Colibri: a Functional Data Base for the Escherichia coli Genome

CLAUDINE MÉDIGUE,¹ ALAIN VIARI,² ALAIN HÉNAUT,³ AND ANTOINE DANCHIN^{1*}

Régulation de l'Expression Génétique, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15,¹ Laboratoire de Physique et Chimie Biomoléculaire, Université de Paris VI et Institut Curie, 75231 Paris Cedex 05,² and Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex,³ France

INTRODUCTION	623
SOFTWARE AND DATA	624
Data Base Management System	624
Data Available from the E. coli Chromosome	624
Genetic map	624
Restriction map	624
E. coli DNA sequences	625
LOGICAL STRUCTURE OF THE DATA BASE	625
Data from Public Libraries	625
Generation of Contigs	626
Genetic Map and Proteins	627
Physical Map	627
USING COLIBRI	627
Interfacing Colibri	627
Examples of E. coli Data Representation	627
Calling External Procedures	630
GRAPHIC REPRESENTATION OF DATA STORED IN COLIBRI	649
Sequencing Density	649
Genetic Map and Physical Map	649
Gene Transcription versus Replication	650
COLIBRI AS A MODEL FOR MICROBIAL GENOME DATA BASES	651
APPENDIX	652
ACKNOWLEDGMENTS	653
REFERENCES	653

INTRODUCTION

One of the goals of biologists is to understand the basic mechanisms that govern the building up, propagation, and evolution of living organisms. Sequencing programs are designed to decipher messages corresponding to genetic programs of procaryotic and eucaryotic model organisms. A preliminary step is to complete the total genome DNA sequence of the organisms. National and international libraries have been collecting information on nucleotide and protein sequences for many years. This is a major contribution to the accessibility of biological knowledge, but the information thus collected cannot be directly treated for proper handling by specific software. It was therefore necessary to evaluate the feasibility of constructing a data base from Escherichia coli by using the data present in the banks. An expected consequence is that exploration of the "genomic text" should result in the discovery of rules that govern its organization and operation, namely to estimate its consis-tency. Computing is then required for three distinct but interrelated operations: data acquisition, data exploitation (i.e., extraction and interpretation of sequence information), and finally management of biological data derived from the two former operations. Setting up a consistent informatic system at this level requires the integration, within a single

environment, of (i) a specialized data base, (ii) sequence analysis software, and (iii) biological knowledge. Advances in data acquisition techniques, as well as the proliferation of computer-assisted tools, should lead to a sophisticated study of the genomic text and the exploration of hypotheses on regulation of gene expression and on gene function and evolution.

As a preliminary step for determining such an environment, we have built up a specialized data base by using biological data currently available for the study of E. coli. The genomic molecular structure of this microorganism has already been studied intensively for many years and today provides a richer set of data than that of any other known living organisms. Since 1976, when Taylor and Thoman identified and positioned 99 genetic loci on the E. coli chromosome map, eight further editions of the linkage map have been published. In the most recent map, Bachmann positioned more than 1,400 loci, representing about onethird of the total gene content of E. coli (1). A complete restriction map of the chromosome of strain W3110 was constructed by Kohara et al. (16). Since then, several programs have been developed to correlate the DNA sequence data directly with the physical map of E. coli. This software is based either on a method of restriction pattern alignment (23, 26) or on the comparison of the length of each restriction fragment (19). Since 1989, Kröger et al. have been compiling E. coli nucleic acid sequences from the GenBank and EMBL data libraries. In the last update 38.5% of the

^{*} Corresponding author.

entire *E. coli* chromosome was described (17). In a similar way, Rudd et al. (27) have developed a software (including both data files and application programs) for collecting, aligning, and displaying *E. coli* genetic map (1), restriction map (16), and DNA sequences obtained in different laboratories after removing redundancy.

Independently, we started collecting E. coli DNA sequences from the EMBL data library together with miscellaneous data obtained from other sources. Our main purpose was to build up a set of clean, consistent, and nonredundant data and to extract, in the best conditions, information about E. coli nucleic acid sequences. In an attempt to evaluate the consistency of the sequences generated by the laboratories working on E. coli, we found that the amount of polymorphism at the nucleotide level was small, justifying the aggregation of such data to generate a "patchwork" of the E. coli chromosome sequence (19). As our work on this genome progressed, it became necessary to define a structuring model for the E. coli biological data, allowing easy consultation as well as multicriteria searches of any information whether it originates from experimental work or from computer analysis of DNA sequences. In contrast with Rudd et al., who use a software that manages independent data files (27), we used a relational data base management system to conceive a specialized data base for the E. coli genome. This data base, called Colibri, is presented in this paper. We describe the organization of data, the structure of the data base, and the environment of consultation and interrogation. Graphic representation of the data stored in Colibri shows that the modeling of biological knowledge makes the extraction of new information significantly easier. To date, the data base holds more than 2,000 kbp of E. coli DNA sequences, i.e., 50% of the total genome. An update, including a procedure aiming at the construction of contigs without the help of the restriction map, will be presented elsewhere. We have defined in the present work a way of modeling procaryotic biological data. This model is presently being used to build up a specialized data base for the Bacillus subtilis genome.

SOFTWARE AND DATA

Until now, biologists have been using relational data base management systems to organize DNA sequence data; this is how the GenBank data base (5) and the PIR protein sequence data base (2) are organized. This choice is made mainly because relational data models support a very simple data structure (i.e., in tabular form) easily understandable by those who are not computer professionals. Besides, these systems provide ad hoc query languages which are simple to use. The relational data base system used as part of this work and the various *E. coli* biological data that we had to organize in the base is briefly presented below.

Data Base Management System

The data base Colibri has been developed on a Macintosh IIcx by using a commercial relational data base management system, 4th Dimension (4D). This software is user friendly and greatly facilitates the task of prototyping and refining an operational data base. 4D allows description and handling of data as file forms (i.e., tables in the standard relational model). A 4D file is made up of fields of alphanumerical, real, integer, boolean, etc., types (i.e., the attributes of the relation scheme). Basic elements of a file are the cards or the records (i.e., the t-tuples). An advantage of 4D is that it is

less restrictive than the standard relational model since it offers the capacity to manage image or text data types. Accordingly, 4D is very well suited to model biological objects such as sequences, gels electrophoresis patterns, genetic maps, and physical maps.

The relationships between structured data, i.e., between the 4D files, can be of different type. For instance, the biological object "sequence" is characterized by simple attributes such as its name, its length, and its accession number in the DataBank, but also by more complex properties such as the description of its interesting biological properties (called features). Similarly, the object "gene" is characterized by its biological function (specified by key words), among other properties. The relationship between objects "sequence" and "feature" corresponds to a $1 \leftrightarrow n$ Mapping (mapping is used here in the mathematical sense. To avoid confusion with mapping in the sense of genetics, we use a capital M); i.e., one sequence is characterized by several biological sites, and a particular site is specific to only one sequence (Fig. 1A). On the other hand, the relationship between objects "gene" and "key word" corresponds to the Mapping $n \leftrightarrow m$, i.e., one gene is characterized by several key words, and a particular key word is generally specific to several sequences (Fig. 1B). The structure generator of 4D makes it possible to translate an injective Mapping $(1 \leftrightarrow n)$ by tracing a link between two files with the mouse. A link associates N cards of the first file with one card of the second file (Fig. 1A). To establish an $n \leftrightarrow m$ Mapping between two files, it is necessary to create a "buffer file" that presents a $1 \leftrightarrow n$ Mapping with the first file and with the second file. In Fig. 1B the 4D file [Keywords] is a buffer file. This data organization (several linked files) eliminates redundancy since data in files are recorded independently and only once.

The exploitation of a data base conceived with 4D is realized by means of a personalized interface. It consists mainly of various layouts presenting data on the screen, dialogues, but also procedures connected to buttons or to menus. The generator of a 4D application associates the faculties of a fourth-generation language with those of Pascal or C (mathematical function, recursivity, etc.). Data bases developed with the update 4.1 of the software can also be compiled, thus allowing fast running of the procedures. Besides, 4D is completely open to the outside as far as it is possible to export or import data, integrate external procedures (written in Pascal or C) into a data base, but also to link up a base with other relational data base management systems.

Data Available from the E. coli Chromosome

The *E. coli* genome consists of a long, circular, supercoiled DNA molecule with 4.7×10^6 bp. This single chromosome can be represented in one of three different ways: the genetic map, the restriction map, and the DNA sequences.

Genetic map. The genetic map is represented by a collection of genes that have been identified by using mutant phenotypes and ordered by using information from genetic crosses. The *E. coli* genetic map has been compiled by B. Bachmann; in the last update, more than 1,400 genes were identified and mapped on the chromosome (1). The genetic map is used to collect experimental information about genes by ordering their chromosomal positions. It was thus important to organize the corresponding knowledge in Colibri.

Restriction map. The restriction map is represented by a

FIG. 1. Relationships between structured data in a 4D data base. In the upper part of the figure we have represented several 4D files [Sequences], [Features], [Genes] etc., comprising fields of different types (alphanumeric type for the fields Name or AccNum, integer for the field Length, etc.). The lower part of this figure shows examples of records for each of these files (for example, in the first record of the [Sequences] file, the field Name is equal to "ECACEA," the field Length is equal to 1,344 and the field AccNum is equal to "X07543"). (A) Illustration of the $1 \leftrightarrow n$ relationship between the files [Sequences] and [Features] (see text). (B) Illustration of the $n \leftrightarrow n$ relationship between the files [Genes] and [Dictionary]. The file [Keywords] is a buffer file (see text).

collection of endonuclease sites distributed along the DNA molecule. This generates DNA fragments that can be ordered by using molecular cloning, gel electrophoresis, and DNA hybridization techniques. Such a map is useful for the cloning and sequencing of genes. The initial *E. coli* physical map was established by Kohara et al. (16). It contains information about the distribution of patterns that are recognized by eight restriction enzymes: *Bam*HI, *Hind*III, *Eco*RI, *Eco*RV, *BgII*, *KpnI*, *PstI*, and *PvuII* (7,108 restriction sites in total). However, the standard Kohara map included seven known gaps that were subsequently filled by Knott et al. (14, 15). In parallel, local restriction maps can be generated from known *E. coli* nucleic acid sequence. This new information can be used to correct and supplement the initial Kohara restriction map (see below).

E. coli DNA sequences. The *E. coli* DNA sequence map is represented by an ordered collection of nucleotides represented as one of four letters A, T, G, or C. DNA sequencing allows precise length determination of any region of a genome and reveals signals in DNA such as coding sequences and control regions. The *E. coli* sequence map is still incomplete; the last release of the EMBL data library we discuss here contained 2149 entries that would correspond to about 56% of the entire *E. coli* genome, if they were not redundant. In fact, over 40% of the *E. coli* chromosome has been sequenced to date as a collective but uncoordinated effort (17).

In the literature these data are not related to each other. Therefore, as the work on *E. coli* genome progresses, the main scope of our work is to integrate all three types of information into a single map to make consultation, utilization, and updating of data easier. It was therefore necessary to define a representation of these data with 4D management system.

LOGICAL STRUCTURE OF THE DATA BASE

The conception of a data base first requires an analysis of the users' needs, i.e., definition of the way of viewing and recovering information. This consists of describing very precisely all data to be modeled, finding the relevant data, and characterizing their intrinsic relationships. Another aspect, closely linked to the first, consists of determining the expected representation and processing. The structure of the data depends on such an analysis and consequently on the efficiency of the data base (capacities and performances) and the ease with which it can be modified. We show in Fig. 2 the logical structure of the data base we have developed.

Data from Public Libraries

Information describing each DNA sequence collected in the EMBL format is organized in several linked files (Fig. 2). The data are used mainly as reference documentation, since users of the data base are supposed to have access to original EMBL information. Thus, the [EMBL] file contains fields corresponding to the ID (identifier), AC (accession number), DE (description), CC (comments), and SQ (sequence) lines

FIG. 2. Representation of the logical structure of Colibri. The various *E. coli* biological data are organized in the different 4D files represented in this figure: data from public libraries (displayed as shaded files), contigs, physical map and genetic map, and proteins, but also data corresponding to results of various software analyses (shown in italics). The relationships between the 4D files are represented by arrows linking two indexed fields (shown in boldface type). AFC, factorial correspondence analysis.

of the EMBL data file format (10). To avoid redundancy (see "Generation of Contigs"), data corresponding to the DR (access to the data bank Swiss Prot), DT (creation or modification of the entry), KW (key words), FT (Features table), and finally RP, RA, RT, and RL (bibliographic references) lines have been structured in several independent 4D files (Fig. 2). The relationship between the [EMBL] file and others follows a $1 \leftrightarrow n$ Mapping (for instance with the file [Features]) or an $n \leftrightarrow m$ Mapping (for instance with the file [References]) (see above). Thus, all data describing a single EMBL entry can be recovered by using the links described in Fig. 2. Finally, the [REJECTED_ENTRIES] file contains EMBL entries corresponding to RNA sequences, plasmid or pathogenic E. coli strain sequences, and DNA sequences which were not obtained from the E. coli K-12 genome but were mistakenly recovered under E. coli keywords. Information of each release of the EMBL data bank received in CD_ROM form, are automatically extracted. From every EMBL release, new entries are created and those already existing are modified or sometimes removed. A few sequences directly obtained from individual laboratories are also included. Procedures have thus been built in to update the data base content. For example, with the EMBL release 31 there are 1,460 [EMBL] file cards and 689 [REJECTED_ENTRIES] file cards, both corresponding to the total entries of the data library.

Generation of Contigs

A necessary step in the development of Colibri is related to the detection of duplicates. Two kinds of multiple entries

are present in the original EMBL data bank. They may correspond to duplicate sequences of exactly the same gene. These sequences are almost identical. In this case, the choice to be made requires biological expertise and cannot be done automatically. Most of the time, one entry is a fragment entirely present in a long sequence forming another entry. It is easily detected by using the FASTP identitysearching routines (30). Sequences that appear only once are called "Mother" (Fig. 2, [EMBL] file). After elimination of duplicates, we generate a series of longer DNA sequences termed "contigs," when sequences overlap with two or more neighbouring sequences. This represents the nonredundant E. coli sequencing information. It is structured in the 4D file [CONTIG]. Links between [Sequences] and [EMBL] files, on the one hand, and [Sequences] and [CON-TIG] files, on the other hand, allow the immediate recovery of all EMBL information for each entry of a particular contig (Fig. 2). A procedure has been constructed for checking possible mistakes in the assignment of coding sequences (CDSs). Obviously, this requires verification in original publications in many instances and cannot be performed automatically. Data concerning the CDS localization on contigs and their properties are organized in the 4D file [Coding Region]. When the Colibri data base is being updated, a procedure identifies contigs to be created or modified, genes already existing in the data base (i.e., duplicates), and, when needed, possible mistakes in new coding sequences. A total of 495 overlaps and single DNA sequences are currently recorded in the 4D file [CONTIG].

Genetic Map and Proteins

Information of each sequenced gene is also organized in the data base ([GENES] 4D file [Fig. 2]): its name, syn-onyms, map position, phenotype, etc. This information is generally extracted from the Bachmann genetic map (1). Other properties of the genes were obtained after performing a statistical analysis of the data ([Codon usage] file; see below) or from the mapping of DNA sequence onto the physical map of the E. coli chromosome. The file [PRO-TEINS], linked to the [GENES] file by means of the buffer file [Key Words] (see above), is generated during a procedure which creates records for the amino acid sequences translated from coding regions. For each protein record stored in the data base, we use the FASTP searching routine (30) and organize results in the 4D file [FastP] (see the section on calling external procedures, below). Rapid searching for a particular gene or protein function is realized through a key words list constructed from those given in the EMBL and Swiss Prot data banks together with those of Bachmann genetic map (1). This preestablished list is thus structured in the [Dictionary] file (Fig. 2). The number of sequenced genes currently recorded in Colibri approaches 1,500. The biological function of 200 of these genes remains unknown.

Physical Map

Finally, data corresponding to the Kohara physical map (16) are also structured in Colibri. The file [PHYSICAL MAP] is made up of fields created to record all positions of the eight restriction enzymes sites. We have developed a program, written in Pascal, that identifies the most likely positions of a DNA sequence on the E. coli chromosome by using information about restriction fragments generated with the eight enzymes used by Kohara et al. to map the genome (16). This software, described previously (19), has been used to assign a map position to most of the contigs constructed in Colibri. Appropriate localization of a fragment, correlated to data obtained by classical genetical means, allows us to suggest corrections of the Kohara map. These corrections are performed mainly by adjusting the positions of restriction sites and by adding missing sites to the original physical map. It was found that, taken as a whole, the Kohara map is very accurate, except maybe for the PvuII and EcoRV sites, which seem to be context sensitive (20). Since there are more missing sites than extra sites in the last update of our corrected physical map, the most likely explanation is that the method used by Kohara et al. (partial digestions) resulted in a defect in restriction sites. Then, it seems that there is only a low level of polymorphism between the E. coli K-12 strains used in the various laboratories involved in DNA sequencing (19). By updating data obtained from the physical mapping (19, 20, 22), together with data on restriction sites, positions of each new contig are organized in several fields of the 4D file [PHYSICAL MAP]. This file is linked to the [CONTIG] file by an $n \leftrightarrow 1$ Mapping (Fig. 2). Our corrected restriction file is available on request to scientists providing electronic mail address. At present, it contains nearly 8,000 restriction sites.

USING COLIBRI

The second step when constructing a data base is related to the representation of the data on the screen. As depicted in Fig. 3, the different ways of representing the E. coli

chromosome are closely connected to the biologist's mental representation. In the previous sections we have explained how a data base management system such as 4D allows the modeling of these data. Structured information in a data base must express the user's views in the best way, but this physical organization is quite invisible to the user. That is why a data base management system also provides an interface generator. One thus defines a set of layouts presenting data on the screen: this is what can be seen by the user (Fig. 3).

Interfacing Colibri

Several layouts have been developed in the Colibri data base which contain combinations of data from different 4D files (Fig. 2). This environment of data consultation and multicriteria searches provides a palette of tools (buttons, pop-up menus, dialogues, etc.) associated with particular procedures for searches, "navigation" in the data base, and importation of data in ASCII file form. Other 4D procedures are linked to the interface menus and allow particular analysis of the E. coli DNA sequences, such as finding the position of restriction sites, performing translation, and searching for similarities in protein data banks. The user can start the data base consultation from any type of data: EMBL entries, contigs, physical map, genes, etc. The relationship defined between the structured data allows direct access to all the related information. For instance, for a set of genes which express a same biological function, the user can very easily find all the corresponding EMBL entries together with the bibliographical references, as well as the genomic environment of those genes (e.g., the contigs they are on, their chromosomal localization, their neighboring genes, their restriction map). Furthermore, by using the drawing unit of 4D (4D Draw), it becomes possible to integrate an interactive graphic representation of the data to the interface of Colibri (see below). Very soon, most of the text information of the data base should be accessible in sensitive areas on the represented drawings of the genetic map, physical map, or DNA sequences and their coding regions.

Examples of E. coli Data Representation

As an example we show in Fig. 4.A the layout of data for a recorded contig localized at 83.7 min. The information presented here is length and genomic address (kilobases) of the genomic restriction site (16) that is mapped to the first restriction site of this contig (the orientation of its DNA sequence is identical to the direction of increasing map coordinates). The user can export the DNA sequence as an ASCII file. The map position of the contig (in minutes) is calculated from its genomic address (assuming a length of 4,719.6 kb and 100 min for the E. coli chromosome). Information from EMBL entries used to build up the contig are indicated in the EMBL Sequences table, i.e., their name in the data bank, their relative position on the contig, and their orientation with respect to the original one (a complementary strand is indicated by a minus sign). The user has access to all EMBL information of a particular EMBL entry with the "Info EMBL" button. Finally, in the Coding Regions table, we indicate information concerning each gene included in the sequence of the contig (its name, position, and biological function). The Graph button is linked to a 4D procedure that allows drawing positions of the coding regions and the restriction enzyme sites on the contig (Fig.

FIG. 3. User's views of the Colibri data base. The logical structure of the data in a data base must express, in the best possible way, the biologist's mental representation of these data (data modelization step). To make this organization quite invisible to the user, one defines a set of layouts presenting data on the screen (data representation step).

4B). The direction of gene transcription is indicated by the direction of the arrows. Names of the gene corresponding to the coding regions are localized in sensitive areas: by clicking twice with the mouse on one of them, the user can see all the information of the corresponding gene. In this graphical representation, numbers associated with each gene were obtained after a statistical analysis intended to define *E. coli* classes according to their codon usage. What, precisely, are these gene classes?

