescence
1 ORBsup.R 0.74
3 TPOmid.L 0.72
4 PCUN.L 0.70
5 SMA.L 0.69
6 LING.R 0.68
7 LING.L 0.68
8 PCUN.R 0.67
9 IFGtriang.L 0.67
10 ACG.R 0.66
11 SMA.R 0.65
13 ORBsupmed.R 0.65
14 ROL.L 0.64
15 SFGdor.L 0.63
16 SFGdor.R 0.63
17 INS.R 0.62
18 SPG.R 0.62

(D) Late adolescence
1 ORBinf.R 0.73
3 ORBmid.R 0.72
4 SFGdor.R 0.70
5 SFGmed.L 0.69
6 LING.L 0.69
7 SMG.R 0.68
8 SFGdor.L 0.67
9 CUN.R 0.66
10 SPG.R 0.66
11 SPG.L 0.65
13 SFGmed.R 0.65
14 CAL.R 0.63
15 CUN.L 0.62
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is implicated from studies on monkey and also human brain
development, with respect to syntaptogenesis (Huttenlocher
1979; Bourgeois et al. 1994), GM and WM changes (Giedd
et al. 1999). These processes of restructuring in the pubertal
brain are argued to be driven by hormonal changes (Sisk and
Foster 2004; Sisk and Zehr 2005; Schulz et al. 2009) and to
carry functional consequences on higher order brain func-
tions such as executive functions and social cognition (Blake-
more and Choudhury 2006; Blakemore et al. 2010). It may be
mentioned here that recent studies have indicated changes in
dopaminergic innervation to have more influence on circuitry
development during adolescence (Rosenberg and Lewis 1995;
Weickert et al. 2007; Wahlstrom et al. 2010). Interestingly, this
evolving localization of connector hubs between childhood
and adolescence also compliments well-known models of
cognitive development, such as that outlined by Piaget
(1999). The dominance of connector hubs within language
regions during childhood age groups is consistent with
Piaget’s preoperational stage of cognitive development
(between ages 2–7), where children master the use of
language for symbolic representation of the external world.
Similarly, progression to connector hubs in frontal regions in
later development corresponds well with maturation from
concrete operational thinking in late childhood to formal
operations in adolescence, and the acquisition of abstract
reasoning.

Inter-regional Connectivity Patterns
Finally, our inter-regional connectivity analysis and
graph-theoretic measure (specifically regional efficiency)
demonstrate distinct developmental trajectories of different
cortical divisions (primary sensorimotor, paralimbic, and
association).

However, it is important to note that there is ongoing
debate about the developmental trajectory of primary sensori-
motor, paralimbic, and association areas. Investigations of sy-
naptogenesis in primary sensorimotor and association areas
in macaque monkey have indicated a synchronous matu-
ration, specifically in the ascending phase of the course of
synaptogenesis (Rakic et al. 1994). Contrary to this viewpoint
is the assumption of a hierarchical sequence of structural and
functional developments from sensory to motor and, finally,
to association cortex, supported by several findings from
human and non-human primates (Greenfield 1991; Huttenlo-
cher and Dabholkar 1997; Travis et al. 2005; Elston et al.
2009). Several imaging studies, however, have shown findings
that are indicative of the hierarchical sequence of maturation
(Gogtay et al. 2004; Nagy et al. 2004; Paus 2005). However,
such a hierarchical sequence of cortical maturation has not
yet been shown from the perspective of large-scale structural
brain networks. Our study utilized whole-brain connectivity
level analysis using cortical thickness measures over all corti-
cal regions. As such, our results add to a network-level under-
standing of the debatable issue of differential maturation of
primary sensory-motor, paralimbic, and association connec-
tivity during development.

Our results indicating that primary sensorimotor connec-
tivity is well-established by early childhood, but increased
connectivity in association regions occurs with age, are con-
sistent with findings from several earlier studies. Diffusion
tensor imaging (DTI) studies have demonstrated increasing

connectivity among higher order association areas from child-
hood to adolescence that have functional consequences. For
example, increasing prefrontal-parietal connectivity was
shown to correlate positively with working memory capacity
(Nagy et al. 2004), while increasing fronto-striatal connectivity
has been correlated positively with inhibitory control (Liston
et al. 2003). Analytical methods using a combination of DTI
and fMRI have also demonstrated a positive correlation
between the maturation of prefrontal-parietal connectivity
and performance on working memory tasks (Olesen et al.
2003). Recent studies have also shown layer-specific dendritic
development in layer IIIC pyramidal neurons in the human
prefrontal cortex (specifically in Broca region) which is
coincident with preoperational stage of cognitive develop-
ment (Judas and Cepanec 2007; Petanjek et al. 2008).