Figure 5 is a graphic representation of the codon usage of all *E. coli* genes. It was obtained by a method called factorial correspondence analysis (12). In this graph, a point is a gene and two points appear as neighbors if the corresponding genes have a similar codon usage. Using a second method that automatically clusters the CDSs that are close to one another (8), we have identified three well-separated classes (Table 1). As seen in Fig. 5, the three classes of *E. coli* genes can be distinguished by their biological properties. The two

FIG. 4. Consultation of data for a recorded contig localized at 83.7 min. (A) Layout of the 4D file [CONTIG] presenting data (or fields) from the file [CONTIG] but also from the files [Sequences], [Coding R], and [GENES] (see Fig. 2). (B) By clicking on the "Graph" button, the user can see a graphical representation of the position of the coding regions and the restriction enzymes sites on the contig (see text).

first classes, C1 and C2, have already been identified from a limited set of genes (3, 9); the new finding is that to describe properly the codon usage of all *E. coli* genes, it has been necessary to introduce a third class (C3; Fig. 5). Genes in this third class code for fimbriae, flagella and pili, and integration host factors; they also comprise genes controlling cell division. In addition, the third class contains genes that encode insertion sequences. A few genes, such as the *mut*

genes, are found at the border between classes and may therefore change class from one release of Colibri to the next one. It has also been found that the codon bias, on the one hand, and di- to pentaoligonucleotide bias, on the other hand, are specific to these three classes (21).

Results of this statistical analysis are then recorded in the data base (see [Codon usage] 4D file; Fig. 2). Thus, we show in Fig. 6 the *E. coli* gene information in a list form. This

FIG. 5. Factorial correspondence analysis of *E. coli* genes for a clustering into three classes. Each CDS is represented as a point in a 61-dimensional space, each dimension corresponding to the relative frequency of one of the 61 codons. The set of CDSs appears as a cloud of points in the space of codon frequencies. Genes that have a similar codon usage will therefore appear as neighbors. Clustering is then performed by a second method that automatically clusters objects that are close to one another. Here, genes are represented by a solid diamond, an open triangle, or an open circle according to the class to which they belong (classes 1, 2, and 3, respectively).

selection was obtained by searching genes linked to the keyword "DNA biosynthesis." As shown in the Class column, these genes belong to the C1 class from a codon usage point of view, apart from the dnaKJ operon. Other information shown in this layout includes the name, the experimental genetic map position (noted as M_G for Genetic Minutes), and the map position in minutes calculated from the genomic address (column Pos_kb) of the gene transcription on the E. coli chromosome (noted as M_P for Physical Minutes, with $M_P = kb * 100/4,719.6$). These physical minutes allow adjustment of the experimental ones defined by Bachmann (1). Moreover, we indicate the direction of gene transcription with respect to the replication forks (OriC column). From this selected gene records, the user has access to the corresponding EMBL entries and bibliographic references (>>EMBL button), to the corresponding contigs (>>CONTIG button), or to the results of the FASTP routines (30), if any (>>Scan FastP button; see below).

Calling External Procedures

One of the main goal of scientists involved in sequencing has been to identify gene products (proteins, RNA, DNA regulatory sequences, etc.) in order to associate them formally with their genetic and physiological properties. The most common operation is therefore identification of a coding sequence, automatic translation into a polypeptide sequence according to a given genetic code, and comparison of the latter with known sequences present in data banks. Computers provide great assistance in identifying open reading frames, translating sequences, finding similarities with data banks, aligning sequences, etc. Therefore we have developed on the Macintosh computer several software analyses, generally written in C, permitting such standard treatment of sequences. Most of these algorithms could have been written in 4D language, but their slow running makes them unusable in practice. For this reason, integration of external procedures in Colibri has been used (22) for sequence analyses such as identification of coding regions, translation of CDSs, and establishment of restriction maps with the eight restriction enzymes used by Kohara et al. (16): in such cases, the user simply has to select the sequence(s) to be treated in the data base. If no particular choice motivated by biological expertise is required, results are then automatically recorded in appropriate fields of the data base. A more complex routine used for rapid similarity searching in the proteins data bank (FastP) (30) has also been integrated. In that case, parameters necessary to run the program are numerous. Therefore, using the 4D system facilities, we have developed an interface allowing one to select from Colibri the query sequence, the protein data bank to be scanned, a distance matrix between amino acids, and finally the number of data bank sequences to be kept for further study. Results of the scanning are automatically loaded in the data base: for each selected protein of the data bank, its similarity score with the query sequence and information such as its description, its keywords, and its bibliographic references are recorded. The scores obtained with all the data bank entries are finally recorded to draw the corresponding histogram (the user generally wants to see the position of the selected sequences in comparison with the whole results of the FastP routine). Organization of these data in our data base (Fig. 2, [FastP] 4D file) allows the user to readily consult the results obtained from each running of this external routine.

TABLE 1. Genetic map, physical map, gene transcription orientation, and codon usage class

Nome	Length	Map p	osition	oriC ^c	Class ^d	Description
Name	(bp)	MLG ^a	M_P ^b	onc	Class	Description
aceA	1,305	91	91.05	d	2	Acetate; utilization of acetate; isocitrate lyase (EC 4.1.3.1)
aceB	1,602	91	91.01	d	1	Acetate; utilization of acetate; malate synthase A (EC 4.1.3.2)
aceE	2,658	3	2.65	d	2	Acetate; acetate requirement; pyruvate dehydrogenase (decarboxylase component)
aceF	1,890	3	2.71	d	2	Acetate; acetate requirement; pyruvate dehydrogenase (dihydrolipoyltransacetylase component)
aceK	1.737	91	91.08	d	1	isocitrate dehydrogenase kinase/phosphatase
ackA	1,203	50	51.37	d	2	Acetate kinase activity (EC 2.7.2.1)
acn	2,676	28	28.65	d	1	Aconitate hydratase
acnP	237	24	24.78	d	2	Acvl carrier protein
ada	1,065	48	49.13	d	1	Inductible DNA repair system protecting against methylating and alkylating agents; O ⁶ -methylguanine-DNA-methyltransferase
add	999	36	36.43	i	1	Adenosine deaminase (EC 3.5.4.4)
adhE	2,676	27	27.76	i	2	CoA ^e -linked acetaldehyde dehydrogenase and alcohol dehydrogenase
adk	645	11	10.79	d	2	Phospholipid synthesis; adenylate kinase activity (EC 2.7.4.3); pleiotropic effects on glycerol-3-phosphate; acetyltransferase activity
agp	1,242		22.89	a	1	Peripiasmic acid giucose-i-phosphatase
alaS	2,628	58	60.01	d	2	Alanyi-tRNA synthetase (EC 6.1.1./)
ald	1,440	31	31.92	a	1	Lactaidenyde denydrogenase
aldH	1,488	31	29.22	d	1	Aldenyde denydrogenase, NAD linked
alkA	849	45	45.03	nc	3	3-Methyladenine DNA glycosylase II, inducible
alkB	651	47	49.12	a	1	DNA repair system specific for alkylated DNA
amn	1,452	43	43.38	1	1	AMP nucleosidase (EC 3.2.2.4)
ampC	1,134	94	94.40	1	1	p-Lactamase; penicillin resistance
ampD	549		2.62	1	1	B-Lactamase regulation; cytoplasmic protein
ampE	852	24	2.00	1	1	p-Lactamase regulation; inner memorale protein DNaca, DNaca E activity alteration of mDNA stability
ams	2,448	24	24.40	nc d	2	Activator of str like sene
anr	339	20	20.62	u :	1	Activator of <i>nur</i> -like gene
ansA ansP	909	39	59.02 65.08	1	2	L-Asparaginase I.
ant	1,047	0	03.98	d	1	Na ⁺ /H antiporter activity
anaG	375	U	1.09	i	1	Function unknown
anaH	840	1	1.07	i	ī	Diadenosine tetraphosphatase
appA	1,299	22	22.71	nc	1	pH 2.5 acid phosphatase; exopolyphosphatase (EC 3.6.1.11)
appY	729		12.63	d	3	Transcriptional regulatory protein
apt	552	11	10.66	d	2	Adenine phosphorobosyltransferase (EC 2.4.2.7)
araA	1,701	1	1.45	i	1	Arabinose; L-arabinose isomerase (EC 5.3.1.4)
araB	1,503	1	1.42	i	1	Arabinose; ribulokinase (EC 2.7.1.16)
araC	879	1	1.49	d	1	Arabinose; regulatory gene; activator and repressor protein
araD	696	1	1.40	1	1	Arabinose; L-ribulosephosphate 4-epimerase (EC 5.1.3.4)
araE	1,419	01	03.45	a	1	Arabinose; low-aminity L-arabinose transport system; L-arabinose proton symport
arar	98/	45	45.30	1	1	Arabinose; L-arabinose omunig protein Arabinose; high-affinity L-arabinose transport system
ara U	1,512	45	45.52	;	1	Arabinose, high-affinity L-arabinose transport system membrane protein
araI	1 182	9	8.99	i	1	Arabinose
arcB	2,337	-	72.42	d	ī	Acridine; involved in the regulation of F pilus synthesis and enzymes involved in aerobic metabolism
argA	1,329	61	62.79	i	1	Arginine; amino acid acetyltransferase; N-acetylglucosamine synthase (EC 2.3.1.1)
argB	777	90	89.88	d	1	Arginine; acetylglutamate kinase (EC 2.7.2.8)
argC	1,005	90	89.85	đ	1	Arginine; N-acetyl-gamma-glutamyl-phosphate reductase (EC 1.2.1.38)
argD	1,221	/4	/5.43	1	1	Arginine; acetylomithine descettlese (EC 2.5.1.16)
arge	1,152	90	6 40	1	1	Arginine; activiting carbamovitransferase (duplicate gene) (FC 2 1 3 3)
araG	1 344	69	71 74	i	2	Arginine: argininosuccinate synthetase (EC 6.3.4.5)
arg0 argH	1,544	90	89.90	ns	2	Arginine: argininosuccinate lyase (EC 4.3.2.1)
argI	1,002	97	96.48	d	1	Arginine; ornithine carbamoyltransferase (duplicate gene) (EC 2.1.3.3)
areR	468	71	73.15	nc	1	Arginine; repressor of arg regulon
argS	1,731	40	41.75	i	2	Arginine; arginyl-tRNA synthetase (EC 6.1.1.19)
argT		50	51.72	ns		Arginine; sequence homologous to <i>argT</i> of <i>S. typhimurium</i> , which codes for lysine-, arginine-, ornithine-binding protein
aroA	1,281	20	20.58	nc	1	Aromatic; 3-enol-pyruvylshikimate-5-phosphate synthase (EC 2.5.1.19)
aroB	1,086	75	76.04	d	1	Aromatic; dehydroquinate synthase (EC 4.6.1.3)
aroC	1,071	51	52.13	d	1	Aromatic; chorismate synthase (EC 4.0.1.4)
aroD	720	37	37.98	1	1	Aromatic; 5-denydroquinate denydratase (EC 4.2.1.10)
aroE	816	72	/4.34	nc	3	Aromatic; denydrosnikimate reductase (EC 1.1.1.23)

T.	AB	BLE	1-	-Co	ntin	ued

NT	Length	h Map position		and the second		
Name	(bp)	M_G ^a	M_P ^b	oriC	Class.	Description
aroF	1,068	57	58.22	nc	1	Aromatic; DAHP synthetase (EC 4.1.2.15) (tyrosine repressible)
aroG	1,053	17	16.89	nc	1	Aromatic; DAHP synthetase (EC 4.1.2.15) (phenylalanine repressible)
aroH	1,047	37	38.11	i	1	Aromatic; 3-deoxy-D-arabino heptulosonate 7-phosphate (DAHP) synthetase (EC 4.1.2.15) (tryptophan repressible)
aroK	435	75	76.07	d	1	Aromatic; shikimic acid kinase I
aroL	525	9	8.87	d	3	Aromatic; shikimate kinase II (EC 2.7.1.71)
aroM	678	9	8.89	d	1	Aromatic; unknown function; regulated by aroR
aroP	1,368	3	2.57	d	1	Aromatic; general aromatic amino acid transport
ascB	1,425		60.47	i	1	Phospho-β-glucosidase
ascF	1,458		60.44	1	1	PIS enzyme II-asc
ascG	1,005		60.41	d	1	asc repressor
asax	1,101	/0	11.21	a	1	Aspartate-semiaidenyde denydrogenase (EC 1.2.1.11)
aslA aslB	1,420			nm	1	Arylsulfatase regulator
asn A	003	84	84 88	d	1	Asparagine: asparagine synthetase Δ (EC 6.3.1.1)
asnB	1 665	16	15 16	i	2	Asparagine: asparagine synthetase B (EC 6.3.1.1)
asnS	1,401	21	21.22	i	$\tilde{2}$	Asparagine: asparaginyl-tRNA synthetase (EC 6.1.1.22)
aspA	1.434	94	94.23	i	$\overline{2}$	Aspartate: L-aspartate ammonia-lyase (aspartase) (EC 4.3.1.1)
aspC	1.188	21	21.14	nc	1	Aspartate: aspartate aminotranferase (EC 2.6.1.1)
aspS	1,773		41.54	d	2	Aspartate; aspartyl-tRNA synthetase
avtA	678	84	80.78	d	3	Alanine-alpha-ketoisovalerate transaminase, transaminase C
barA	2,757			nm	1	Sensor regulator protein
BCCP	471	71	73.60	i	2	Fatty acid biosynthesis; subunit of acetyl-CoA carboxylase; biotin carboxyl carrier protein
bcp	471		55.13	i	1	Bacterioferritin comigratory protein
betA	1,668	7	7.14	i	1	Betaine; choline dehydrogenase
betB	1,470	7	7.18	i	1	Betaine; betaine aldehyde dehydrogenase
betI	585	7	7.21	i	1	Betaine; function unknown
betT	2,031	7	7.22	d	1	Betaine; high-affinity choline transport
bfr	4//	04	74.97	D	1	Bacterioferritin
DGLB halC	1,410	84 94	84.30 94.42	a d	1	β-Glucoside; pnospno-β-glucosidase B
bals	03/	04 94	04.45 84 30	d d	3 1	p-Olucoside; p-glucoside transport
bioA	1,070	17	17 41	i	1	Biotin: 7 & diamino nelargonic acid aminotransferase (synthetase for Bachmann [1])
hinR	1,295	17	17 44	h	1	Biotin; 7,0 diamino-pelargonic acid animotransicrase (synthetase for bacilinanii [1]) Biotin: biotin synthetase: conversion of dethiobiotin to biotin
bioC	756	17	17.49	d	1	Biotin: block prior to pimeloyl-CoA
bioD	660	17	17.50	d	3	Biotin; dethiobiotin synthetase
bioF	1,155	17	17.46	d	1	Biotin; 7-keto-8-amino pelargonic acid synthetase
bioH	768	75	76.61	d	1	Biotin; block prior to pimeloyl-CoA
birA	966	90	90.10	d	1	Biotin retention; biotin-[acetyl-CoA carboxylase] holoenzyme synthetase; biotin operon repressor
bisC	2,181	80	80.22	d	1	Biotin sulfoxide; biotin sulfoxide reductase, structural gene
bolA	348		9.87	d	3	Function unknown
btuB	1,845	90	89.90	d	1	B12 uptake; receptor for vitamin B_{12} , E colicins, and bacteriophage BF23
btuC	879	37	38.37	d	3	B12 uptake; vitamine B_{12} transport
btuD	750	37	38.34	D	3	B12 uptake; vitamin B_{12} transport mechanism; peripheral membrane component
DTUL htuP	501	3/	28.20	a	1	B12 uptake; vitamin B_{12} transport mechanism; possible periplasmic protein B12 uptake, vitamin B_{12} transport mechanism; possible periplasmic protein
out A	2 145	20	20.45	:	1	biz uptake, vitamin B_{12} transport mechanism, regulatory gene anecting <i>olub</i> ; outer membrane protein
cadR	1 332	74	94.01	i	2	Cadaverine
cadC	1,532		94.00	i	3	Cadaverine: required for Pcad induction: transcriptional activator
canR	2,352	10	9.98	'n	1	Long form: DBA-binding ATP-dependent protease I a
carA	1.149	1	0.67	d	1	Pyrimidine: carbamoyl-phosphate synthase (EC 2.7.2.9), glutamine (light) subunit
carB	3,222	1	0.69	d	2	Pyrimidine; carbamoyl-phosphate synthase (EC 2.7.2.9); ammonia (heavy) subunit
cca	1,239	67	69.02	i	1	tRNA nucleotidyl transferase (EC 2.7.7.25)
cdd	948	46	47.21	nc	1	Deoxycytidine deaminase (EC 3.5.4.5)
cdh	750	89	88.77	d	3	CDP-diglyceride hydrolase
cds	750	4	4.40	d	1	CDP-diglyceride synthetase (CTP: phosphatidate cytidylyltransferase) (EC 2.7.7.4)
celA	318		38.99	d	1	Cellobiose
CelB	1,251	38	38.96	đ	1	Cellobiose; phosphoenolpyruvate-dependent phosphotransferase enzyme II- cellobiose; transport of cellobiose, arbutin, and salicin
celC	348	38	38.95	d ,	1	Cellobiose; phosphoenolpyruvate-dependent phosphotransferase enzyme III- cellobiose; transport of cellobiose, arbutin, and salicin
ceID colE	840	38	38.93	d	1	Cellobiose; negative regulatory gene of the <i>cel</i> operon
ceir	1,110	38 100	38.90	a d	1	Celicin E2 talegange to colicin E2
cei	1,347	100	99.92	a	1	Concin E2; tolerance to concin E2

TABLE 1-Continued

N	Length Map position			ion olivid			
Name	(bp)	M_G ^a	MLP ^b	onc	Class-	Description	
cheA	1,965	42	42.05	d	1	Chemotaxis; chemotactic response	
cheB	1,050	41	41.91	d	1	Chemotaxis; chemotactic response; methylesterase activity	
cheR	861	41	41.93	d	1	Chemotaxis; chemotactic response; methylesterase activity	
cheW	504	42	42.04	d	1	Chemotaxis; chemotactic response	
cheY	390	41	41.90	d	1	Chemotaxis; chemotactic response	
cheZ	645	41	41.89	d	1	Chemotaxis; chemotactic response	
chlD	903	17	17.15	nc	1	Chlorate; molybdenum uptake; nitrate reductase, formate dehydrogenase, and biotin sulfoxide reductase activity	
chlE	1,236	18	18.62	i	1	Chlorate; molybdopterin biosynthesis; nitrate reductase, formate dehydrogenase, and biotin sulfavide reductase activity: regulatory function	
chlN	750	18	18.60	i	1	Chlorate; molybdopterin biosynthesis; nitrate reductase, formate dehydrogenas and biotin sulfoxide reductase activity	
cir	1.992	43	47.78	d	1	Production of colicin I receptor	
clpA	2.277		19.85	d	1	ATP-dependent clp protease	
clpB	2.571		57.97	d	1	ATP-dependent protease binding subunit	
clpG	837		•••••	nm	3	Surface antigen	
clpP	624		9.97	nc	1	ATP-dependent <i>clp</i> protease proteolytic component	
cmlA	642	19	19.96	nc	3	Chloramphenicol; chloramphenicol acetyltransferase; resistance or sensitivity to chloramphenicol	
coaA	1.011	90	90.13	nc	3	Pantothenate kinase (EC 2.7.1.33); uncharacterized growth defect	
codA	1,284	8	7.80	nc	1	Cytosine deaminase (EC 3.5.4.1)	
codB	1,260	8	7.77	nc	1	Cytosine permease; cytosine transport	
colA	444		47.84	nc	2	Colicin A lysis protein	
cpdB	1,941	96	95.67	i	1	2',3'-Cyclic-nucleotide 2'-phosphodiesterase (EC 3.1.4.16)	
cpxA	1,374	89	88.64	nc	1	F-pilus formation, surface exclusion, conjugal donor activity	
crp	633	74	75.37	i	2	Cyclic AMP receptor protein	
crr	510	52	53.94	d	2	Phosphocarrier protein for glucose of the PTS system; glucose phosphotransferase system enzyme IIIglc, structural gene	
cscB	1.248			nm	3	Sucrose permease	
csnA	213		79.41	nc	2	Cold shock protein	
cstA	1.686		13.69	d	1	Carbon starvation gene product	
cutE	1,539		14.96	i	ī	Involved in conner homeostasis	
cva	2.544	86	86.23	d	ī	Adenvlate cyclase (EC 4.6.1.1)	
cvbB	525	17	31.97	nc	3	Cytochrome b_{561}	
cvdl	1.572	17	16.65	d	2	Cytochrome oxydase d subunit I precursor	
cvdlI	1,140	17	16.69	d	2	Cytochrome oxydase d subunit II	
cvnR	900		7.83	i	1	Cyanate; positive regulatory protein for the cyn operon	
cynS	471	8	7.85	d	1	Cyanate; cyanate aminohydrolase (EC 3.5.5.3); cyanase	
cynT	657	8	7.84	d	1	Cyanate; cyanate permease	
cynX	1,053	8	7.86	d	1	Cyanate; function unknown	
cyoA	948	10	9.80	i	2	Cytochrome o terminal oxidase complex	
суоВ	1,992	10	9.76	i	2	Cytochrome o terminal oxidase complex	
cyoC	615	10	9.75	i	2	Cytochrome o terminal oxidase complex	
cyoD	330	10	9.74	i	2	Cytochrome o terminal oxidase complex	
суоЕ	891	10	9.72	i	1	Cytochrome o terminal oxidase complex	
cysA	1,098	52	54.09	nc	1	Cysteine; sulfate permease; chromate resistance	
cysB	972	28	28.60	d	1	Cysteine; positive regulatory gene for cycteine biosynthesis	
cysC	603	59	61.20	d	1	Cysteine; adenosine 5'-phosphosulfate kinase (EC 2.7.1.25)	
cysD	906	59	61.24	d	1	Cysteine; ATP sulfurylase (ATP:sulfate adenyltransferase) (EC 2.7.7.4)	
<i>cysE</i>	822	81	81.64	nc	1	Cysteine; serine acetyltransferase (EC 2.3.1.30)	
cysG	1,371	74	75.86	nc	1	Cysteine; sulfite reduction and possible nitrite reduction; siroheme synthesis	
cysH	735	59	61.46	nc	1	Cysteine; adenylylsulfate reductase (EC 1.8.99.2)	
cysI	1,719	59	61.42	nc	1	Cysteine; NADPH-sulfite reductase (EC 1.8.1.2), alpha subunit	
cysJ	1,800	59	61.38	nc	1	Cysteine; NADPH-sulfite reductase (EC 1.8.1.2), beta subunit	
cysK	972	52	54.00	d	1	Cysteine; cysteine synthetase; O-acetylserine sulfhydrolase A (EC 4.2.99.8)	
cysM	912	52	54.12	nc	1	Cysteine; O-acetylserine (thiol)-lyase-B; O-acetylserine sulfhydrolase B (EC 4.2.99.8)	
cysN	1,425	59	61.21	d	1	Cysteine; ATP-sulfurylase (ATP:sulfate adenylyltransferase) (EC 2.7.7.4), subunit	
cysP	1,017		54.04	nc	2	Cysteine; thiosulfate-binding protein	
cysQ	741		95.71	d	1	Cysteine; ammonium transport protein	
cysS	1,386	12	12.02	d	1	Cysteine; cysteinyl-tRNA synthetase (EC 6.1.1.16)	
cysT	834	42	54.06	nc	1	Cysteine; cysteine tRNA; sulfate permease	
cysW	876		54.08	nc	1	Cysteine; sulfate permease	
cysX	393		81.64	nc	1	Cysteine; function unknown	
cysZ		52	54.04	ns		Cysteine; O-acetylserine (thiol)-lyase-A	
cytR	1,023	89	89.06	i	1	Regulatory gene for deo operon, udp, and cdd	
dacA	1,209	15	14.39	i	2	D-Alanine carboxypeptidase, fraction A; penicillin-binding protein 5	

TABLE 1-Continued

$\frac{(bp)}{MG^a MP^b} \qquad one Class$	
	Description
<i>dacB</i> 1,434 69 71.95 i 1 D-Alanine carboxypeptidase involved as a pp-carboxy	e, fraction B; penicillin-binding protein 4 (PBP4); pentidase endopentidase in murein metabolism
dacC 1.200 18.96 d 1 D-Alanine carboxypeptidase	, fraction C; penicillin-binding protein 6
damX 834 74 75.99 d 1 DNA; DNA adenine methyl	ase which methylates the sequence GATC
dapA 879 53 55.07 d 1 Diaminopimelate; dihydrodiy	picolinate synthase (EC 4.2.1.52)
dapB 822 1 0.64 d 1 Diaminopimelate; dihydrodi	picolinate reductase (EC 1.3.1.26)
dapD 825 4 4.10 nc 2 Diaminopimelate; tetrahydro	odipicolinate N-succinyltransferase
dapE 1,128 53 54.94 i 1 Diaminopimelate; N-succiny	yl-diaminopimelate deacylase
dapF 825 86 86.30 d 1 Diaminopimelate; diaminopi	imelate epimerase
dbpA 1,296 30.22 nc 1 DEAD box protein	
dcd 582 46 46.44 nc 1 2'-Deoxycytidine 5'-triphosp	phate deaminase activity (EC 3.5.4.13)
dcm 1,416 43 43.27 d 1 DNA cytosine methylase	
dcp 2,046 29 28.91 d 1 Dipeptidyl carboxypeptidase	e
ddl 921 2 2.22 d 1 D-alanine: D-alanine ligase;	mureine
ddlA 1,095 8.60 nc 1 D-alanine:D-alanine ligase A	L
deaD 1,716 71.46 d 2 Encodes a presumed ATP-d	lependent RNA helicase
dedA 660 51.86 d 1 Folate; function unknown	
dedB 915 51.84 d 1 Folate; folate coenzyme	
dedC 1,272 50 51.81 d 1 Folate; folylpolyglutamate-d	lihydrofolate synthetase
dedD 636 51.79 d 1 Folate; function unknown	
dedE 489 51.78 d 1 Folate; function unknown	
dedF 5/0 51.73 d 1 Folate; function unknown	
<i>deoA</i> 100 99.50 ns Deoxyribose; inymidine pho	osphorylase (EC 2.4.2.4)
deob 100 99.46 ns Deoxyribose; prospropento	mutase (EC 2.7.5.0)
deol /// 100 99.48 nc 2 Deoxyfibose; deoxyfibose 5	side phosphare aldolase (EC 4.1.2.4)
deoD 720 100 99.46 nc 2 Deoxyfibose; purifie-nucleos	side phosphorylase (EC 2.4.2.1)
dak 360 02 01 87 d 1 Dickyeride kinase	le loi deo operon
dat 1 518 3 85 d 1 dGTP triphosphohydrolase	
dicA 405 35 35 29 i 3 DNA-binding protein: regul	atory gene
dicB 330 35 35.32 i 3 Control cell division: DNA-	binding protein
dicC 228 35 35 29 d 3 DNA binding protein: regult	atory gene
dinG 1.914 17.95 d 1 Function unknown	atory gene
div 51.94 ns Function unknown	
divE 657 22 22.15 i 1 Division; membrane protein	biosynthesis
dksA 453 3.47 d 1 dnaK suppressor	
dld 1,713 47 47.26 i 1 D-Lactate dehydrogenase (F	EC 1.1.1.28)
dmsA 2,358 20 20.22 d 1 Anaerobic dimethyl sulfoxid	de reductase, subunit A
dmsB 624 20 20.27 d 1 Anaerobic dimethyl sulfoxid	de reductase, subunit B
dmsC 864 20 20.29 d 1 Anaerobic dimethyl sulfoxid	de reductase, subunit C
dnaA 1,404 83 83.82 d 1 DNA; DNA biosynthesis; ir	nitiation
dnaB 1,416 92 91.99 nc 1 DNA; DNA biosynthesis; c	hain elongation
dnaC 738 99 99.15 i 1 DNA; DNA biosynthesis; ir	nitiation and chain elongation
dnaE 3,483 4 4.60 d 1 DNA; DNA polymerase III	alpha subunit
dnaG 1,743 67 69.22 i 1 DNA; DNA biosynthesis; p	orimase
dnaJ 1,131 0 0.32 d 2 DNA; DNA biosynthesis	
anak 1,917 U U.27 d 2 DNA; DNA biosynthesis; h	leat shock protein
analy $1,101$ 83 83.80 d 1 DNA; DNA biosynthesis; D	JNA polymerase III holoenzyme beta subunit
ana 1 540 99 99.1/1 1 DNA; DNA biosynthesis; p dra $7V$ 1 032 11 10.69 d 1 DNA; DNA biosynthesis; F	DNA notrinana III commo subuniti DNA clanastica
anaZA 1,932 11 10.08 d 1 DNA; DNA biosynthesis; D factor III	JNA polymerase III gamma subunit; DNA elongation
dniR 669 5.19 i 1 Involved in hexaheme nitrit	te reductase expression
<i>dpj</i> 381 57.29 d I Function unknown	
dsdA 51 52.63 ns D-Serine; D-serine deaminas	se
asac /95 51 52.05 nc 3 D-Serine; regulatory gene io	or $asaA$ (activator)
dui 435 62 62.34 1 2 dU l Pase; deoxyundine inp dua 717 100 00.05 i 2 Nogetiyo regulatory gang of	f conos in conchio notheres
age 2 820 nm 3 Attaching and effacing gene	genes in aerobic pathways
ebg 4 3 108 67 69 48 i 1 Phospho-8-p-galactosidase	alnha subunit: comtic cana
ebgB 67 69 56 ns Possible homolog of lagVi is	aipha subulit, cryptic gene n <i>ebo</i> operon
ebgC 516 67 69.55 i 1 Phoenho-R-D-galactocidase	beta subunit: cryptic gene
ebgR 984 67 69.46 i 1 Regulatory cene of abg one	ron: repressor protein
eda 642 41 41.21 nc 2 2Keto-3-deoxyoluconate 6-	phosphate aldolase (EC 4.1.2.14)
edd 1,809 41 41.17 nc 1 6-Phosphogluconate debydr	atase (EC 4.2.1.12)
emrA1 1,173 59.91 nc 1 Multidrug resistance	
emrA2 1,539 59.94 nc 1 Multidrug resistance	
endA 708 64 65.78 i 1 DNA; DNA-specific endonu	uclease I

TABLE 1-Continued

Nome	Length	Map position		and CC	Class	Description	
INAILIC	(bp)	M_G ^a	M_P ^b	one	Class	Description	
eno		60	61.93	ns		Enolase (EC 4.2.1.11)	
entB		14	13.59	ns		Enterochelin; 2,3-dihydro-2,3-dihydroxybenzoate synthetase	
entC	1,173	14	13.53	nc	1	Enterochelin; isochorismate synthetase	
entD	767	13	13.19	d		Enterochelin; enterochelin synthetase, component D	
entE	1,608	14	13.56	nc	1	Enterochelin; enterochelin synthetase, component E	
entF	3,882	14	13.33	d	1	Enterochelin; enterochelin synthetase, component F	
envA	918	2	2.31	d	1	Envelope; cell envelope and cell separation	
envC	1,155	81	81.62	nc	1	Envelope; envelope protein; anomalous cell division; chain formation	
envD	2,895	81	81.65	nc	1	Envelope; cell division	
envY	759	13	12.71	nc	1	Envelope; envelope protein; thermoregulation of porin synthesis	
envZ	1,188	75	76.42	d	1	Envelope; production of outer membrane proteins; regulatory gene	
era	951		57.33	d	2	RAS-like protein	
ermBC	738			nm	3	23S rRNA methylase	
exbB	735	65	67.92	d	1	Uptake of enterochelin; resistance or sensitivity to colicins	
exbD	426	65	67.91	d	1	Uptake of enterochelin; resistance or sensitivity to colicins	
fabA	516	22	21.84	d	2	Fatty acid biosynthesis; B-hydroxydecanoyl thioester dehydratase (EC 4.2.1.60)	
fabB	1.221	50	52.00	d	2	Fatty acid biosynthesis; B-ketoayl-[acyl-carrier-protein] synthase I (EC 2.3.1.41)	
fabD	930	24	24.74	d	1	Fatty acid biosynthesis; malonyl-CoA-[acyl-carrier protein] transacylase (EC	
,						2.3.1.39)	
fabE	1,350	71	73.61	i	2	Fatty acid biosynthesis; subunit of acetyl-CoA carboxylase (EC 6.4.1.2); biotin carboxylase	
fabG	735	24	24.76	d	2	Fatty acid biosynthesis; 3-ketoacyl-acyl carrier protein reductase; biotin carboxylase	
fahH	954		24.72	d	1	Fatty acid biosynthesis: B-ketoacyl-acyl carrier protein synthase III	
fadA	1 161	87	87.02	i	1	Fatty acid degradation: 3-ketoacyl-CoA thiolase I (EC 2.3.1.16)	
fadB	2,187	87	87.04	i	1	Fatty acid degradation; J-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35); δ-3-	
Juud	2,107	0,	07.01	•	•	cis-6-2-trans-enoyl-CoA isomerase (EC 5.3.3.8); 3-hydroxyacyl-CoA epimerase (EC 5.1.2.3): enoyl-CoA and enoyl-CoA hydratase (EC 4.2.1.17)	
fadI	702		86.99	d	1	Fatty acid degradation; regulatory gene: activator of <i>fadB</i> and <i>fadE</i> genes; flavin oxidoreductase	
fadL	1,347	51	52.43	i	1	Fatty acid degradation; transport of long-chain fatty acids and sensitivity to phage T2	
fadR	717	26	26.45	nc	1	Fatty acid degradation; negative regulatory gene for <i>fad</i> regulon and <i>aceBA</i> operon	
fda	1,077	63	65.34	d	2	Fructose 1,6-bisphosphate aldolase (EC 4.1.2.13)	
fdhE	933		88.50	nc	1	Soluble protein involved in formation of formate dehydrogenase [FDH(N)]	
fdhF	1,680	93	92.75	i	2	Formate dehydrogenase (formate hydrogen-lyase linked), selenopolypeptide	
fdnG	585		33.15	i	1	Nitrate-inductible formate dehydrogenase	
fdnH	2,412		33.16	i	2	Nitrate-inductible formate dehydrogenase	
fdnI	882		33.21	i	1	Nitrate-inductible formate dehydrogenase	
fdp	996	96	96.10	d	2	Fructose-1,6-bisphosphatase (EC 3.1.3.11)	
fdx	336			nm	2	Ferredoxin (2FE-2S) protein	
, fecA	2,325	93	97.33	i	1	Iron; citrate-dependent iron transport, outer membrane receptor	
, fecB	903	8	97.28	i	1	Iron; citrate-dependent iron transport, periplasmic protein	
fecC	999		97.26	i	1	Iron; citrate-dependent iron transport	
fecD	957	8	97.24	i	1	Iron; citrate-dependent iron transport, membrane-bound protein	
fecE	768		97.22	i	3	Iron; function unknown	
fecI	522		97.36	i	1	Iron; function unknown	
fecR	954		97.35	i	1	Iron; function unknown	
fepA	2,235	13	13.24	i	1	Iron; receptor for ferrienterochelin and colicins B and D; enterochelin-dependent iron transport	
fepB	957	13	13.52	nc	1	Iron; ferric enterobactin (enterochelin) uptake; periplasmic component	
fepC	813	13	13.47	nc	1	Iron; ferric enterobactin transport protein, ATP-binding protein; cytoplasmic membrane component	
fepD	1.002	13	13.43	nc	1	Iron; ferric enterobactin transport protein	
fenG	990	13	13.45	nc	1	Iron: ferric enterobactin transport protein	
fes	1.125	13	13.30	d	1	Iron: enterochelin esterase	
fhlA	2,061	58	60.77	i	1	Transcriptional activator of the formate hydrogen-lyase; possible electron transport system	
fhuA	2,244	4	3.59	d	2	Ferric hydroxamate uptake and T1; outer membrane protein receptor for ferrichrome, colicin M and phages T1, T5, and 680	
fhuB	1,980	4	3.68	d	1	Ferric hydroxamate uptake; hydroxamate-dependent iron uptake, cytoplasmic membrane component	
fhuC	798	4	3.64	d	1	Ferric hydroxamate uptake; hydroxamate-dependent iron uptake, cytoplasmic membrane component; involved in Fe ³⁺ transport	
fhuD	891	4	3.66	d	1	Ferric hydroxamate uptake; hydroxamate-dependent iron uptake, cytoplasmic membrane component; involved in Fe3 ⁺ transport	

TABLE 1-Continued

Nome	Length	Map j	position	osition		Description	
INAME	(bp)	M_G ^a	M_P ^b	one	Class	Description	
fhuE	2,187	16	24.95	i	1	Ferric hydroxamate uptake: outer membrane receptor for ferric-rhodotorulic acid	
fic	600	74	75.48	d	1	Filamentation in presence of cyclic AMP in mutant	
fimA	543	98	97.99	nc	1	Fimbriae; type 1 fimbrin (pilin), structural gene	
, fimB	600	98	97.94	nc	3	Fimbriae; regulatory gene for expression of himA	
fimC		98	98.02	ns		Fimbriae; biosynthesis of type 1 fimbriae	
fimD	2,631	98	98.02	d	3	Fimbriae; biosynthesis of type 1 fimbriae	
fimE	594	98	97.97	nc	3	Fimbriae; regulatory gene for expression of <i>fimA</i> ; fimbrial morphology	
fimF	528	98	98.08	d	3	Fimbriae; fimbrial morphology	
fimG	501	98	98.09	d	3	Fimbriae; fimbrial morphology	
fimH	900	98	98.10	d	1	Fimbriae; minor fimbrial subunit, adhesin	
firA	1,026	4	4.51	d	1 .	~ Affects transcription	
fis a d	297	12	73.74	nc	2	Site-specific DNA inversion	
JIAAI Aa AII	400	43	43.02	1	1	Flagella, flagellar synthesis and chemotaxis	
fulAll	570	43	43.03	ו ל	2	Flagella, hagellar synthesis, regulatory gana	
JULI AbR	360	42	42.11	d	3	Flagella, hagellar synthesis; regulatory gene flagellum specific sigma factor	
fid A	531	72	15 42	i	2	Flavodovin	
fliD	551	43	42.70	ns	2	Flagella: flagellar synthesis hook-associated protein 2	
fliE	315	43	42.72	nc	1	Flagella: hasal hody structural component	
fliF		43	42.71	ns	-	Flagella: hook-basal body subunit	
fnr	753	30	29.99	i	1	Regulatory gene for nitrite and nitrate reductases, hydrogenase, and fumarate	
5						reductase	
folA	477	1	1.05	d	1	Folate; dihydrofolate reductase (EC 1.5.1.3); trimethoprim resistance	
folD	867		11.65	nc	1	Folate; 5,10-methylene-tetrahydrofolate dehydrogenase/5,10-methylyl-	
-						tetrahydrofolate cyclohydrolase	
fpg	810		82.15	i	1	Fapy-DNA glycosylase	
fpp	1,608		80.07	d	2	Dipeptide transport protein	
frdA	1,809	94	94.51	i	2	Fumarate reductase (EC 1.3.99.1); flavoprotein subunit	
frdB	735	94	94.50	i	2	Fumarate reductase (EC 1.3.99.1); iron-sulfur protein subunit	
fraC	360	94	94.48	1	2	Fumarate reductase (EC 1.3.99.1); membrane anchor polypeptide	
fraD fm V	390	94	94.49	1	1	Fumarate reductase (EC 1.3.99.1); membrane anchor polypeptide	
jrun fru D	939	4/	48.11	d d	1	Fructose; inuctose-1-phosphate kinase (EC 2./.1.3)	
jruK	1,005	2	1.92	a	1	system repressor	
fts A	1 263	2	2 26	d	1	Cell division: anomalous filamentous growth	
ftsE	666	76	77.87	ď	î	Cell division: anomalous filamentous growth	
ftsO	831	76	2.24	ď	ī	Cell division: anomalous filamentous growth	
ftsW	1,245		2.14	d	ī	Cell division: anomalous filamentous growth	
ftsX	1,056	76	77.85	d	1	Cell division; anomalous filamentous growth	
ftsY	1,491	76	77.89	d	1	Cell division; anomalous filamentous growth	
ftsZ	1,152	2	2.28	d	2	Cell division; anomalous filamentous growth	
fucA	645	60	62.45	d	1	Fucose; L-fuculose-1-phosphate aldolase	
fucI	1,773	60	62.51	i	1	Fucose; L-fucose isomerase	
fucK	1,446	60	62.55	i	1	Fucose; L-fuculose kinase (EC 2.7.1.51)	
fucO	1,149	60	62.43	d	1	Fucose; L-1,2-propanediol oxidoreductase	
fucP	1,314	60	62.48	1	1	Fucose; L-fucose permease	
fuck fucT	129	00 60	62.59	1	1	Fucose; L-fucose utilization; positive regulatory protein	
fucI	300	60	62.01	1	2	Fucose: L fucose utilization	
fur A	1 644	36	36 12	L L	1	Furnarate: furnarase	
fumB	1,647	93	93.80	i	2	Fumarate: regulatory gene?	
fumC	1,401	36	36.08	d	1	Fumarate: fumarase	
fur	444	16	15.39	nc	ī	Ferric iron uptake: negative regulatory gene	
fusA	2,112	73	75.08	d	2	Protein chain elongation factor EF-G	
fwd1566	435			nm	1	Biocyclomycin resistance	
gabD	1,449	58	59.41	i	1	γ-Aminobutyrate; succinate semialdehyde dehydrogenase (EC 1.2.1.16), NADP-	
						dependent activity	
gabP	1,281	58	59.44	i	1	γ -Aminobutyrate; transport of γ -aminobutyrate; GABA transaminase	
gabT	1,401	58	59.48	i	1	γ -Aminobutyrate; aminobutyrate aminotransferase (EC 2.6.1.19) activity; GABA	
aalF	1 014	17	17.05	•		permease	
gait	1,014	17	17.05	1	1	Galactose; UDP galactose 4-epimerase	
gaiR galR	1,140	1/ 61	1/.00	1	1	Galactose; galactokinase (EU 2./.1.0)	
guir onls	1 022	01	05.50 17 67	ו ה	1	Galactose: mal repressor and galactose ultrainduction factor	
onlT	1 041	17	17 03	i	1	Galactose: galactose-1-phosphate uridultransferase (EC 2.7.7.12)	
gap	993	39	39.95	nc	2	Giveeraldehvde-3-phosphate dehvdrogenase (FC 1 2 1 12)	
gapB	1,017		65.39	d	ĩ	Glyceraldehyde 3-phosphate dehydrogenase	
					-	, ,	