Methodological Issues
One limitation of our study is the grouping of subjects to
obtain the correlation matrix. For each age group, the struc-
tural brain networks were determined by computing the cor-
relations of regional cortical thickness across subjects.
Because of this, the relation of topological properties and age
could not be investigated on an individual level. However,
graph theory has been applied to developmental fMRI (Fair
et al. 2009) and DTI (Hagmann et al. 2010) studies. A combi-
nation of such multi-modal imaging techniques will provide a
comprehensive understanding of the developmental changes
in organization of brain networks. Another notable point is
the choice of brain parcellation. The regional cortical thick-
ness measurements and the 3 broad brain divisions (primary
sensorimotor, paralimbic, and association) were based on the
AAL template in which a priori anatomical classifications were
well defined. The choice of parcellation may have some effect
(Wang et al. 2009) and the use of an alternative with higher
resolution which is not constrained by anatomical landmarks
is needed in future. Further, here we used cross-sectional data
to infer developmental changes. Analysis of cross-sectional
data might be limited with respect to detection of specific
developmental changes considering the large variability in
brain structure between individuals during development
(Kraemer et al. 2000; Gogtay et al. 2004; Sowell et al. 2004).

Conclusions and Future Directions
The main finding of the paper is that during late childhood
there is significant reduction in local efficiency, modularity,
and increased global efficiency, suggesting a shift of topologi-
cal organization toward a more random configuration. This
observation of major changes in structural organization
during late childhood may seem paradoxical to findings from
several studies performed on post-mortem human and non-
human primate tissues that have shown no prominent struc-
tural changes in terms of neuronal-synaptic organization
during this period (Rakic et al. 1994; Huttenlocher and
Dabholkar 1997; Petanjek et al. 2011). Histological studies
have shown that most of the dendritic growth and synapto-
genesis occur during infancy and are completed by the begin-
ning of childhood. Synaptic elimination in human and
non-human primates has shown to start with puberty only.
Thus, histological studies suggest late childhood to be a devel-
opmental stage with little reorganization in structural
circuitry.
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One possible explanation for the inconsistency between
our finding and histological observation is that this develop-
mental phase is a period of massive developmental synaptic
fine-tuning. Changeux and Danchin (1976) first proposed the
synaptic fine-tuning hypothesis as a mechanism of synaptic
stabilization during development. According to this hypoth-
esis, during the period of overproduction of synapses, neur-
onal activity shapes the neural network by retaining certain
synapses and eliminating others. The fine-tuning hypothesis
is supported by findings from several human and non-human
primate studies that have shown an initial overproduction of
synapses and massive pruning later on (Huttenlocher 1979;
Rakic et al. 1986; Bourgeois et al. 1994; Huttenlocher and
Dabholkar 1997; Petanjek et al. 2011). This fine-tuning pre-
cedes and determines synaptic pruning. And the most inten-
sive fine-tuning is occuring during the period of synaptic
overproduction, which is the childhood period. Therefore,
our findings of a more random topological organization
during late childhood may indicate a fine-tuning process that
precedes the reorganization of structural brain networks
during development.

A speculation, which arises from our main findings, is that
there is a time window of greater plasticity (reorganization)
during normal brain development that has several potential
implications. Since fine-tuning occurring during this time
period is influenced by environment, one can speculate the
role of experience (e.g. social interactions, education strat-
egies, etc.) on the consequent formation of cortical circuitry.
Experience in childhood has shown to influence long-term
developmental paths (Champagne 2010). In one such study,
young adults who attended a preschool project were shown
to do better in several life indicators than their peers who did
not attend the project (Schweinart et al. 2005). The authors
proposed that the early intervention improved neurological
development, resulting to a higher degree of academic
success. Our findings of a critical time window of plasticity
during late childhood lend support to the need for early inter-
vention (e.g. education programmes) which might have
potential effects that extend not only to brain development
but to intellectual values (Kuhn and Park 2005; Barnett 2011).
The findings also emphasize a developmental phase of vul-
nerability during development that necessitates future investi-
gations of neuropsychopathology to look at structural
reorganization during this time period (Andersen 2003).

Further, developmental changes at the regional level, as
demonstrated in our findings, reveal distinct developmental
trajectories of specific cortical divisions which might relate to
the observed organizational changes that we found at the
global level with respect to the evolving topological proper-
ties of structural neural networks observed between child-
hood and adolescence. More specifically, our findings of early
maturation of primary sensorimotor and protracted matu-
ration of higher order association connectivity are consistent
with structural and functional brain imaging studies that
reflect a fine-tuning of an immature to a more mature brain
organization (Changeux and Danchin 1976; Casey et al. 1997;
Brown et al. 2005; Durston et al. 2006). Interestingly, our
regional findings including changes with respect to distri-
bution and location of connector hubs are in line with well-
known theories of typical cognitive development. Stages of
considerable network re-configuration may relate to non-
linear enhancement of certain cognitive skills, as indicated by

findings that highlight periods of stagnation or even
regression prior to periods of further cognitive advancement
(Carey et al. 1980; Anderson et al. 2001; Strenziok et al.
2011). Future works examining associations between structur-
al network properties and behavior are needed to further elu-
cidate the behavioral correlates of our findings. This work
represents the first examination of the topological properties
of large-scale structural brain networks in children and ado-
lescents. The results of our study provide new details, hitherto
unknown, regarding maturational changes in structural brain
networks, possibly pointing to a time window of plasticity
that can accommodate the important changes during puberty.
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Appendix