Nomo	Name Length Map position		:C	and and		
Name	(bp)	MLG ^a	M_P ^b	onc	Class-	Description
gcvH	390	63	64.85	nc	2	H-protein for glycine cleavage enzyme complex
gdhA	1,344	27	39.14	nc	1	Glutamate dehydrogenase
geneX	939		0.47	d	3	28K protein; function unknown
genF			93.86	ns		Function unknown
genX	978		94.40	i	1	Lysyl-tRNA synthetase homolog
ggt	1,740	76	77.51	d	1	γ -Glutamyltranspeptidase (EC 2.3.2.2)
gidA	1,884	84	84.81	d	1	Glucose-inhibited division; chromosome replication?
gidB	621	84	84.80	d	1	Glucose-inhibited division; chromosome replication?
gldE	2,388		3.10	d	1	Glucose dehydrogenase
glgA	1,434	76	77.12	d	1	Glycogen; glycogen synthase (EC 2.4.1.21)
glgB	2,187	76	77.21	d	1	Glycogen; 1,4- α -glucan branching enzyme (EC 2.4.1.18)
glgC	1,296	76	77.15	d	2	Glycogen; glucose-1-phosphate adenylyltransferase (EC 1.7.7.27)
glgP	2,430		77.06	d	1	Glycogen; α-glucan phosphorylase
glgS	201			nm	3	Glycogen; glycogen synthesis
glgX	1,524	76	77.19	d	1	Glycogen; function unknown
glnA	1,410	88	87.64	i	2	Glutamine; glutamine synthetase (EC 6.3.1.2)
glnB	339		57.03	nc	1	Glutamine; glutamine synthetase; P-II polypeptide
glnG	1,404	88	87.58	i	1	Glutamine; negative regulatory gene for glnA
glnH	744	18	18.25	i	2	Glutamine; periplasmic glutamine-binding protein
glnL	1,047	88	87.61	i	1	Glutamine; negative regulatory gene for glnA
glnP	657	18	18.23	i	2	Glutamine; glutamine high-affinity transport system; L-glutamine periplasmic
0						binding protein
glnQ	720	18	18.21	i	2	Glutamine; glutamine high-affinity transport system
glnŠ	1,653	16	15.32	nc	2	Glutamine; glutaminyl-tRNA synthetase (EC 6.1.1.18)
glpA	1,629	49	50.10	i	1	Glycerol phosphate; sn-glycerol-3-phosphate dehydrogenase (anaerobic), subunit
glpB	1,260	49	50.13	i	1	A Glycerol phosphate; <i>sn</i> -glycerol-3-phosphate dehydrogenase (anaerobic), subunit B
glpC	1,191	49	50.16	i	1	Glycerol phosphate; <i>sn</i> -glycerol-3-phosphate dehydrogenase (anaerobic), subunit C
glpD	1,512	75	76.93	d	1	Glycerol phosphate; <i>sn</i> -glycerol-3-phosphate dehydrogenase (aerobic)
glpE	393	75	76.97	i	1	Glycerol phosphate; glycogen phosphorylase
glpF	843	89	88.95	i	1	Glycerol phosphate; facilitated diffusion of glycerol
glpG	828	75	76.98	i	1	Glycerol phosphate; glycogen phosphorylase
glpK	1,509	89	88.91	i	2	Glycerol phosphate; glycerol kinase (EC 2.7.1.30)
glpQ	1,074	49	50.10	nc	1	Glycerol phosphate; glycerol-3-phosphate diesterase (EC 3.1.4.2)
gĺpŔ	897	75	77.00	i	1	Glycerol phosphate; regulatory gene; glycerol-3-phosphate repressor
glpT	1,356	49	50.07	nc	1	Glycerol phosphate; sn-glycerol-3-phosphate permease
gltA		16	16.25	ns		Glutamate; citrate synthase (EC 4.1.3.7)
gltB	4,545	70	72.50	i	1	Glutamate; glutamate synthase, large subunit
gltD	1,416	70	72.60	i	1	Glutamate; glutamate synthase, small subunit
gltI				ns		Glutamate; glutamate decarboxylase
gltP	1,314			nm	1	Glutamate; glutamate and aspartate carrier
gltS	1,206	82	82.65	d	1	Glutamate; glutamate permease
gltX	1,416	52	53.66	d	2	Glutamate; catalytic subunit for glutamyl-tRNA synthetase (EC 6.1.1.17)
gluS	1.827		84.56	d	2	Glucosamine phosphate isomerase
glvA	1,251	55	56.96	d	2	Glycine: serine hydroxymethyl transferase (EC 2.1.2.1)
glySa	912	80	80.47	d	2	Glycine; glycyl-tRNA synthetase, alpha subunit (EC 6.1.1.14)
glySb	2,070	80	80.42	d	2	Glycine; glycyl-tRNA synthetase, beta subunit (EC 6.1.1.14)
gnd	1.407	44	44.90	d	2	Gluconate-6-phosphate dehydrogenase (EC 1.1.1.44), decarboxylating
gor	1,353	77	77.96	nc	1	Glutathionine oxidoreductase (EC 1.6.4.2)
gnnA	1.329	85	85.65	i	ī	Guanosine pentaphosphatase phosphohydrolase
ent	459	6	5.68	d	$\overline{2}$	Guanine-hypoxanthine phosphoribosyltransferase (EC 2.4.2.8)
greA	475	•	71.93	d	2	Suppressor gene that restores growth of an RNA polymerase mutant at high temperature
groEL	1,644	94	94.32	d	2	Morphogenesis of phages; head assembly of phages T4 and lambda
groES	291	94	94.31	d	2	Morphogenesis of phages; head assembly of phages T4 and lambda; complementing the <i>ts</i> A6 mutation
grpE	591	57	58.86	d	2	Phage lambda replication; host DNA synthesis
grx	258	19	18.83	nc	1	Glutaredoxin
gshI	1,554	58	59.90	d	1	γ-Glutamylcysteine synthetase activity
gshII	948	58	65.81	i	1	Glutathione synthetase (GSH-II) (EC 6.3.2.2)
guaA	1,578	54	55.77	d	2	Guanine; GMP synthetase (EC 6.3.4.1)
guaB	1,467	54	55.80	d	2	Guanine; IMP dehydrogenase (EC 1.2.1.14)
guaC	1,041	3	2.44	nc	1	Guanine; GMP reductase (EC 1.6.6.8)
gutA	1,521	58	60.16	i	1	Sorbitol; D-glucitol-specific enzyme 11 of phosphotransferase system
gutB	372	58	60.19	i	1	Sorbitol; D-glucitol (sorbitol) specific enzyme III of phosphotransferase system

TABLE 1-Continued

Name Length	Length	Map j	position	or CC	Class ^d	Description	
Ivanie	(bp)	M_G ^a	M_P ^b	one	Class	Description	
outD	780	58	60.20	i	1	Sorbitol: glucitol (sorbitol)-6-phosphate debydrogenase (EC 1.1.1.140)	
outM	360	50	60.22	i	1	Sorbitol; guestol (sorbitol) o phosphate delydrogonase (20 1.1.1.1.40)	
gutO	669		60.19	nc	1	Sorbitol; function unknown	
gutR	774	58	60.23	i	1	Sorbitol; regulatory gene	
gyrA	2,634	48	49.78	d	2	Gyrase; DNA gyrase (EC 5.99.1.3), subunit A; resistance or sensitivity to nalidixic acid	
gyrB	2,412	83	83.72	d	2	Gyrase; DNA gyrase (EC 5.99.1.3), subunit B; resistance or sensitivity to coumermycin	
hag	1,497	43	42.66	d	2	Flagella; flagellar synthesis, filament structural protein; flagellar (H) antigen	
helD	2,055		22.02	d	1	DNA; DNA helicase; helicase IV	
hemA	1,257	27	27.09	d	1	Hemin; glutamyl-tRNA dehydrogenase	
hemB	972	8	8.47	i	1	Hemin; 5-aminolevulinate dehydratase (EC 4.2.1.24) activity	
hemC	939	86	86.20	i	1	Hemin; porphobilinogen deaminase (EC 4.3.1.18)	
hemD	738	86	86.18	i	1	Hemin; uroporphyrinogen III synthase (EC 4.2.1.75)	
hemX	1,179		86.16	1	1	Hemin; urogenIII methylase	
	1,041		60 60	nm	1	Function unknown	
hevA hevB	439		60.67	d d	1	Formate hydrogenhyase component	
heve	1 824		60.67	u d	1	Formate hydrogenbyase component	
hevD	921		60.65	d	1	Formate hydrogenlyase component	
hevE	1.707		60.57	ď	2	Formate hydrogenlyase component	
hevF	540		60.56	d	· 1	Formate hydrogenlyase component	
hevG	765		60.55	d	ī	Formate hydrogenlyase component	
hevH	408		60.54	d	1	Formate hydrogenlyase component	
hfq	309		94.93	d	2	Host factor-I protein for bacteriophage Q beta	
himA	300	37	38.39	d	1	Integration host factor, alpha subunit; site-specific recombination	
hip	279	20	20.71	d	3	Integration host factor beta subunit; site-specific recombination	
hipA	1,323	34	33.32	nc	3	Inhibition of peptidoglycan or DNA synthesis; frequency of persistence following inhibition of murein synthesis	
hisA	735	44	44.61	i	1	Histidine; N-5-amino-1,4-imidazolecarboxamide isomerase (EC 5.3.1.16)	
hisB	1,065	44	44.58	i	1	Histidine; imidazoleglycerol-phosphate dehydratase (EC 4.2.1.19) and histidinol phosphate phosphatase (EC 3.1.3.15)	
hisC	1,068	44	44.56	i	1	Histidine; histidinol-phosphate aminotransferase (EC 2.6.1.9)	
hisD	1,302	44	44.53	1	1	Histidine; L-histidinol: NAD ⁺ oxidoreductase (EC 1.1.1.23)	
nisr hisC	//4	44	44.03	1	1	Histidine; Cyclase	
nisG LieU	89/ 500	44	44.51	1	2	Histidine; ATP phosphoridosyltransierase (EC 2.4.2.17) Histidine, amine transformed	
hislF	500	44	44.00	i	1	Histidine: phosphoribosyl-AMP cyclobydrolase (EC 3.5.4.10); phosphoribosyl-	
hisI.	48		44 50	i	3	ATP pyrophosphatase (EC 3.6.1.3) Histidine: function unknown	
hisM	40	50	51.62	ns	5	Histidine: histidine transport	
hisP	771	50	51.63	nc	1	Histidine: histidine permease	
hisS	1,275	54	55.96	d	ī	Histidine; histidyl-tRNA synthetase (EC 6.1.1.21)	
hisT	810	50	51.87	d	1	Histidine; pseudouridylate synthetase I	
hlyT	489	87	86.94	i	1	Rough; lipopolysaccharide core biosynthesis; positive regulation of production of glucosyltransferase; transcriptional activator of hemolysin synthesis and secretion	
hmp	1,191		57.00	nc	1	HMP hemoprotein	
hns	414	6	27.70	i	2	DNA-binding protein; histonelike protein HLP-II (HU, BH2, HD, NS)	
hsdM	1,587	99	98.76	i	1	Host specificity; host modification; DNA methylase M	
hsak	3,270	99	98.80	1	1	Host specificity; host restriction; endonuclease R	
nsas htmG	1,392	99	98./3	1	3	Host specificity; specificity determinant for <i>hsaM</i> and <i>hsaR</i>	
htpB	855	76	77 83	d	2	EXAMPLE A SHOCK PIOLEIII CO2.3 BNA polymerase (EC 2 7 7 6) c^{32} subunity regulatory gape for	
htnX	882	70	40.93	đ	1	proteins induced at high temperatures	
htrA	1.473		3.89	d	2	Coding for 51-kDa protein: a σ^{32} -independent mechanism of heat-inducible	
htrB	921		23.98	i	-	transcription	
htrP	759		68.10	nc	2	Function unknown	
hupA	270		90.68	nc	2	DNA-binding protein; histonelike protein HU-2	
hupB	270	10	10.03	d	2	Histonelike protein HU-1; DNA-binding protein	
hyaA	1,119		22.18	d	1	Hydrogen; hydrogenase isoenzyme 1, small subunit	
hyaB	1,794		22.21	d	1	Hydrogen; hydrogenase isoenzyme 1, large subunit	
hyaC	708		22.25	d	1	Hydrogen; function unknown	
nyaD huaE	200		22.26	D	1	Hydrogen; function unknown	
пуаЕ	399		22.21	d	T	riyarogen; function unknown	

	TA	BLE	1-Cc	ontinued
--	----	-----	------	----------

	Length	Map j	position		~ 1	
Name	(bp)	M_G ^a	M_P ^b	oriC ^e C	Class ^a	Description
hvaF	858		22.28	d	1	Hydrogen; function unknown
hydG	1,314		90.74	nc	1	Hydrogenase activity
ĥydH	,		90.73	ns		Hydrogenase activity
hypA	351		60.68	i	3	Hydrogen; hydrogenase isoenzyme
hypB	873		60.69	i	1	Hydrogen; hydrogenase isoenzyme
hypC	273		60.71	i	1	Hydrogen; hydrogenase isoenzyme
hypD	1,122		60.71	i	1	Hydrogen; hydrogenase isoenzyme
hypE	969		60.74	i	1	Hydrogen; hydrogenase isoenzyme
iap	1,038	59	61.27	i	3	Altered isozyme pattern of alkaline phosphatase
icd	1,251	26	25.60	d	2	Isocitrate dehydrogenase, NADP ⁺ specific (EC 1.1.1.42)
iciA	894		64.91	nc	1	Chromosome initiation inhibitor
icl R	825	91	91.17	i	1	Acetate; regulatory gene for aceBA operon; repressor protein
ileR	303	100	99.85	nc	1	Isoleucine; regulatory gene; negative regulatory of thr and ilv operons
ileS		0	0.56	ns		Isoleucine; isoleucyl-tRNA synthetase (EC 6.1.1.5)
ilvA	1,542	85	85.47	d	1	Isoleucine-valine; threonine deaminase (EC 4.2.1.16)
ilvB	1,686	83	83.15	d	1	Isoleucine-valine; acetohydroxy acid synthase I (EC 4.1.3.18), valine-sensitive, large subunit
ilvC	1,473	85	85.52	d	2	Isoleucine-valine; ketol-acid reductoisomerase (EC 1.1.1.86)
ilvD	1,707	85	85.43	d	2	Isoleucine-valine; dihydroxyacid dehydratase (EC 4.2.1.9)
ilvE	927	85	85.41	d	2	Isoleucine valine; branched-chain amino acid aminotransferase (EC 2.6.1.42)
ilvG	1,644	85	85.36	d	1	Isoleucine-valine; acetohydroxy acid synthase II (EC 4.1.3.18) valine insensitive, large subunit
ilvH	492	2	1.90	d	1	Isoleucine-valine; acetohydroxy acid synthase III (EC 4.1.3.18) valine sensitive, small subunit
ilvI	1,701	2	1.87	d	1	Isoleucine-valine; acetohydroxy acid synthase II (EC 4.1.3.18) valine insensitive, large subunit
ih/L	96		85.36	d	3	Isoleucine-valine: function unknown
ilvM	258	85	85.40	d	3	Isoleucine-valine; acetohydroxy acid synthase II (EC 4.1.3.18), valine insensitive,
ilvN	288	83	83.14	d	1	Isoleucine-valine; acetohydroxy acid synthase II (EC 4.1.3.18) valine sensitive,
ilvY	894	85	85.50	i	1	Isoleucine-valine; positive regulatory gene for <i>ilvC</i>
infA	183	20	19.92	i	3	Protein chain initiation factor 1 (IF1)
infB	2,673	69	71.61	d	2	Protein chain initiation factor 2
infC	543	38	38.50	d	1	Protein chain initiation factor 3
IŠ3	1,164		12.24	i	3	Insertion sequence; integrase
IS30	1,149			nm	3	Insertion sequence; transposase
ispA	900			nm	1	Farnesyl diphosphate synthase (EC 2.5.1.1)
katE	2,262	38	38.80	i	1	Catalase; biosynthesis of catalase hydroperoxidase HPII
katF	1,086	59	61.05	nc	1	Catalase; biosynthesis of catalase hydroperoxidase HPII (III) and exonuclease III; regulatory gene
katG	2,181	89	89.28	d	2	Catalase; catalase-peroxidase hydroperoxidase HPI (I), structural gene
kbl	1.194	81	81.87	d	1	2-Amino-3-ketobutyrate-CoA ligase (EC 2.3.1.29) (glycine acetyltransferase)
kdpA	1,674	16	15.71	i	1	Potassium dependence; high-affinity potassium transport system; probably K ⁺ - stimulated ATPase
kdpB	2.049	16	15.67	i	1	Potassium dependence: high-affinity potassium transport system
kdpC	573	16	15.66	i	1	Potassium dependence: high-affinity potassium transport system
kdpD	2,685	16	15.60	i	1	Potassium dependence; high-affinity potassium transport system; regulatory gene
kdpE	678		15.59	i	1	Potassium dependence; high-affinity potassium transport system; cytoplasmic protein
kdsA	855	27	27.18	d	2	3-Deoxy-D-manno-octulosonic acid 8-phosphate synthase
kdsB	747	85	85.21	nc	1	CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyltransferase
kdtA	1.278		82.18	d	ī	KDO transferase
kefC	1,863	1	1.01	nc	1	K^+ efflux; NEM-activable K^+/H^+ antiporter; glutathione regulated potassium efflux system
ksgA	819	1	1.10	i	1	Kasugamycin; S-adenosylmethionine-6-N', N'-adenosyl dimethyltransferase (16S rRNA)
lacA	612	8	7.89	i	3	Lactose; galactoside acetyltransferase (EC 2.3.1.18)
lacI	1,083	8	8.00	i	1	Lactose; regulatory gene; repressor protein of lac operon
lacY	1,254	8	7.90	i	1	Lactose; galactoside permease (M protein)
lacZ	3,075	8	7.93	i	1	Lactose; B-D-galactosidase (EC 3.2.1.23)
lamB	1,338	92	91.69	d	2	Lambda; phage lambda receptor protein; maltose high-affinity uptake system
lepA	1,797	55	57.39	d	2	GTP-binding membrane protein; function unknown
lepB	972	55	57.37	d	1	Leader peptidase (signal peptidase I)
leuA		2	1.82	ns		Leucine; α -isopropylmalate synthase (EC 4.1.3.12)
leuO	1,050		1.84	d	3	Leucine; function unknown
leuS	2,580	15	14.60	i	2	Leucine; leucyl-tRNA synthetase (EC 6.1.1.14)

TABLE 1-Continued

Nomo	Length	Map j	position	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Closed	Description
INAME	(bp)	M_G ^a	M_P ^b	onco	Class	Description
lexA	606	92	91.77	nc	1	Resistance or sensitivity to X rays and UV; regulatory gene of SOS operon
lig	2,016	52	53.86	d	1	DNA; DNA ligase
lip	846	15	15.09	nc	2	Lipoate; synthesis of α -(+)-lipoic acid; lipoic acid synthetase
lit	894	25	25.70	nc	3	Phage T4 late gene expression; locus of element e14
livF	714	76	77.68	d	1	Leucine, isoleucine, and valine; high-affinity branched-chain amino acid transport system
livG	768	76	77.69	d	1	Leucine, isoleucine, and valine; high-affinity branched-chain amino acid transport system: membrane component
livH	927	76	77.73	d	1	Leucine, isoleucine, and valine; high-affinity branched-chain amino acid transport
liv J	1,104	76	77.80	d	2	Leucine, isoleucine, and valine; periplasmic binding protein; high-affinity
livK	1,110	76	77.76	d	1	Leucine, isoleucine, and valine; leucine-specific periplasmic binding protein; high-
livM	1,275	76	77.71	d	1	Leucine, isoleucine, and valine; high-affinity branched-chain amino acid transport
livR	501	20	20.13	nc	1	Leucine, isoleucine, and valine; high-affinity branched-chain amino acid transport
Ind	1 425	2	2 76	d	r	system, regulatory gene, repressor protein
ipu InnX	1,423	36	2.70	u nc	2	Lipuannue denydiogenase (IVADA) (EC 1.0.4.3) Murein linonrotein structural gene
ippA Inr 4	780	30 A	J7.02 1 55	d	1	UDP. Macetylelycosamine acetyltransferase: linid A biosynthesis protein
ipsza InvR	1 140	4	4.55	d	1	Linid A disaccharide synthese
lm	495	-	20.08	nc	3	Lipiu A disacchanice synthase
lsn	495	1	0.57	d	1	Prolinonrotein signal pentidase (SPaseII)
luxH	654	•	68 63	ď	1	Function unknown
lvsA	1.263	61	63.38	d	1	Lysine: diaminopimelate decarboxylase (EC 4.1.1.20)
lvsC	1.350	91	91.34	i	ī	Lysine; aspartokinase III
lvsP	1.470		47.82	d	2	Lysine: lysine specific permease
İ ysR	936	61	63.41	i	1	Lysine; regulatory gene: activator of <i>lysA</i>
ĺysS	1,518	62	64.59	d	2	Lysine; lysyl-tRNA synthetase constitutive; suppressor of ColE1 mutation in primer RNA
lysU	1,506	94	93.93	i	1	Lysine; lysyl-tRNA synthetase, inductible
malE	1,188	92	91.63	i	2	Maltose; periplamic maltose-binding protein; subtrate recognition for transport and chemotaxis
malF	1,542	92	91.60	i	1	Maltose; maltose transport; cytoplasmic membrane protein
malG	885	92	91.58	i	2	Maltose; active transport of maltose and maltodextrins
malI	975	36	36.34	nc	1	Maltose; production of oligosaccharide, probably glucose polymer
malJ	978		36.37	d	1	Maltose; function unknown
malK	1,179	92	91.66	d	1	Maltose; maltose permeation
malP	2,391	75	76.72	d	1	Maltose; maltodextrin phosphorylase (EC 2.4.1.1)
malQ	2,085	75	76.67	d	1	Maltose; amylomaltase (EC 2.4.1.25)
malS	2,031	80	80.73	i	1	Maltose; α -amylase precursor (EC 3.2.1.1)
malT	2,706	75	76.78	1	1	Maltose; positive regulatory gene for mal regulon
malX	1,593		36.39	i	1	Maltose; function unknown
malY	1,1/3		36.43	1	1	Maltose; function unknown
maiz	1,815	26	9.20	a	1	Maltose; α -1,4-D-glucosidase (EC 3.2.1.20)
manA	1,1/0	30	30.14	1	1	Mannose; mannose-o-phosphate isomerase (EC 5.3.1.8)
map mar 1	193	25	4.20	nc	1	Restriction of DNA at 5 method antoning residues hours of al4
mor	1 205	23	23.94	inc i	2	Restriction of DNA at 5-methylaytosine residues; locus of e14
mer	1,393	90	90.00	;	3	Cutosine specific endonucleose
mcrD	948	90	98.63	nc	1	Restriction of DNA: function unknown
mdh	936	70	73 11	d	2	Malate dehydrogenase (FC 1 1 1 37)
melA	1.353	93	93.71	d	ĩ	Malate denyarogenase (EC 3 2 1 22)
melB	1.410	93	93.74	d	1	Melibiose: thiomethyl galactoside permease II
menB	858	49	50.57	d	2	Menaguinone: 1.4-dihydroxy-2-naphthoate (DHNA) synthase
menD	1,386	49	50.64	d	1	Menaquinone; menaquinone biosynthesis; 2-succinyl-6-hydroxy-2,4- cyclohexadiene-1-carboxylate synthase
mepA	822	50	52.11	d	1	Penicillin-insensitive murein DD-endopeptidase
metA	927	91	90.98	nc	1	Methionine; homoserine transsuccinylase (EC 2.3.1.46)
metB	1,161	89	89.18	d	1	Methionine; cystathionine γ -synthase (EC 4.2.99.9)
metC	1,188	65	67.94	i	1	Methionine; cystathionine γ -lyase (EC 4.4.1.1)
metE		86	86.69	ns		Methionine; tetrahydropteroyltriglutamate methyltransferase (EC 2.1.1.14)
metF	888	89	89.25	d	1	Methionine; 5,10-methylenetetrahydrofolate reductase (EC 1.1.1.68)
metG	2,034	46	46.67	i	2	Methionine; methionyl-tRNA synthetase
metH	3,600	91	91.19	d	1	Methionine; vitamin B_{12} -dependent homocysteine- N^5 -methyl tetrahydrofolate transmethylase

Name Length Map position	Devisión					
Name	(bp)	MLG ^a	M_P ^b	oric	Class"	Description
metJ	456	89	89.17	i	1	Methionine; regulatory gene : repressor of metF
metK	1,155	64	65.71	i	2	Methionine; methionine adenosyltransferase (EC 2.5.1.6)
metL	2,433	89	89.21	d	1	Methionine; aspartokinase II (EC 2.7.2.4), homoserine dehydrogenase II (EC 1.1.1.3)
metR	954	86	86.67	nc	1	Methionine; regulatory gene of metE and metH
mglA		46	47.63	ns		Methylgalactoside; methylgalactoside transport and galactose taxis; cytoplasmic membrane protein
mølB	999	46	47.61	i	2	Methylgalactoside: galactose-binding protein: receptor for galactose taxis
molC	1.011	46	47.66	i	ĩ	Methylgalactoside: methyl-galactoside transport and galactose taxis
miaA	951	95	94.91	d	ī	Δ^2 -isopentenyl PP _i transferase; 2-methylthio- N^6 -isopentyladenosine
minC	696	26	26.26	i	1	Formation of minute cells containing no DNA; proper placement of the division
minD	813	26	26.25	i	1	Formation of minute cells containing no DNA; proper placement of the division
minE	267	26	26.24	i	1	Formation of minute cells containing no DNA; proper placement of the division
mald	018	02	01 73	A	1	Sopium Maltose: probably for an exported protein: periplasmic protein
molA mot A	910	42	42 12	u d	1	Matiose, probably for an exported protein, periprasime protein
molA motP	000	42	42.12	u d	1	Motility, chemotactic response, flagellar paralysis
motB	927	42	42.10	a	1	This same scenes to be involved in the control of microsin D17 synthesis
mprA	531	71	39.91 72.49	nc	1	This gene seems to be involved in the control of microcin B17 synthesis
mreB		/1	/3.48	ns		Cell snape; sensitivity to antibiotics
mreC	1,104	71	73.47	d	1	Cell shape; sensitivity to antibiotics
mreD	489	71	73.46	d	1	Cell shape; sensitivity to antibiotics
mrp	1,110	00	46.65	d	1	putative ATPase
mrr	912	99	98.87	d	1	Restriction of methylated adenine
msbB	972		41.41	nc	1	Multicopy suppressor of null mutations in the high-temperature requirement gene htrB; membrane-bound lytic transglycosylase
msyB	372		23.94	i	3	Multicopy suppressor of secY24 mutation
mtlA	1,911	81	81.46	i	2	Mannitol; mannitol-specific enzyme II of phosphotransferase system
mtlD	1,059	81	81.51	i	3	Mannitol; mannitol-1-phosphate dehydrogenase (EC 1.1.1.17)
mtr	1,245	69	71.43	d	1	Methyltryptophan; resistance to 5-methyltryptophan; tryptophan-specific permease
mukB	4,605		20.95	d	1	Protein involved in chromosome partitioning
murC	1,476	2	2.19	d	1	Murein; UDP-N-acetylmuramate : L-alanine ligase
murD	1,317	2	2.11	d	1	Murein; UDP-N-acetylmuramoyl-L-alanine; D-glutamate ligase
murE	1,488	2	2.03	d	1	Murein; meso-diaminopimelate-adding enzyme; UDP-MurNac-tripeptide synthetase
murF	1,359	2	2.06	d	1	Murein; D-alanyl:D-alanine adding enzyme
murG	1,044	2	2.17	d	1	Murein; murein or envelope biosynthesis
murX	1,083		2.09	d	1	Murein; function unknown
mutD	729	5	5.26	d	1	Mutator and DNA; DNA polymerase III holoenzyme, epsilon subunit
mutH	687	61	63.22	nc	3	Mutator; increased rates of frameshift and base substitution mutations; methyl- directed mismatch repair
mutL.	1.848	95	94.87	d	1	Mutator: methyl-directed mismatch repair
mutS	2.562	59	60.83	i	1	Mutator: methyl-directed mismatch repair
mutT	390	2	2.41	d	1	Mutator: high rate of AT-GC transversions
mutY	1.053	64	66.05	i	1	Mutator: adenine glycosylase: $GC \rightarrow TA$ transversions
mvrA	807	7	6.91	nc	1	Methyl viologen resistance
mvrC	333		12.29	nc	3	Membrane protein (predicted by hydropathy); ethidium bromide efflux; ethidium bromide resistance
nadA	840	17	16.85	nc	3	NAD: quinolinate synthetase. A protein
nadB	1.620	56	57.57	i	1	NAD: quinolinate synthetase. B protein
nagA	1,149	16	15.25	i	ī	N-Acetylglucosamine; N-acetylglucosamine-6-phosphate deacetylase (EC 3 5 1 25)
naaR	801	16	15 28	i	2	N-Acetylghicosamine: glucosamine-6-nhosnhate deaminase
nag	1 221	16	15.20	i	ĩ	N-Acetylglucosamine; function unknown
nagD	753	16	15 21	i	ī	N-Acetylglucosamine; function unknown
nagE	1,947	16	15.30	d	2	N-Acetylglucosamine; N-acetylglucosamine-specific enzyme II of
narC	2 717	77	27 12	А	2	Nitrate reductase: nitrate reductase (FC 1 7 00 4) alpha subunit
nuro narH	3,111	27	21.43	u d	2	Nitrate reductase: nitrate reductase (EC $1.7.7.4$), alpha subunit
narI	675	27	27.51	d	2	Nitrate reductase; nitrate reductase (EC 1.7.99.4), gamma subunit; cytochrome bNR structural gene
	700	27	27 55	A	1	Nitrota raductosa: nitrota raductosa (EC 1.7.00.4), dalta subunit
narJ narV	1 202	27	21.33	u d	1	Nitrate reductase: regulatory gene
nurK	1,300	27	21.37 21 21	u ;	1	Nitrate reductase: regulatory gene
nurL	040	21	21.34	1	T	Tainate reductase, regulatory gene

TABLE 1-Continued

	Length	Map	position			
Name	(bp)	M_G ^a	M_P ^b	oriC ^c	Class ^a	Description
narU	1,386		33.05	d	1	Nitrate reductase; function unknown
narV	678		32.91	i	1	Nitrate reductase; function unknown
narW	693	27	32.92	1	1	Nitrate reductase; function unknown
narX marV	1,/94	27	27.35	1	1	Nitrate reductase; regulatory gene
nar7	3 774	33	32.94	1 i	1	Nitrate reductase: cruntic gene(s) encoding a second nitrate reductase
ndh	1 302	22	25 10	ď	1	Respiratory NADH dehydrogenase
nfo	858	47	47.89	i	1	Endonuclease IV
nirB	2,517	74	75.78	nc	2	Nitrate reductase; NADH-nitrate oxidoreductase (EC 1.6.6.4) apoprotein, structural gene
nirC	807	26	75.84	nc	1	Nitrate reductase; NADH-nitrite reductase (EC 1.6.6.4) activity
nirD	324		75.83	nc	1	Nitrate reductase; NADH-nitrite reductase (EC 1.6.6.4) activity
nlpA	819			nm	1	Lipoprotein-28
nlpB	429		55.05	d	2	Lipoprotein-34
nmpC	1,125	13	12.46	d	2	New membrane protein; production of an outer membrane porin protein
npi mod A	2 221	40	/2.88	nc :	1	N-acetylneuraminate lyase Bibosueleoside dinhoanhete reductees (EC 1 17 4 1), subunit B1
nruA nrdB	2,331	49	49.92	1	2	Ribonucleoside diphosphate reductase (EC 1.17.4.1); subunit B1
nth	636	36	36.81	nc	1	"Fndonuclease III": DNA glycosylase and phosphoric monoester lyase
ntr	825	50	39.01	nc	î	Nitrogen fixation
nupG	1.254	64	66.11	i	2	Transport of nucleosides
nusA	1,485	69	71.67	d	2	Transcription termination; L factor
nusB	420	10	10.40	i	2	Transcription termination; L factor
nusG	546		90.21	d	2	Transcription termination; L factor
ogr	216			nm	3	Positive regulator of phage P2 late gene transcription
ogt	513		30.01	i	1	DNA repair; O ^o -alkylguanine-DNA-alkyltransferase
ompA	1,038	22	21.90	i	2	Outer membrane protein; outer membrane protein 3a, structural gene
ompC	1,104	48	49.28	a	2	Outer membrane protein; outer membrane protein 1b, structural gene
ompr	1,089	21 75	21.18	1 d	2	Outer membrane protein; outer membrane protein 1a, structural gene
ompT	055 051	13	12 66	i	3	Outer membrane protein; outer membrane protein 3b a protease
onnA	1.632	28	27.88	nc	1	Oligopentide transport: periplasmic hinding protein
osmB	219		28.83	nc	1	Lipoprotein: osmotically inducible protein
osmC	417		32.77	nc	1	Osmotically inducible protein
oxyR	918		89.79	d	1	Morphology and autoaggregation control protein
P-14	387		99.18	i	3	Function unknown
P-18	498		99.14	i	1	Function unknown
pabA	564	74	75.46	d	1	<i>p</i> -Aminobenzoate; <i>p</i> -aminobenzoate synthetase, Col
pabB	1,362	40	40.58	nc	1	<i>p</i> -Aminobenzoate; <i>p</i> -aminobenzoate synthetase, Coll
pabe	510		16.90	nm	3	<i>p</i> -Aminobenzoale; 4-amino-4-deoxychorismale lyase
pui nanF	1 449	71	73 64	i	2	Pantothenate: nantothenate nermease
pant	2,193	/1	68.19	d	1	DNA: topoisomerase IV subunit
parE	1,806		68.41	d	1	DNA; topoisomerase IV subunit
patA	1,137	89	15.96	nc	1	Putrescine aminotransferase activity; transport protein
patB	828	89	15.98	nc	1	Putrescine aminotransferase activity; transport protein
patC	795	89	16.00	nc	1	Putrescine aminotransferase activity; transport protein
patD	1,047	89	16.02	nc	2	Putrescine aminotransferase activity; transport protein
patE	1,320	15	15.50	1	1	Putrescine transport protein
popA	1,899	12	14.40	1	1	Cell snape; penicillin-binding protein 2 Destides have surtheteen contain formation penicillin his diag protein 2
popb pck4	1,707	75	76 38	i	2	Phosphoenologycan synthetase; septum formation; peniciliin-oinding protein 5
рска пст	627	15	61 10	nc	1	I logspartyl protein carboxyl methyltransferase type II
ndxA	987	1	1.12	i	1	Pyridoxine: requirement
pdxB	1,137	50	51.91	d	1	Pyridoxine; placement of 5.5' and 6' carbons into pyridine ring of pyridoxine
pdxJ	732	56	57.30	d	1	Pyridoxine; requirement; pyridoxal phosphate biosynthesis
pepD	1,458	6	5.66	nc	1	Peptides; peptidase D, a dipeptidase
pepN	2,613	21	21.29	d	1	Peptides; aminopeptidase N
pepP	1,326		64.31	nc	1	Peptides; proline amino peptidase II
pepQ	1,938	00	87.09	b	1	repuides; proline dipeptidase
рјка nfkP	900	89 20	00.12 29.42	a ;	2	0-phosphofructokinase I (EC 2./.1.11)
рјљ nfl	2 280	50 20	20.03	i	2	Level of o-phospholituciokinase ii; suppressor of <i>pjKA</i> Purilyate formate lyase
pflCo	738	20	20.42	i	1	Pyruvate formate-lyase-activating enzyme
pfs	660	_0	3.84	i	$\overline{2}$	Function unknown
pga	2,541	31	31.68	i	3	Penicillin G acylase; phenylacetate degradation
pgi	1,647	91	91.38	d	2	Glucose phosphate isomerase (EC 5.3.1.9)

Nome	Length	Map position			Classed	Description
Name	(bp)	M_G ^a	M_P ^b	onc	Class-	Description
pgk	1,161	63	65.37	d	2	Phosphoglycerate kinase (EC 2.7.2.3)
pgm		15	15.05	ns		Phosphoglucomutase (EC 2.7.5.1)
pgpA	504	10	9.69	nc	3	Phosphatidylglycerophosphate phosphatase, membrane bound
pgsA	651	42	42.45	d	1	Phosphatidylglycerophosphate synthetase (EC 2.7.8.5)
pheA	1,158	57	58.17	nc	1	Phenylalanine; chorismate mutase-P-prephenate dehydrogenase
pheP	1,377	13	12.81	nc	1	Phenylalanine; associated with the phenylalanine-specific transport system;
pheS	996	37	38.45	d	2	Phenylalanine; phenylalanyl-tRNA synthetase, alpha subunit (EC 6.1.1.20)
pheT	2,388	37	38.40	d	2	Phenylalanine; phenylalanyl-tRNA synthetase, beta subunit (EC 6.1.1.20)
phnA	336	92	93.37	i	2	Alkylphosphonate uptake; psiD locus
phnB	444	92	93.35	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnC	789	92	93.33	i	1	Alkylphosphonate uptake; psiD locus
phnD	1,017	92	93.31	i	1	Alkylphosphonate uptake; psiD locus; carbon-phosphorus lyase
phnE	831	92	93.29	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnF	726	92	93.27	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnG	453	92	93.26	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnH	585	92	93.25	i	1	Alkylphosphonate uptake; psiD locus
phnI	1,065	92	93.23	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnJ	846	92	93.21	i	1	Alkylphosphonate uptake; psiD locus
phnK	759	92	93.19	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnL	681	92	93.18	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnM	1,137	92	93.15	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnN	558	92	93.14	i	1	Alkylphosphonate uptake; <i>psiD</i> locus
phnO	435	92	93.13	1	1	Alkylphosphonate uptake; psiD locus
phnP	759	92	93.12	1	1	Alkylphosphonate uptake; <i>psiD</i> locus
pnnQ	300	92	95.11	1	1	Alkylphosphonate uptake, <i>psiD</i> locus
pnoA mhoB	1,410	9	0.74	u d	1	Phosphate, alkaline phosphatase (EC 5.1.5.1)
phoE	1 053	6	5 73	i	1	Phosphate: outer membrane protein e structural gene
phoL phoM	1 425	100	99.89	ď	1	Phosphate: positive regulatory gene for <i>pho</i> regulon
nhoP	672	100	25.50	i	î	Phosphate: regulator protein
phoO	1,461		25.46	i	ī	Phosphate; sensor protein
phoR	1,293	9	9.10	d	1	Phosphate; positive and negative regulatory gene for <i>pho</i> regulon
phoS	1,041	84	84.53	d	2	Phosphate; periplasmic phosphate-binding protein
phoU	726	84	84.45	d	2	Phosphate; high-affinity phosphate-specific transport system; regulatory gene
phoW	960	84	84.51	d	2	Phosphate; periplasmic phosphate-binding protein; high-affinity phosphate-specific transport system
phr	1,419	16	16.07	nc	1	Photoreactivation; deoxyribodipyrimidine photolyase (EC 4.1.99.3)
pilin	852	•		nm	3	Pili?
pin	552	26	25.93	d	3	Inversion of adjacent DNA; invertible-P region of the excisable element e14
pk-1	1,389	06	96 53	nm	2	Pyruvate kinase I
plaA mldP	8/0	80 86	80.52 86 70	a	1	Lysophospholingse I 2
piaD plaB	2 424	00	00.70	i	1	Phospholinid synthesis: dycerolphosphate acultransferase activity
pist nlsC	2,424	92	68 17	ď	1	Phospholinid synthesis: 1-acylglycerol-3-phosphate acyltransferase
nmhA	1.353		96.16	nc	ī	Involved in the production of antibiotic MccB17
nmi	1.371		15.01	i	ī	Mannose: phosphomanose isomerase
pncB	1,203	21	21.25	i	1	Pyridine nucleotide cycle; nicotinate phosphoribosyltransferase (EC 2.4.2.11)
pnp	2,136	69	71.52	d	2	Polynucleotide phosphorylase (EC 2.7.7.8)
pntA	1,506	35	35.91	d	1	Pyridine nucleotide transhydrogenase (EC 1.6.1.1), alpha subunit
pntB	1,386	35	35.88	d	1	Pyridine nucleotide transhydrogenase (EC 1.6.1.1), beta subunit
polA	2,787	87	87.44	d	1	Polymerase; DNA polymerase I (EC 2.7.7.7)
polB	2,307	2	1.35	i	1	Polymerase; DNA polymerase II (EC 2.7.7.7)
ponA	2,550	75	76.17	1	1	Murein; peptidoglycan synthetase; cell wall synthesis; penicillin-binding protein 1A
ponB	2,532	75	3.54	d	1	Murein; peptidoglycan synthetase; cell wall synthesis; penicillin-binding protein 1Bs
рорС	1,281	4	3.72	i	1	Porphyrin; synthesis of δ -aminolevulinate; glutamate-1-semialdehyde aminotransferase
poxB	1,716	19	19.58	nc	1	Pyruvate oxidase (EC 1.2.2.2), structural gene; cytochrome b oxidoreductase
ppc	2,649	89	89.62	1	1	Phosphoenolpyruvate; phosphoenolpyruvate carboxylase (EC 4.1.1.31)
ppţA	627		75 40	nm	2	Required for the formation of correctly folded alcaline phosphatase; formation of disulfide bridges
ppiA	573		75.49	a	2	repugyi-prolyl cis-trans isomerase
рріВ	495		12.01	nc	2	repugy-protyl <i>cis-trans</i> isomerase
pps	2,382	31	30.10	u	2	r nosphoenolpyruvale, phosphoenolpyruvale synthase (EC 2.1.9.2)