Brain Development Cooperative Group

Key personnel from the 6 pediatric study centers are as
follows: Children’s Hospital Medical Center of Cincinnati:
Principal Investigator William S. Ball, MD; Investigators Anna
Weber Byars, PhD; Mark Schapiro, MD; Wendy Bommer, RN;
April Carr, BS; April German, BA; Scott Dunn, RT; Children’s
Hospital Boston: Principal Investigator Michael J. Rivkin, MD;
Investigators Deborah Waber, PhD; Robert Mulkern, PhD;
Sridhar Vajapeyam, PhD; Abigail Chiverton, BA; Peter Davis,
BS; Julie Koo, BS; Jacki Marmor, MA; Christine Mrakotsky,
PhD, MA; Richard Robertson, MD; Gloria McAnulty, PhD;
University of Texas Health Science Center at Houston: Princi-
pal Investigators Michael E. Brandt, PhD; Jack M. Fletcher,
PhD; Larry A. Kramer, MD; Investigators Grace Yang, MEd;
Cara McCormack, BS; Kathleen M. Hebert, MA; Hilda Volero,
MD; Washington University in St. Louis: Principal Investi-
gators Kelly Botteron, MD; Robert C. McKinstry, MD, PhD;
Investigators William Warren, Tomoyuki Nishino, MS;
C. Robert Almli, PhD; Richard Todd, PhD, MD; John Constan-
tino, MD; University of California Los Angeles: Principal
Investigator James T. McCracken, MD; Investigators Jennifer
Levitt, MD; Jeffrey Alger, PhD; Joseph O’Neil, PhD; Arthur
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Toga, PhD; Robert Asarnow, PhD; David Fadale, BA; Laura
Heinichen, BA; Cedric Ireland, BA; Children’s Hospital of
Philadelphia: Principal Investigators Dah-Jyuu Wang, PhD
and Edward Moss, PhD; Investigators Robert A. Zimmerman,
MD, and Research Staff Brooke Bintliff, BS; Ruth Bradford,
Janice Newman, MBA. The Principal Investigator of the data
coordinating center at McGill University is Alan C. Evans,
PhD; Investigators Rozalia Arnaoutelis, BS; G. Bruce Pike,
PhD; D. Louis Collins, PhD; Gabriel Leonard, PhD; Tomas
Paus, MD; Alex Zijdenbos, PhD; and Research Staff Samir
Das, BS; Vladimir Fonov, PhD; Luke Fu, BS; Jonathan Harlap,
Ilana Leppert, BE; Denise Milovan, MA; Dario Vins, BC; and
at Georgetown University: Thomas Zeffiro, MD, PhD and
John Van Meter, PhD. Investigators at the Neurostatistics
Laboratory, Harvard University/McLean Hospital: Nicholas
Lange, ScD and Michael P. Froimowitz, MS, work with data
coordinating center staff and all other team members on bio-
statistical study design and data analyses. The Principal Inves-
tigator of the Clinical Coordinating Center at Washington
University is Kelly Botteron, MD; Investigators C. Robert
Almli, PhD; Cheryl Rainey, BS; Stan Henderson, MS; Tomoyu-
ki Nishino, MS; William Warren, Jennifer L. Edwards, MSW;
Diane Dubois, RN; Karla Smith, Tish Singer, and Aaron
A. Wilber, MS. The Principal Investigator of the Diffusion
Tensor Processing Center at the National Institutes of Health
is Carlo Pierpaoli, MD, PhD; Investigators Peter J. Basser,
PhD; Lin-Ching Chang, ScD; Chen Guan Koay, PhD and
Lindsay Walker, MS. The Principal Collaborators at the
National Institutes of Health are Lisa Freund, PhD (NICHD);
Judith Rumsey, PhD (NIMH); Lauren Baskir, PhD (NIMH);
Laurence Stanford, PhD (NIDA); Karen Sirocco, PhD (NIDA);
and from NINDS, Katrina Gwinn-Hardy, MD; and Giovanna
Spinella, MD. The Principal Investigator of the Spectroscopy
Processing Center at the University of California Los Angeles
is James T. McCracken, MD; Investigators Jeffry R. Alger, PhD;
Jennifer Levitt, MD; Joseph O’Neill, PhD.
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