TABLE 1-Continued

Name	Length	Map position		ani Ce	Class ^d	Description
INAILIE	(bp)	M_G ^a	MLP ^b	onc	Class	Description
prc	2,049		40.96	d	1	Involved in the C-terminal processing of penicillin-binding protein 3; tail-specific protease
prfA	972	27	27.12	d	1	Protein release factor 1
prfB	804	62	64.62	d	2	Protein release factor 2
priA	2,199		89.08	i	1	Prisomal protein n'
priC	528		10.62	nc	1	Prisomal replication protein n'
prlF	336		70.98	nc	1	Suppressor of the <i>htrA</i> null phenotype; protein export?
proA	1,221	6	5.78	d	1	Proline; γ -glutamyl phosphate reductase (EC 1.2.1.41)
proB	1,101	6	5.76	d	1	Proline; γ-glutamyl kinase (EC 2.7.2.11)
proC	810	9	8.82	d	1	Proline; pyrroline-5-carboxylate reductase (EC 1.5.1.2)
proS	1,551	5	4.85	i	2	Proline; prolyl-tRNA synthetase (EC 1.1.1.15); DNA and RNA biosynthesis factor
proV	1,203	57	59.68	i	1	Proline; High-affinity transport system for glycine betaine and proline
proW	1,065	57	59.70	i	1	Proline; High-affinity transport system for glycine betaine and proline
proX	993		59.72	i	1	Proline; function unknown
prrB	1,203	31	30.82	i	3	γ-Aminobutyraldehyde (pyrroline) dehydrogenase activity
prrC	1,188	31	30.79	i	3	γ-Aminobutyraldehyde (pyrroline) dehydrogenase activity
prrD	939	31	30.77	i	1	γ-Aminobutyraldehyde (pyrroline) dehydrogenase activity
prs	945	26	27.03	i	2	Phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1)
psd	969	95	94.70	i	2	Phosphatidylserine decarboxylase
pspA	669		31.04	nc	1	Stress-induced psp operon
pspB	225		31.06	nc	1	Stress-induced psp operon
pspC	360		31.06	nc	1	Stress-induced psp operon
pspD	222		31.07	nc	3	Stress-induced psp operon
pspE	315		31.08	nc	1	Stress-induced psp operon
pss	1,359	56	57.78	nc	1	Phosphatidylserine synthetase (EC 2.7.8.8)
pstA	891	84	84.49	d	2	High-affinity phosphate-specific transport system
pstB	774	84	84.47	d	2	High-affinity phosphate-specific transport system; cytoplasmic membrane protein?
pth	585	26	26.79	nc	1	Peptidyl-tRNA hydrolase
ptr	2,886	61	62.93	d	1	Protease III
ptsG	1,434	25	24.92	d	2	Phosphotransferase system; glucose phosphotransferase enzyme II
ptsH	258	52	53.99	d	2	Phosphotransferase system; phosphohistidinoprotein-hexose phosphotransferase (EC 2.7.1.69)
ptsI	1,728	52	53.95	d	2	Phosphotransferase system; phosphotransferase system enzyme I
ptsL	972	40	40.72	i	1	Mannose; mannose phosphotransferase enzyme III-Man; permease
ptsM	861	40	40.76	i	2	Mannose; mannose phosphotransferase enzyme II-M-Man; permease
ptsP	801	40	40.74	i	2	Mannose; mannose phosphotransferase enzyme II-P-Man; permease; penetration of phage lambda
purA	1,299	95	95.03	nc	2	Purine; adenylosuccinate synthetase (EC 6.3.4.4)
purB	1,371	25	25.51	i	2	Purine; adenylosuccinate lyase (EC 4.3.2.2)
purC	711	53	55.03	d	2	Purine; 5'-phosphoribosyl-5-aminoimidazole-4-N-succinocarboxamide synthetase (EC 6.3.2.6)
purD	1,287	90	90.78	i	1	Purine; phosphoribosyl glycineamide synthetase (EC 6.3.4.13)
purE	510	12	11.96	d	2	Purine; 5'-phosphoribosyl-5-amino-4-imidazole carboxylase I (EC 4.1.1.21), catalytic subunit
purF	1,515	50	51.74	d	1	Purine; amidophosphoribosyl transferase (EC 2.4.2.14)
purH	1,587	90	90.81	i	2	Purine; phosphoribosyl aminoimidazole carboxamide formyltransferase (EC 2.1.2.3)
purK	1,068	12	11.97	d	1	Purine; 5'-phosphoribosyl-5-amino-4-imidazole carboxylase II (EC 4.1.1.21), CO2 fixing subunit
purL	3,888	55	57.11	d	2	Purine; phosphoribosyl formylglycine amide synthetase (EC 6.3.5.3); homologous to <i>purG</i> of <i>S. typhimurium</i>
purM	1,038	54	55.56	i	1	Purine; 5'-phosphoribosyl-5-aminoimidazole synthetase (EC 6.3.3.1); homologous to <i>purI</i> of <i>S. typhimurium</i>
purN purR	1,023	54 36	55.58 37.33	nc	1	Purine; 5 -phosphoridosyl glycinamide transformylase (EC 2.1.2.2) Purine; purine nucleotide synthesis repressor protein; regulatory gene of <i>pur</i> regulon
putA		23	23.18	ns		Proline utilization; proline dehydrogenase (EC 1.5.99.8)
putP	1,506	23	23.19	d	1	Proline utilization; major proline permease
pykA	1,443		41.19	nc	2	Pyruvate kinase type II
pyrB	936	97	96.34	i	1	Pyrimidine; aspartate carbamoytransferase (EC 2.1.3.2) catalytic subunit
pyrC	1,044	24	24.10	i	1	Pyrimidine; dihydroorotase (EC 3.5.2.3)
pyrD	1,008	21	21.58	d	1	Pyrimidine; dihydroorotate oxidase (EC 1.3.3.1)
pyrE	636	82	82.36	d	1	Pyrimidine; orotate phosphoribosyl transferase (EC 2.4.2.10)
pyrF	738	28	28.79	d	1	Pyrimidine; orotidine-5'-phosphate decarboxylase (EC 4.1.1.23)
pyrG	1,638	60	61.93	d	2	Pyrimidine; CTP synthetase (EC 6.3.4.2)
pyrI	462	97	96.33	i	1	Pyrimidine; aspartate carbamoyltransferase (EC 2.1.3.1.2), regulatory subunit
						Continued on following page

TABLE 1—Continued	TABL	.Е 1—	-Con	tinue
-------------------	------	-------	------	-------

	Length (bp)	Map position			~ 1	
Name		M_G ^a	M_P ^b	oriC ^e	Class ^a	Description
que-1	345		9.23	i	1	Queuosin biosynthesis
que-2	1,071		9.25	d	1	Queuosin biosynthesis
racC	276	30	30.39	i	3	Defective prophage rac
radC	252	82	82.31	nc	3	Sensitivity to radiation
rafA				ns		α-Galactosidase
rafR	1.011			nm	3	Raffinose repressor
rbsA	1,506	84	85.03	d	1	Ribose: D-ribose high-affinity transport protein: membrane-associated protein
rbsB	891	84	85.08	d	2	Ribose: D-ribose periplasmic binding protein precursor
rbsC	966	84	85.06	d	1	Ribose: D-ribose high affinity transport system: membrane-associated protein
rbsD	420	84	85.02	d	1	Ribose: D-ribose high affinity transport system; membrane-associated protein
rbsK	930	84	85.10	d	1	Ribose: ribokinase (EC 2.7.1.15)
rcsA	624	43	43.31	nc	3	Positive regulatory gene for cansule synthesis
rcsR	651	48	92.13	nc	1	Positive regulatory gene for cansule synthesis
resC	2 802	48	92.07	nc	1	Negative regulatory gene for capsule synthesis
rese rec 4	1 050	58	60.07	nc	2	Recombination: general recombination repair of radiation damage and induction
-	1,059	50		ne	2	of phage lambda
recB	3,540	61	62.86	d	1	repair repair
recC	3,366	61	63.00	d	1	Recombinaison; exonuclease V (EC 3.1.11.5) subunit; DNA recombination; DNA repair
recD	1,824	61	62.82	d	1	Recombinaison; exonuclease V (EC 3.1.11.5) alpha subunit; recombination and
recE		30	30.38	ns		Recombinaison; locus of <i>rac</i> prophage; recombinaison and DNA repair;
						exonuclease VIII
<i>recF</i>	1,071	83	83.78	d	1	Recombinaison; recombination and repair of radiation damage
recG	2,082		82.60	i	1	Recombinaison; DNA recombinaison
recJ	1,737	62	64.65	d	1	Recombinaison; recombinaison and DNA repair
recN	1,701	57	58.42	i	1	Recombinaison; DNA repair; DNA recombination
rec0	726	56	57.31	d	1	Recombinaison; conjugational recombination and DNA repair
recQ	1,833	86	86.54	d	1	Recombinaison; conjugational recombination and DNA repair
recR	606		10.73	d	1	Recombinaison; DNA recombination
relA	2,235	60	62.00	d	1	Relaxed; regulation of RNA synthesis; stringent factor; ATP:GTP 3'- pyrophosphotransferase
relR	237	35	35 22	đ	2	Relaxed: regulation of RNA synthesis
relF	285	35	35 21	d	วั	Relaxed: regulation of RNA synthesis: function unknown
relF	153	35	35 21	d	3	Relaxed; regulation of RNA synthesis; function unknown
ram	240	55	35 20	d	3	Function unknown
rem	1 011	95	95 59	u d	1	Particion unknown Dan baliagaas a single stranded DNA dependent ATPass
rep	1,911	65	03.30	u 	1	Rep includes, a single-stranded DIVA dependant ATrase
Kevoys	1,134		01 07	:	2	Diocyclomyclin resistance
rja-2	900	01	01.9/	1	2	Rough; function unknown
rfaD	933	81	81.93	1	2	Rougn; ADP-L-giycero-D-mannoneptose-o-epimerase
rfaG	1,125	81	82.24	1	3	Rough; lipopolysaccharide core biosynthesis; glucosyltransferase I
rfaP	798	81	82.26	1	3	Rough; lipopolysaccharide core biosynthesis; phosphorylation of core heptose
rfaQ	969	81	82.22	1	3	Rough; lipopolysaccharide core biosynthesis
rfe	774	85	85.76	d	1	Rough; Involved in synthesis of enterobacterial common antigen and O antigen
rhaR	936	88	88.47	1	1	Rhamnose; positive activator of genes for L-rhamnose utilization
rhaS	834	88	88.49	i	1	Rhamnose; positive activator of genes for L-rhamnose utilization
rhlB	1,266		85.68	i	1	RNA helicase-like protein
rho	1,260	85	85.72	d	2	Transcription termination factor Rho; polarity suppressor
rhsA	4,134	81	81.24	i	1	Repetitive sequence responsible for duplications within chromosome
rhsB		77	78.20	ns		Repetitive sequence responsible for duplications within chromosome
rhsC		16	15.85	ns		Repetitive sequence responsible for duplications within chromosome
rhsD	4,281	12	11.36	d	1	Repetitive sequence responsible for duplications within chromosome
rhsE			31.33	ns		Repetitive sequence responsible for duplications within chromosome
ribA		28	28.71	ns		Riboflavin; GTP cyclohydrolase II
rimI	483	99	99.40	nc	1	Ribosomal modification; modification of 30S ribosomal subunit protein S18;
rimJ	582	32	24.21	d	1	Ribosomal modification; modification of 30S ribosomal subunit protein S5;
rim V	876		10 72	nc.	1	Ribosomal modification: ribosomal protein S6 modification
	527	22	17.13	;	1	Ribosomal modification, modification of 208 ribosomal subunit protein 1.7.
, unit	,		52.00		1	acetylation of N-terminal serine
rlpA	1,089	15	14.41	í	1	A minor lipoprotein
rlpB	582	15	14.59	í	1	A minor lipoprotein
rna	807	14	13.84	í	1	KNase; KNase I
mc	681	55	57.35	d	1	KNase; RNase III
rnd	1,128	40	40.41	d	1	RNase; RNase D

TABLE 1-Continued

Name	Length	Мар р	osition	oriCo	Class ^d	Description
Ivallic	(bp)	MLG ^a	M_P ^b	one	Class	Description
rnh	465	5	5.25	i	1	RNase; RNase H
mpA	360	83	83.87	i	1	RNase; RNase P, protein component
rob	870	15	99.84	1	1	Right origin-binding protein
roaA	1,113	15	14.44	1	1	Cell shape; sensitivity to radiation and drugs
rplA mlB	702 910	90 72	90.25	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L1 Dibosomal protein; large; 50S ribosomal subunit protein L2
rpib mlC	627	75	74.04	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L2 Dibosomal protein; large; 50S ribosomal subunit protein L2
mID	603	73	74.07	u d	2	Ribosomal protein; large; 505 ribosomal subunit protein L5
rnlE	537	73	74.56	d	2	Ribosomal protein: large: 50S ribosomal subunit protein L5
mlF	531	73	74.53	d	2	Ribosomal protein; large; 505 ribosomal subunit protein L5
rplI	447	96	95.48	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L9
rpIJ	495	90	90.25	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L10
rplK	426	90	90.22	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L11
rplL	363	90	90.27	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L7/L12
rplM	426	70	73.02	nc	2	Ribosomal protein; large; 50S ribosomal subunit protein L13
rplN	369	73	74.58	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L14
rplO	432	73	74.50	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L15
rplP	408	73	74.60	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L16
rpiQ mIP	381	13	74.41	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L17
rpix rplS	3/5	73 57	74.32 58.26	u d	2	Ribosomal protein; large; 50S ribosomal subunit protein L18
rpis mlT	345	38	38.48	d	2	Ribosomal protein: large: 50S ribosomal subunit protein L19
mlV	330	73	74.62	d	2	Ribosomal protein: large: 50S ribosomal subunit protein L20
rolW	300	73	74.65	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L22
rplX	312	73	74.57	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L24
rpmB	237	82	82.29	nc	2	Ribosomal protein; large; 50S ribosomal subunit protein L28
rpmC	189	73	74.60	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L29
rpmD	177	73	74.51	d	2	Ribosomal protein; large; 50S ribosomal subunit protein L30
rpmF	174	24	24.67	nc	2	Ribosomal protein; large; 50S ribosomal subunit protein L32
rpmG	168	82	82.30	nc	2	Ribosomal protein; large; 50S ribosomal subunit protein L33
rpmH	141	83	83.87	1	2	Ribosomal protein; large; 50S ribosomal subunit protein L34
rpoA moB	98/	/3	/4.41	۵ ۲	2	RNA polymerase; RNA polymerase (EC 2.7.7.6), alpha subunit
rров moC	4,020	90	90.20	d d	2	RNA polymerase; RNA polymerase (EC 2.7.7.6), beta subunit
moD	1 839	50 67	69.26	i	2	RNA polymerase: RNA polymerase (EC 2.7.7.6), beta subunit
moN	1,434	70	72.90	nc	ĩ	RNA polymerase: RNA polymerase (EC 2.7.7.6), sigma 70 subunit enhancer
	_,				-	factor σ^{54}
rpoZ	276		82.52	i	2	RNA polymerase; omega protein
rpsA	1,668	21	20.67	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S1
rpsB	723	4	4.28	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S2
rpsC	699	73	74.61	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S3
rpsD	618	73	74.44	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S4
rpsE rpsE	202	/3	/4.51	d d	2	Ribosomal protein, small; 305 ribosomal subunit protein 55
rpsr msG	393	93 73	95.40	u ne	2	Ribosomal protein, small; 305 ribosomal subunit protein 50
rnsH	390	73	74 54	d	2	Ribosomal protein, small: 30S ribosomal subunit protein S8
rnsl	390	70	73.03	nc	2	Ribosomal protein, small; 30S ribosomal subunit protein SS
rpsJ	309	73	74.69	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S10
rpsK	387	73	74.45	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S11
rpsL	372	73	75.12	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S12
rpsM	354	73	74.46	d	1	Ribosomal protein, small; 30S ribosomal subunit protein S13
rpsN	297	73	74.55	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S14
rps0	270	69	71.57	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S15
rpsP	246	57	58.30	d	2	Ribosomal protein, small; 30S ribosomal subunit protein S16
rpsQ	252	/3	/4.59	a d	2	Ribosomal protein, small; 30S ribosomal subunit protein S17
rpsr msS	225	90 73	95.40 74.63	u d	2	Ribosomal protein, small; 305 ribosomal subunit protein 518
rnsT	261	0	0 46	i	2	Ribosomal protein, small: 30S ribosomal subunit protein S19
rpsU	213	67	69.22	i	$\frac{1}{2}$	Ribosomal protein, small; 30S ribosomal subunit protein S20
rrfX	558		4.46	d	2	Ribosome-releasing factor
rsgA	498		42.35	nc	2	Function unknown; homology to human ferritin subunit
ruvA	612	41	41.60	nc	1	Filament formation and sensitivity to UV radiation
ruvB	1,011	41	41.61	nc	1	Filament formation and sensitivity to UV radiation
ruvC	522			nm	1	DNA repair; DNA recombination; resolvase of Holliday junction intermediates
sbcB shcC	1,401	44	44.35	1	1	Exonuclease 1; suppression of recB, recC mutations
sDCC	3,144 1 221	9 0	9.02	1	1	Suppression of recB, recC mutations
SUILA	1,221	У	0.20	nc	T	Sensitivity to microcin B1/

TABLE	1—Continuea	l
-------	-------------	---

Nome	Length	Map position		orice	Class	Description			
INAME	(bp)	M_G ^a	M_P ^b	onc	Class	Description			
sbp	987	89	88.75	d	1	Periplasmic sulfate-binding protein			
sdaA	1,347			nm	1	L-Serine deaminase			
sdhA	1,767	16	16.29	d	2	Succinate dehydrogenase (EC 1.3.99.1), flavoprotein subunit			
sdhB	717	16	16.32	d	1	Succinate dehydrogenase (EC 1.3.99.1), iron sulfur protein			
sdhC	390	16	16.27	d	3	Succinate dehydrogenase (EC 1.3.99.1); cytochrome b_{556}			
sdhD	348	16	16.28	d	1	Succinate dehydrogenase (EC 1.3.99.1), hydrophobic subunit			
secA	2,706	2	2.35	d	2	Secretion of envelope proteins			
secB	468	81	81.76	nc	2	Cytoplasmic export protein			
secD	1,845	9	9.32	d	2	Membrane proteins involved in protein export			
secE	384		90.20	d	1	Protein export			
secF	969		9.36	d	2	Membrane proteins involved in protein export			
secY	1,329	73	74.47	d	1	Protein export; membrane protein			
selA	1,392	81	81.04	nc	1	Selenium; selenium biosynthesis; selenocysteine synthase			
selB	1,842	81	81.12	1	1	Selenium; selenium metabolism; biosynthesis or incorporation of selenocystein			
seiD	1,041	(2)	39.33	nc	1	Selenium; selenium metabolism protein			
serA	1,233	100	00.00	L L	1	Serine; D-3-phosphoglycerate denydrogenase (EC 1.1.1.95)			
serB	900	20	99.00 20.10	d	2	Serine; phosphosenne phosphatase (EC 3.1.3.3)			
sers of a A	1,290	20	20.19	u 	2	Serine; seryi-irkina synthetase (EC 0.1.1.11)			
sjuri ofo 1	705		2 16	d IIII	3	Finioriae, S-iniorial protein			
sjs-i ekn	105	4	3.40 4.50	u d	2	Sugar refinentation summation protein 1 Historalika protain ULD I (DIII), DNA histora suclasid associated mattein			
skp slt	1 0 3 9	4	4.50	u d	2	Soluble lytic transchoogylese			
SMC	1 383		00.68	u d	1	Solution unknown			
snis sod A	618	88	88 58	u nc	2	Superovide dismutase, manganese			
sodR	582	36	37 15	i	2	Superoxide dismutase, inanganese			
sohB	648	50	28 51	r b	ĩ	Multicony suppressor of the htr4 (deaP) null phenotype: transmembrane protein			
sorR	465		92.32	nc	1	Regulatory gene for superoxide stress response			
soxS	324		92.31	nc	i	Regulatory gene for superoxide stress response			
speA	1.977	64	65.65	d	2	Spermidine: arginine decarboxylase (EC 4 1 1 19)			
speB	921	64	65.63	d	$\overline{2}$	Spermidine: agmatinase (EC 3.5.3.11)			
speC	2.196	64	66.14	d	1	Spermidine: ornithine decarboxylase (EC 4.1.1.17)			
speD	795	3	2.95	nc	ī	Spermidine: S-adenosylmethionine decarboxylase (EC 4.1.1.50)			
speE	867	3	2.93	nc	1	Spermidine; spermidine synthase (putrescine aminopropyltransferase) (EC 2.5.1.16)			
speF	2,199		15.53	i	1	Spermidine; ornithine decarboxylase?			
spoR	624		82.50	i	1	Guanosine; 5'-guanylate kinase; GMP kinase (EC 2.7.4.8)			
spoT	2,109	82	82.53	i	1	Guanosine; guanosine 3',5'-bis(diphosphate) 3'-pyrophosphatase			
spoU	-		82.59	ns		Guanosine; function unknown			
sppA	1,857	39	39.59	i	1	Protease IV, a signal peptide peptidase			
srmB	1,335			nm	1	eIF-4A like protein			
ssb	537	92	92.25	d	2	Single-strand DNA-binding protein			
sspB	498	70	72.72	nc	1	Stringent starvation protein B			
sspG	636	70	72.70	nc	2	Stringent starvation protein			
sucA	2,802	16	16.34	d	2	Succinate; α -ketoglutarate dehydrogenase, decarboxylase component			
sucB	1,218	16	16.40	d	2	Succinate; α -ketoglutarate dehydrogenase, dihydrolipoyltranssuccinase component			
sucC	1,167	16	16.44	d	2	Succinate; succinyl-CoA synthetase (EC 6.2.1.5), beta subunit			
sucD	870	16	16.46	d	2	Succinate; succinyl-CoA synthetase (EC 6.2.1.5), alpha subunit			
sufI			68.17	ns		Periplasmic protein; suppresses ftsI mutation			
suhB	804		56.48	i	2	Extragenic suppressor			
sulA		22	21.95	ns		Suppressor of lon			
tag	564	72	80.20	nc	1	3-Methyl-adenine DNA glycosylase I, constitutive			
tap	1,605	42	41.97	d	1	Methyl-accepting chemotaxis protein IV			
tar	1,659	42	42.01	d	1	Methyl-accepting chemotaxis protein II			
tau	930		36.06	i	1	DNA replication terminus site-binding protein			
tdcA	936	68	70.62	d	3	Threonine dehydratase (EC 4.2.1.16)			
tdcB	987	68	70.60	d	1	Threonine dehydratase (EC 4.2.1.16)			
tdcC	1,293	68	70.57	d	1	Threonine dehydratase (EC 4.2.1.16)			
tdcR	297	68	70.64	i	3	Threonine dehydratase (EC 4.2.1.16)			
tdh	1,023	81	81.85	d	1	Threonine dehydrogenase (EC 1.1.1.103)			
tdk	618	27	27.72	d	3	Thymidine kinase (EC 2.7.1.75)			
tesB	861	10	10.31	i	1	Thioesterase II			
tgt	1,128	9	9.29	đ	1	tRNA guanine transglycosylase			
tgy	102		27.61	1	3	Protamine-like protein			
inar Ahr A	1,520	0	83.97	nc	5	I more negradation; this present and turan oxidation Three prices as $L(EC, 2, 2, 2, 4)$			
INTA	2,403	U	0.01	a	T	1.1.1.1.3)			

TABLE 1-Continued

Nomo	Length	Map position			Class	Description			
IName	(bp)	M_G ^a	M_P ^b	onc	Class	Description			
thrB	930	0	0.06	d	1	Threonine; homoserine kinase (EC 2.7.1.39)			
thrC	1,287	0	0.08	d	1	Threonine; threonine synthase (EC 4.2.99.2)			
thrS	1,929	38	38.51	d	2	Threonine; threonyl-tRNA synthetase (EC 6.1.1.3)			
thyA	792	61	63.11	d	1	Thymine; thymidylate synthetase (EC 2.1.1.45)			
tig	1,299		9.92	nc	2	Trigger factor			
tnaA	1,416	84	84.00	nc	1	Tryptophanase (EC 4.1.99.1)			
tnaB	1,248		84.01	nc	1	Low-affinity tryptophan permease			
tnaC	75		84.00	nc	3	Tryptophanase (EC 4.1.99.1)			
tnpA	1,281			nm	1	Transposase IS91			
toLA	1,266	17	16.76	d	3	Tolerance; tolerance to group A colicins and single-stranded filamentous DNA phages			
tolB	1,296	17	16.79	d	2	Tolerance; tolerance to colicins E2, E3, A, and K			
tolC	1,485	66	68.51	i	1	Tolerance; specific tolerance to colicin E1; expression of outer membrane proteins			
tolQ	288	17	16.73	d	3	Tolerance; tolerance to group A colicins and single-stranded filamentous DNA phages			
tolR	681	17	16.73	d	1	Tolerance; tolerance to group A colicins and single-stranded filamentous DNA phages			
tonB	735	28	28.12	nc	1	T1; uptake of chelated iron and cyanocobalimin; sensitivity to phages T1 and $\phi 80$ and colicins			
topA	2,595	28	28.55	d	1	Topoisomerase; DNA topoisomerase I, omega protein			
topB	1,962		39.52	nc	1	Topoisomerase; topoisomerase III			
tpi	765	89	88.79	i	2	Triose phosphate isomerase (EC 5.3.1.1)			
treA	1,695	26	26.67	i	1	Trehalose; trehalase, periplasmic			
trg	1,608	31	32.00	i	3	Methyl-accepting chemotaxis protein III			
trkA	1,377	72	74.27	nc	1	Transport of potassium; protein of the constitutive K ⁺ transport system			
trkG	1,458	~~	30.55	nc	3	Protein involved in potassium uptake via the 1rk system			
trmA	1,101	90	89.87	1	1	tRNA methyltransferase; tRNA (uracil-5)-methyltransferase (EC 2.1.1.35)			
trmD	705	5/	58.27	đ	1	tRNA methyltransferase; tRNA (guanine-7)-methyltransferase (EC 2.1.1.31)			
trpA trm B	807 1 104	28	28.24	1	1	Tryptopnan; tryptopnan synthase (EC 4.2.1.20), A protein			
irpь tmC	1,194	20	28.23	1	1	Tryptophan; tryptophan synthase (EC 4.2.1.20), B protein T_{π} metaphan, $N(5, phosphorihogy)$ anthrapilate isometropy indels 3 shoored			
upc	1,559	20	20.20	1	T	nyptophan, N-(3-phosphorioosyr)antinannate isomerase indole-3-giyceror			
tmD	1 596	28	28 31	i	1	Truntonhan: dutamine aminotransferase-phosphorihosyl anthranilate transferase			
trnF	1,570	20	20.31	i	1	Tryptophan, grutannic animotransierase-phosphornoosyr antimannate transierase Tryptophan: anthrapilate synthese (FC 4 1 3 27)			
trnR	327	100	99.81	l d	1	Tryptophan, antihalinate synthase (EC 4.1.5.27) Tryptophan: regulation of <i>trp</i> operon and <i>aroH</i> : <i>trp</i> aporentesseur			
trnS	1.002	74	75.95	nc	1	Tryptophan; regulation of <i>up</i> operon and <i>aron</i> ; <i>up</i> aporopressed			
trxA	330	86	85.71	d	2	Thioredoxin: thioredoxin deficiency			
trxB	966	21	20.07	nc	ī	Thioredoxin: thioredoxin reductase			
tsf	849	4	4.30	d	2	Protein chain elongation factor EF-Ts			
tsr	1,608	99	99.07	i	1	Methyl-accepting chemotaxis protein I			
tsx	885	9	9.39	d	2	Outer membrane protein; nucleoside uptake; receptor for phage T6 and colicin K			
tufA	1,185	74	75.05	d	2	Protein chain elongation factor EF-Tu (duplicate gene)			
tufB		90	90.17	ns	2	Protein chain elongation factor EF-Tu (duplicate gene)			
tyrA	1,119	57	58.20	nc	1	Tyrosine; chorismate mutase-T (EC 5.4.99.5); prephenate dehydrogenase (EC 1.3.1.12)			
tyrB	1,194	92	92.12	d	1	Tyrosine; tyrosine aminotransferase (EC 2.6.1.5); tyrosine repressible			
tyrR	1,419	29	28.84	nc	1	Tyrosine; regulation of <i>aroFG</i> and <i>tyrA</i> and aromatic amino acid transport systems			
tyrS	1,275	36	36.46	d	2	Tyrosine; tyrosyl-tRNA synthetase (EC 6.1.1.1)			
ubiA	873	92	91.79	d	1	Ubiquinone; enzymatic 3-octaprenyl-4-hydroxybenzoate synthesis; 4- hydroxybenzoate octaprenyl transferase			
ubiC	498	92	91.78	d	1	Ubiquinone; chorismate lyase; enzymatic chorismate→p-hydroxybenzoate + pyruvate			
ubiH	1,179	63	64.34	nc	1	Ubiquinone; 2-octaprenyl-6-methoxyphenol→2-octaprenyl-6-methoxy-1,4- benzoquinone			
udp	759	86	86.78	d	2	Uridine phosphorylase (EC 2.4.2.3)			
ugpA	885	76	77.62	d	1	sn-Glycerol 3-phosphate transport system			
ugpВ	1,314	76	77.64	d	1	Binding protein of <i>sn</i> -glycerol 3-phosphate transport system			
ugpC	1,068	76	11.58	D	1	sn-Gycerol 3-phosphate transport system			
ugpe	043 741	/0	11.00	a	1	Sn-Orycerol 3-phosphate transport system; memorane protein			
ugpQ uhn4	/41 501	87	//.JO 83 12	u d	1	Orycerophosphoryr diester phosphodiesterase Hexase phosphote transport protein: positive activator of the T transport			
uhrR	1 557	02 87	83.00	d	1	Hexose phosphate transport protein: regulatory game			
uhnC	660	82	83 07	d	1	Hexose phosphate transport protein, regulatory gene			
uhpT	1.392	82	83.03	ď	î	Hexose phosphate transport protein; transport protein			
uidA	1,809	36	36.30	d	1	β-D-Glucuronidase (EC 3.2.1.31)			

IADLE I-Commune	TABLE	1—Continued
-----------------	-------	-------------

Nama	Length	Map position		and CC	Class	Description		
INAILIE	(bp)	M_G ^a	M_P ^b	onc	Class	Description		
итиС	1,269	26	26.38	d	1	Induction of mutations by UV; error-prone repair; sensitive to UV		
umuD	420	26	26.38	d	1	UV mutagenesis; Induction of mutation by UV; error-prone repair		
uncA	1,539	84	84.70	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F1 sector, alpha subunit		
uncB	813	84	84.76	d	1	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F0 sector, subunit a		
uncC	417	84	84.64	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F1 sector, epsilon subunit		
uncD	1,380	84	84.65	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F1 sector, beta subunit		
uncE	237	84	84.75	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F0 sector, subunit c		
uncF	468	84	84.74	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F0 sector, subunit b		
uncG	861	84	84.68	d	2	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F1 sector, gamma subunit		
uncH	531	84	84.73	d	1	ATP; membrane-bound ATP synthase (EC 3.6.1.3); F1 sector, delta subunit		
uncI	390	84	84.77	d	3	ATP; membrane-bound ATP synthase (EC 3.6.1.3)		
ung	690	56	57.65	nc	1	Uracil-DNA-glycosylase		
ирр	627	54	55.48	nc	2	Uracil phosphoribosyltransferase (EC 2.4.2.9)		
usg	1,011		51.89	d	1	Function unknown		
ushA	1,650	11	11.10	nc	1	UDP-glucose hydrolase (F'-nucleotidase)		
uvrA	2,823	92	92.19	i	1	UV; repair of UV damage to DNA; exision nuclease		
uvrB	2,019	18	17.53	d	1	UV; repair of UV damage to DNA; exision nuclease		
uvrC	1,764	42	42.47	d	1	UV; repair of UV damage to DNA; exision nuclease		
uvrD	2,160	86	86.37	d	1	UV; repair of UV damage to DNA; DNA-dependent ATPase I and DNA helicase II		
uxaB		52	35.24	ns		Altronate oxidoreductase (EC 1.1.1.58)		
uxuA		98	98.50	nc		Mannonate hydrolase (EC 4.2.1.8)		
valS	2,853	97	96.55	i	2	Valine; valyl-tRNA synthetase (EC 6.1.1.9)		
visA	963		10.80	d	1	Visible-light sensitivity; function unknown		
visC	1,203		64.36	nc	1	Visible-light sensitivity; function unknown		
witA	1,299		57.83	nc	3	α-Ketoglutarate transporter		
xerB	1,509		96.63	i	1	Aminopeptidase A/I		
xerC	894		86.34	d	1	Lambda integrase		
xprA	708		64.69	d	1	Function unknown		
xprB	897		64.70	d	1	Function unknown		
xseA	1,371	54	55.87	nc	1	Exonuclease VII, large subunit		
xthA	804	38	39.11	nc	1	Exonuclease III		
xylA	1,335	80	80.57	d	1	Xylose; D-xylose isomerase (EC 5.3.1.5)		
xylB	1,455	80	80.54	d	1	Xylose; xylulose kinase (EC 2.7.1.17)		
xylE	1,476	91	91.54	i	1	Xylose; xylose-proton symport		
xylUP	183			nm	3	Xylose; D-xylose uptake protein		
zwf	1,473	41	41.30	nc	1	Zwischenfement; glucose-6-phosphate dehydrogenase (EC 1.1.1.49)		

^a MLG, experimental genetic map position (1).

^b M_P, Map position in minutes, calculated from the genomic address of the gene transcription start in the *E. coli* restriction map (16).

^c oriC direction of genes transcription with respect to the replication forks. d represents clockwise direction, and i represents counterclockwise direction. We used nm when the map localization is not known, nc when the Kohara restriction map is not corrected for the corresponding position of the gene (19), and ns when a gene is not entirely sequenced.

^d The number obtained after statistical analysis defining *E. coli* genes classes according to their codon usage (see text and reference 21). ^e CoA, coenzyme A.

GRAPHIC REPRESENTATION OF DATA STORED IN COLIBRI

At this stage, we have described the two basic steps necessary for the building up of the data base dedicated to the analysis of the *E. coli* genome, its logical structure, and the environment for data consultation. It should be emphasized here that such a data organization has allowed us to realize "natural" connections between them (Fig. 3). It is thus possible, without any complementary software development, to extract new information, which will be presented in a graphic form below.

Sequencing Density

The first question about nonredundant DNA sequences of the *E. coli* genome is that of the number of known DNA sequences and their distribution along the chromosome. To illustrate this feature of Colibri, we have represented in Fig. 7 the "sequencing density" of the *E. coli* genome, i.e., the distribution of known sequences calculated as the number of sequenced nucleotides per 50 kbp of physically mapped chromosome length, limited to the knowledge accumulated up to July 1992 in the EMBL data library. The black region calculated from the physical map coordinates and from the length of each contig localized in the corrected Kohara map (19) represents the sequenced area. This represents more than 40% of the total genome. This region now reaches the outer circle (at 0 to 2.4 min and at 84.5 to 86.5), since two contigs of about 100 kbp long have just been entirely sequenced (7, 31). From the figure it appears that the known sequences are unevenly distributed. Some gaps are localized in well-sequenced regions (for example, at 6 and 80 min), suggesting that all the *E. coli* genetic information is not accessible by only mutant phenotypes studies.

Genetic Map and Physical Map

We have previously shown that the determination of the genomic address of a contig on the *E. coli* physical map

GENE	Length	M_G M_P Pos kb oriC Description										
dnaK	(pb) 1917		0.27	12 93	- d	DNA biosynthesis: heat shock protein	2					
dnal	1131	۱ŏ	0.32	14.94	d	DNA biosynthesis	2					
polB	2307		1.44	65.85	i	DNA polymerase II	1					
dnaE	3438	Ā	4.6	217.34	d	DNA polymerase IIII. alpha subunit	11					
mutD	729	5	5.26	248.15	l a	Mutator activity: DNA polymerase III holoenzyme, epsilon subunit	1					
dnaZX	1932	11	10.68	504.02	d	DNA polymerase IIII, gamma subunit: DNA elongation factor III	1					
dnaG	1743	67	69.22	3267.27	d	DNA biosynthesis: primase	1					
dnaN	1101	83	83.82	3956.41	i	NA polymerase IIII, beta subunit						
dnaA	1404	83	83,85	3957.82	i	DNA biosynthesis: initiation						
polA	2787	87	87.44	4126.95	d	DNA polymerase I						
dnaB	1416	92	-	•	-	DNA biosynthesis: chain elongation						
dnaC	738	99	99,15	4680,84	i i	DNA biosynthesis; initiation and chain elongation	1					
dnaT	540	99	99,16	4682,43	i	DNA blosynthesis; primasomal protein i	1					
	0p	oeratio	ons on	the sele	ction	Find Consultation of	7					
		Sort	$\overline{)}$	Sub-se	lectio	n) (general information) (>> CONTIGS) (>> Scan Fast						
Operations on the selection Sort Sub-selection			the sele	ction lectio	Find Consultation of m (general information) (>> CONTIGS) (>> Scan FastP))						

FIG. 6. Layout for *E. coli* gene information in list form. This figure presents a selection of records of the file [GENES]; it was obtained after searching for genes linked to the keyword "DNA biosynthesis." The data presented in this layout indicate for each selected gene its name and length (pb), its genetic map (M_G) and physical map (M_P) positions, its genomic address (Pos kb) and orientation of transcription with respect to the replication forks (oriC; d for clockwise and i for counterclockwise), its description, and finally a number corresponding to the class to which it belong according to its codon usage (Class column; see text and Table 1).

allows calculation of an exact map position (in minutes) for the corresponding genes. It was interesting to compare the experimental map positions with these physical map positions. In our data base, a total of 700 genes are sufficiently information rich for the fields corresponding to the published genetic map location (MLG) and the physical map position (M_P). We find that, except for ponB, hns, and ftsQ localizations, the conformity between the physical map and genetic map is very good. We find, however, that genetic map positions are underestimated in the interval from 50 to 80 min. This effect has been previously noticed by Rudd et al. (26). A biological significance of these variations could come from the rate of transfer of different regions of the chromosome during Hfr crosses. It is known that the portion of the chromosome that is the slowest to be transferred is the region that contains most of the actively transcribed ribosomal protein and RNA genes (4), localized mainly arround 70 min.

Gene Transcription versus Replication

Taking into account information calculated in our data base, one can also define the direction of gene transcription with respect to the replication forks. Genes on the *E. coli* chromosome are transcribed in either a clockwise or counterclockwise direction relative to the standard Kohara map (16). Knowing the map position and the direction of transcription relative to flanking markers, the direction of transcription for a given gene relative to the origin (*oriC*) at 84 min can be determined. In Fig. 8 we have represented the length distribution of genes transcribed away from the origin (black region) and of genes transcribed toward the origin (hatched region). As shown in Fig. 8, the orientation preference is related to transcription itself, especially arround the origin (84 min) but also at 75 min and near 2 min. The two peaks corresponding to genes transcribed in a counterclockwise direction with respect to the replication forks are not very significant, since they are in sequenced regions also containing genes transcribed in a clockwise direction (Fig. 8). With regard to the terminus region (30 min), results are

FIG. 7. Distribution of known *E. coli* DNA fragments along the chromosome. The black region, i.e., the sequenced area, is calculated from the physical map coordinate and the length of each contig localized on the corrected Kohara map (20, 22). For each position along the chromosome, the number of sequenced nucleotides per 50 kbp is plotted. Some genetic markers are included for comparison with the genetic map (1).

FIG. 8. Gene transcription versus replication. This figure represents the length distribution of genes transcribed in a clockwise direction with respect to the replication forks (hatched region), and the length distribution of genes transcribed in a counterclockwise direction (black region). For each position along the chromosome, the number of nucleotides contained in genes per 50 kbp is plotted. This density is calculated only for genes located at known positions in the *E. coli* chromosome.

not significant because the exact point of the end of the replication is not yet known precisely enough. In fact, interrogation of our data base by using the biological gene function criterion has shown that there is more likely to be a correspondence between the direction of gene transcription and the degree of gene expression, i.e., the degree of transcriptional activity. For example, it was found that more actively transcribed genes, such as the genes (i.e., genes from class 2) involved in the protein synthesis machinery, are in most cases transcribed away from *oriC*.

COLIBRI AS A MODEL FOR MICROBIAL GENOME DATA BASES

Colibri is a data base that permits recovery of selfconsistent, nonredundant DNA sequences of the E. coli genome. The corresponding information is extracted from existing data libraries in such a way that data management can be easily performed by using a set of ad hoc procedures that have been implemented by keeping in mind the constraint that the general user does not have to identify the underlying structure of the base. The data structure has been designed to permit the aggregation and recovery of the generally fuzzy knowledge associated with the molecular genetics of E. coli. Appropriate links created between the different objects present in the data base permit rapid and direct access to the variety of biological information. The present state of Colibri makes it much more complete than the data base described by Kunisawa et al. (18), which contained only 20% of the total DNA content of the E. coli genome. This has already permitted a thorough exploration of the general properties of the genome, as now summarized.

A first consequence of the magnitude of the data present in Colibri is that the overall organization of the *E. coli* genome can be analyzed. In particular, it has been possible to correlate the physical map established for one laboratory strain (W3110) by Kohara et al. with the vast but extremely scattered set of sequences produced by the many laborato-

TABLE 2. Occurrence of Chi sites in coding sequences compared with replication and transcription orientation

	Occurrence in ^a :										
Chi site	Td and Rd	Td and Ri	Ti and Rd	Ti and Ri	Td and R?	Ti and R?	Total				
GCTGGTGG	95	13	20 28	9 76	49 13	0 7	186 148				

^a Abbreviations: T, transcription; R, replication; d, direct; i, indirect; R?, when direction of genes transcription with respect to the replication forks is not known.

ries interested in E. coli genetics. This permitted us to show that, with the exception of the 52-min region and the borders of the chromosomal inversion present in W3110 in contrast to most strains of E. coli, the physical map of Kohara et al. is extremely accurate (19). This led us to demonstrate that polymorphism among laboratory K-12 strains of E. coli is extremely low (of the order of 10^{-3} base change per base) and of the same order of magnitude as the usual error rate generated during sequencing or recording sequences in data libraries (11). This also allowed for the correction of the physical map and led us to discover that two restriction enzymes (EcoRV and PvuII) were context sensitive and that the distribution of EcoRV, HindIII, and PstI sites differed from the expected random Poisson distribution (22). This latter observation has been substantiated by several thorough independent analyses (6, 13). A further statistical analysis, in which the constraints of the codon usage in coding sequences were used as a reference, has also demonstrated the interest for a thorough statistical study of the genome. We can expect to discover interesting biological properties from such analysis in the near future (21). As a case in point, it can be demonstrated, by using the data base, that Chi sites (GCTGGTGG) are distributed in a highly nonrandom fashion; i.e., they usually have the same orientation as that of the replicating fork. This indicates that, from analysis of biases in the sequence one should be able to recognize replication orientation (Table 2).

As a model study in data processing, the present work also has a methodological interest. Indeed, it provides us with a paradigm for the building up of evolving data bases for implementing genomic information, at least for procaryotes. This is presently used for Bacillus subtilis, whose genome is being sequenced by a team of European and Japanese groups. In this context, however, the appropriate interfacing with the raw data obtained immediately downstream from the sequencing gels has yet to be defined. The specific relational data base management system that was used, 4D, permitted us to define an organization of the data that allowed rational analysis of sequence data. After each run of analytical procedures progressively added to the core of methods specific to Colibri, the knowledge that has already been implemented in the data base is modified and improved. Therefore, although it is necessary to control the consistency and integrity of new data added to the base, automatic procedures modify certain fields as a function of the actual use of the data base, as well as during updating. This requires the writing and management of multiple internal procedures. It should be noted that adding new information can be extremely tedious. Therefore, whereas a relational data base management system appears to be able to satisfy most of the requisites induced by the analysis of whole genomes, it may lack some of the flexibility needed for the proper functioning of an "evolving" data base. As a consequence, it seems interesting to consider object-oriented data base management system for the future. There are already several examples. An object-oriented knowledge base, Coli-Gene (24), has been developed by using the knowledge base management system SHIRKA (25); it aims to study the expression of E. coli genes, taking into account the expertise of molecular geneticists. Another object-oriented system, ACeDB, has been specifically constructed for the management of sequences and knowledge induced by the program of Caenorhabditis elegans genome sequencing (29). This latter data base is now used by all laboratories involved in this program, and it has been chosen as a model for the development of other specialized data bases (those for Drosophila species, mouse, etc.). Finally, the data records and the procedures created by Rudd et al. have been recently implemented in an object-oriented data base (28). The corresponding prototype is, however, too new to permit evaluation of the advantages of object-oriented with respect to relational data base management systems. The experience acquired during the building up of Colibri leads us naturally to be interested in these latter approaches. As a first step we shall presently use SHIRKA, aiming in particular at evaluating problems posed to the persistence and integrity of data, for heavy-duty data bases, such as those which should follow Colibri.

The Colibri data base, embedded in a runtime version of 4D, can be obtained through anonymous ftp. Users connected to the Internet network can type 'ftp radium.jussieu.fr' (or, in case of difficulties, 'ftp 134.157.56.1'), enter 'anonymous' as the user identification and any word as password to access to the repository root directory. Users without ftp experience should then issue a 'get radium. readme' command and should carefully read this file on their own site. The Colibri repository directory (/pub/colibri) also contains a 'colibri.readme' file, which describes the various formats available to easily recover the data base on Macintosh computers. It should be pointed out that Colibri has been compiled as a 'clickable' Macintosh application, so that the 4D software is not needed to run it.

Users not connected to the Internet network can send five high-density (1.4 Mo) Macintosh diskettes to Secrétariat de Mr A. Danchin, Régulation de l'Expression Génétique Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cédex 15, France. However, the use of the network is strongly encouraged. We also encourage the report of any comment (and bugs) through electronic mail at bunny@radium.jussieu.fr.

APPENDIX

TABLE A1. Translation table for gene name equivalents

Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1
aceE1	aceE	asp	ррс	cmlB	ompF	drm	deoB	fruC	fruR	herC	lysS	lexC	ssb
aceE2	aceF	aspB	gltD	cnt	cynS	drpA	proS	ftsB	nrdB	hid	himA	lky	tolA
acrB	gyrB	aspB	gltB	coa	ompF	dsf	ppfA	ftsI	pbpB	himB	gyrB	lon	capR
ade	purH	asuC	hisT	colE1	tolC	dtu	argD	fucC	fucA	himD	hip	lrp	livR
ade	purA	atp	cysC	con	ompA	eps	rpsE	gad	gap	hin	htpR	lspA	lsp
ade	purF	atpA	uncA	сои	gyrB	eryA	rplD	galA	galK	hisG	atpPT	lss	livR
ade	purN	atpB	uncB	cry	ompF	exbA	tonB	galB	galT	hlpA	skp	lstR	livR
ade	purC	atpC	uncC	csm	стр	excC	tolA	galD	galE	hom	asdX	malA	malT
ade	purB	atpD	uncD	ctr	ptsI	exrA	lexA	gcd	gldE	hpr	ptsH	malA	malP
ade	purE	atpE	uncE	ctr	ptsH	exrB	ssb	gen165	rsgA	hsm	hsdM	malA	malQ
adth	purD	atpF	uncF	cybA	sdhC	fabC	fabB	glc	crr	hsr	hsdR	malB	malK
aidA	alkA	atpG	uncG	cydA	cydI	fam	htpR	glgY	glgP	hss	hsdS	malB	malF
aidD	alkB	atpH	uncH	cydB	cydII	far	fusA	glmD	nagB	htrM	rfaD	malB	malG
ala-act	alaS	atpI	uncI	cysP	cysJ	fba	aldH	glnF	rpoN	htrP	luxH	malB	lamB
alc	fda	atpPT	hisG	cysQ	cysI	fba	fda	glnR	glnL	hu-2	hupA	malB	malE
alt	rpoD	azi	secA	cysZ	cysK	fbp	fdp	glnT	glnG	hycA	hevA	malM	molA
ampA	ampC	bfe	btuB	dam	damX	fdhA	selB	gltC	gltS	hycB	hevB	manX	ptsL
amtA	cysQ	bglB	bglC	dap	asdX	fdhA	selA	glu	ррс	hycC	hevC	manY	ptsP
anth	trpE	bglC	bglS	dapB	dapE	fdv	<i>mutS</i>	glut	gltA	hycD	hevD	manZ	ptsM
apk	<i>lysC</i>	bglF	bglC	dapX	nlpB	feuA	cir	glyD	glpD	hycE	hevE	mas	aceB
arcA	dye	bioB	bioH	dar	uvrA	feuB	fepA	gmk	spoR	hycF	hevF	mec	dcm
arg	carA	bioR	birA	dasF	rnh	fexA	dye	gpp	gppA	hycG	hevG	mel-4	melB
arg	carB	bisB	chlE	dda	uvrD	fii	tolQ	gpp	gpt	hycH	hevH	mel-7	melA
arg1	argA	blgA	bglB	dec	fadR	fipA	trxA	gpt	ptsG	icl	aceA	meoA	ompC
arg1	argD	blgG	bglS	deg	capR	flaBI	fliF	gptB	ptsM	iex	c rr	metM	metL
arg2	argC	btuA	btuB	dhbB	birA	flaF	hag	gptB	ptsL	ihp	livR	mglP	mglB
arg2	argA	cap	стр	dhl	lpd	FlaJ	motB	groN	rpoB	II-CAT	cmlA	mglP	mglC
arg4	argE	cap	carA	dinA	polB	fla J	motA	groNB	nusB	ind	tnaA	mglP	mglA
arg5	argF	cap	carB	dir	capR	flaN	fliE	groP	dna J	IS91	tnpA	micA	mutY
arg6	argG	car	ptsG	divA	ftsA	flbC	fliD	groP	dnaB	kac	kdpC	minB	minE
arg7	argH	cbr	fepA	dnaD	dnaC	flhC	flaI	groP	dnaK	kac	kdpD	minB	minD
argA	argE	cbt	fepA	dnaF	nrdA	flhD	flbB	grpA	dnaB	kac	kdpB	minB	minC
argB	argA	cer	btuB	dnaL	lig	fliC	hag	grpF	dnaK	kac	kdpA	mlpA	lppX
argC	argB	cheD	tsr	dnaP	dnaG	fliL	flaAI	gsa	рорС	kdgA	ada	mopA	groEL
argD	argF	cheM	tar	dnaQ	mutD	fliM 👘	flaAII	gshA	gshII	kga	ada	mopB	groES
argE	argG	cheX	cheR	dnaS	dut	flrD	fadI	gsr	crr	kgtP	witA	mor	oxyR
argF	argH	chlC	narH	dnaW	adk	folC	dedC	gurA	uidA	<i>kps</i>	neuS	mpt	ptsL
argG	argD	chlC	narG	dppA	<i>fpp</i>	fpk	fruK	gxu	gpt	leuK	hisT	mpt	ptsM
argH	argC	cim	tolA	dra	deoC	frr	rrfX	herA	rnh	lexB	recA	mra	murF

TABLE A1-Continued

Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name in Table 1	Alternate name	Name ir Table 1
mraY	murX	nrdB	sodA	pea	secA	pyrA	carB	ron	rpoB	ssyF	rpsA	tpo	envZ
mrcA	ponA	ntrA	rpoN	pel	ptsP	rac	recE	<i>rorA</i>	recB	ssyG	infB	tpp	deoA
mrcB	ponB	ntrB	glnL	pepH	pepD	radB	<i>recN</i>	rpmE	katG	stl	rpoB	trkC	kefC
mrdA	pbpA	ntrC	glnG	perA	envZ	ramA	rpsD	rpoH	htpR	strA	rpsL	<i>trpX</i>	miaA
mrdB	rodA	nucR	deoR	pgsB	lpxB	Rarg	argI	rts	coaA	stv	rpoB	tryD	<i>trpE</i>
msbB	mlt	nupA	tsx	phoT	pstB	rbsP	rbsA	sbl	gutB	sud2	rpsD	tryE	trpD
msp	dye	nur	katF	phoT	phoU	rbsP	<i>rbsC</i>	sdrA	rnh	sueB	prfA	tryp	trpC
msyA	hns	oldA	fadA	phoT	pstA	<i>rbsP</i>	rbsB	secC	rps0	suf	sulA	tryp	trpA
mtcB	tolC	oldB	fadB	phoT	phoB	rbsP	rbsĎ	seg	đye	sulB	ftsZ	tryp	trpB
тис	capR	oleR	fadR	pil	fimD	rbsT	rbsC	serT	divE	sun	rho	tsl	lexA
mutR	mutH	ompB	envZ	pil	fimC	rbsT	rbsA	sfiA	sulA	supK	prfB	tsp	prc
mutU	uvrD	ompB	ompR	pil	fimB	re cE	racC	sfiB	ftsZ	supX	topA	tsu	rho
mvrC	EB	ompE	phoE	pilA	fimA	recL	uvrD	sfrA	dye	Tôrec	tsx	ttr	fadL
nalA	gyrA	oriĴ	racC	plsA	adk	refI	tolC	sfrB	hlyT	tabD	rpoB	tut	ompA
nalC	gyrB	pac	pga	pmi	manA	refII	cet	shl	fruR	tabD	rpoC	uar	prfA
narC	narG	panK	coaA	poaA	putA	relC	rplK	sin	rnh	tgl	ptsG	umg	ptsG
narD	chlD	papA	uncA	polC	dnaE	resA	polA	sof	dut	tgs	crr	umuA	lexA
narE	chlE	papB	uncD	popE	hemC	rf1X	prfA	sohA	prlF	thdB	fadR	umuB	recA
narR	narL	papC	uncG	ppfA	dsf	rf2X	prfB	spcA	rpsE	thrD	thrA	ura	carB
narR	narX	papD	uncB	prlA	secY	rfaH	ĥŀyT	spf	polA	thyR	deoB	ura	carA
ncf	hemB	papE	uncH	prv	mutH	rfs	fĺĽD	spr	lexA	thyR	deoC	uraP	upp
neaA	rpsQ	papG	uncC	pssA	pss	Rgal	galR	srlA	gutA	tif	recA	usg1	usg
nhaA	ant	papH	uncE	pstC	phoW	rglA	mcrA	srlB	gutB	tmrA	folA	uvm	umuC
nicA	nadA	par	ompC	pstS	phoS	rglB	mcrB	srlD	gutD	tnaR	, tnaA	uvm	umuD
nirA	fnr	parB	dnaG	- psuA	rho	rhaC	rhaR	srlM	gutM	tol-3	tolB	uvrF	<i>recF</i>
nirD	nirB	paxA	dcd	ptsN	nagE	rhaC	rhaS	srlQ	gutO	tol-8	tolC	visB	ubiH
nirR	fnr	pcbA	gyrB	pup	deoD	rif	rpoB	srlÃ	gutR	tolF	ompF	xerA	argR
nitA	rho	, pck	pckA	purE	purK	rimA	rpmH	ssaF	rpmH	tolG	ompA	xonA	sbcB
nitB	rpoB	pdeB	uvrD	purG	purM	rne	ams	ssp	sspB	tonA	fhuA	zab	<i>recA</i>
nmpA	phoS	pdeC	lig	purI	purL	rnsA	rna	ssp	sspG	TP	deoA		
nmpB	phoR	pdzA	rplT	pyrA	carA	rnsC	rho	ssyB	nusB	tpiA	tpi		

ACKNOWLEDGMENTS

We thank F. Lisacek for her constructive comments on the manuscript and I. Moszer for corrections to Table 1.

We thank the society ORSAN for a fellowship to C.M. during part of the work. We also acknowledge grants from CNRS (GDR 1029) and the French Ministry of Research (91C0802).

REFERENCES

- 1. Bachmann, B. J. 1990. Linkage map of *Escherichia coli* K-12, edition 8. Microbiol. Rev. 54:130–197.
- 2. Barker, W. C., D. G. George, H. W. Mewes, and A. Tsugita. 1992. GenBank. Nucleic Acids Res. 20(Suppl.):2023–2026.
- 3. Blake, R. D., and P. W. Hinds. 1984. Analysis of the codon bias in *E. coli* sequences. J. Biomol. Struct. Dyn. 2:593-606.
- 4. Brewer, B. 1990. Replication and the transcriptional organization of the *Escherichia coli* chromosome. p. 61–83. *In* K. Drlica and M. Riley (ed.), The bacterial chromosome. American Society for Microbiology, Washington, D.C.
- Burks, C., M. J. Cinkosky, M. Fischer, P. Gilna, J. E.-D. Hayden, G. M. Keen, M. Kelly, D. Kristofferson, and J. Lawrence. 1992. GenBank. Nucleic Acids Res. 20(Suppl.):2065– 2069.
- Churchill, G. A., D. L. Daniels, and M. S. Waterman. 1989. The distribution of restriction enzyme sites in *Escherichia coli*. Nucleic Acids Res. 18:589–597.
- Daniels, D. L., G. Plunkett, V. Burland, and F. R. Blattner. 1992. Analysis of the *Escherichia coli* genome: DNA Sequence of the region from 84.5 to 86.5 minutes. Science 257:771–778.
- Diday, E. 1971. Une nouvelle méthode en classification automatique et reconnaissance des formes: la méthodes des nuées dynamiques. Rev. Statist. Appl. 19:19-33.
- Gouy, M., and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10:7055– 7074.
- 10. Higgins, D. G., R. Fuchs, P. J. Stoehr, and G. N. Cameron. 1992.

The EMBL Data Library. Nucleic Acids Res. 20(Suppl.):2071-2074.

- Hill, C. W., and B. W. Harnish. 1981. Inversion between ribosomal RNA genes of *Escherichia coli*. Proc. Natl. Acad. Sci. USA 78:7069-7072.
- Hill, M. O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Statist. 23:40-353.
- Karlin, S., and C. Macken. 1991. Assessment of inhomogeneities in an E. coli physical map. Nucleic Acids Res. 19:4241– 4246.
- Knott, V., D. J. Blake, and G. G. Brownlee. 1989. Completion of the detailed restriction map of the *E. coli* genome by the isolation of overlapping cosmid clones. Nucleic Acids Res. 17:5901-5912.
- Knott, V., D. J. G. Rees, Z. Cheng, and G. G. Brownlee. 1988. Randomly picked cosmid clones overlap the *pyrB* and *oriC* gap in the physical map of the *E. coli* chromosome. Nucleic Acids Res. 16:2601–2612.
- Kohara, Y., K. Akiyama, and K. Isono. 1987. The physical map of the whole *E. coli* chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495-508.
- Kröger, M., R. Wahl, G. Schachtel, and P. Rice. 1992. Compilation of DNA sequences of *Escherichia coli* (update 1992). Nucleic Acids Res. 20(supplement):2119-2144.
- Kunisawa, T., M. Nakamura, H. Watanabe, J. Otsuka, A. Tsugita, L. S. L. Yeh, D. G. George, and W. C. Barker. 1990. Escherichia coli K12 genomic database. Protein Seq. Data Anal. 3:157-162.
- Médigue, C., J. P. Bouché, A. Hénaut, and A. Danchin. 1990. Mapping of sequenced genes (700 kbp) in the restriction map of the *Escherichia coli* chromosome. Mol. Microbiol. 4:169–187.
- Médigue, C., A. Hénaut, and A. Danchin. 1990. Escherichia coli molecular genetic map (1000 kbp): update I. Mol. Microbiol. 4:1443-1454.

- Médigue, C., T. Rouxel, P. Vigier, A. Hénaut, and A. Danchin. 1991. Evidence for horizontal gene transfer in *Escherichia coli* speciation. J. Mol. Biol. 222:851–856.
- Médigue, C., A. Viari, A. Hénaut, and A. Danchin. 1991. Escherichia coli molecular genetic map (1500 kbp): update II. Mol. Microbiol. 5:2629-2640.
- Miller, W., J. Ostell, and K. E. Rudd. 1990. An algorithm for searching restriction map. Comput. Appl. BIOSci. 6:247-252.
- 24. Perrière G. 1991. ColiGene, p. 61-66. In Traitement de l'information des séquences biologiques. Cahiers IMABIO no. 2. CNRS, Paris.
- Rechenmann, F., and P. Uvietta. 1990. Shirka: an object-centered knowledge based management system, p. 9–23. In Intelligence artificielle en simulation numérique et symbolique. Aléas, Lyon, France.
- Rudd, K. E., W. Miller, J. Ostell, and D. A. Benson. 1990. Alignment of *Escherichia coli* K12 DNA sequences to a genomic restriction map. Nucleic Acids Res. 18:313-321.
- 27. Rudd, K. E., W. Miller, C. Werner, J. Ostell, C. Tolstoshev, and

S. G. Satterfield. 1991. Mapping sequenced *E. coli* genes by computer: software, strategies and examples. Nucleic Acids Res. 19:637-647.

- Shin, D. G., C. Lee, J. Zhang, K. E. Rudd, and C. M. Berg. 1992. Redesigning, implementing and integrating *Escherichia coli* genome software tools with an object-oriented database system. Comput. Appl. BIOSci. 8:227–238.
- Thierry-Mieg, J., and R. Durbin. 1992. ACeDB—a C. elegans data base, p. 15–19. In Informatique et génomes. Traitement de l'information des séquences biologiques. Cahiers IMABIO no. 5. CNRS, Paris.
- Wilbur, W. J., and D. J. Lipman. 1983. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80:726-730.
- Yura, T., H. Mori, H. Nagai, T. Nagata, A. Ishihama, N. Fujita, K. Isono, K. Mizobuchi, and A. Nakata. 1992. Systematic sequencing of the *Escherichia coli* genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 20:3305-3308.