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Summary
The proportional odds logistic regression model is widely used for relating an ordinal outcome to a
set of covariates. When the number of outcome categories is relatively large, the sample size is
relatively small, and/or certain outcome categories are rare, maximum likelihood can yield biased
estimates of the regression parameters. Firth (1993) and Kosmidis and Firth (2009) proposed a
procedure to remove the leading term in the asymptotic bias of the maximum likelihood estimator.
Their approach is most easily implemented for univariate outcomes. In this paper, we derive a bias
correction that exploits the proportionality between Poisson and multinomial likelihoods for
multinomial regression models. Specifically, we describe a bias correction for the proportional
odds logistic regression model, based on the likelihood from a collection of independent Poisson
random variables whose means are constrained to sum to 1, that is straightforward to implement.
The proposed method is motivated by a study of predictors of post-operative complications in
patients undergoing colon or rectal surgery (Gawande et al., 2007).
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1 Introduction
Categorical responses which are ordinal in nature commonly arise in studies in the health,
behavioral, and social sciences. For example, in an epidemiological study of behavioral risk
factors for stroke, the severity of a patient’s stroke may be defined on an ordinal scale
categorized as minor, moderate, or severe. The proportional odds logistic regression model
is probably the most widely used model for relating an ordinal outcome to a set of
covariates. Typically, maximum likelihood is the method of choice for estimating the
regression parameters. However, when the number of outcome categories is relatively large,
the sample size is relatively small, and/or some of the outcome categories are rare,
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maximum likelihood can yield biased estimates of the regression parameters. Firth (1993)
and Kosmidis and Firth (2009) proposed a procedure to remove the leading term in the
asymptotic bias of the maximum likelihood estimator. This approach is most easily
implemented for univariate outcomes, e.g., Bernoulli and Poisson outcomes. The focus of
this paper is on bias-corrected estimates of the regression parameters of the proportional
odds logistic regression model.

For the multinomial logistic regression model for nominal (unordered) responses, Bull, Mak,
and Greenwood (2002) proposed a penalized likelihood approach to remove the first-order
bias of the maximum likelihood estimate (MLE); their bias-reducing score functions involve
Kronecker product matrix operators and matrices of third order derivatives. Recently,
Kosmidis and Firth (2011) exploited the connection between multinomial logistic regression
models and Poisson log-linear models for cell counts (Birch, 1963) to produce an approach
to bias correction based on univariate Poisson likelihoods. This elegant approach requires
the addition of nuisance parameters to the Poisson log-linear model that correspond to the
multinomial totals for each subject. We note that even though the implementation is
different, the approaches of Bull, Mak, and Greenwood (2002) and Kosmidis and Firth
(2011) are both based on a penalized multinomial likelihood, and thus lead to the same bias-
corrected estimates.

The approach of Kosmidis and Firth (2011), however, is restricted to multinomial models
that can be expressed as log-linear models, i.e., multinomial logistic regression (McCullagh
and Nelder, 1989). Importantly, this excludes applications of the method to the proportional
odds logistic regression model, the non-proportional odds model, or indeed any multinomial
model with a non-canonical link function (e.g., a probit or complementary log-log link).
Because the multinomial proportional odds model is considered a multivariate generalized
linear model, it falls within the general class of multivariate models considered in Kosmidis
and Firth (2009). Kosmidis and Firth (2009) derive general expressions for the adjusted
score equations for these multivariate models, and these adjusted score equations can be
used to formulate a bias corrected estimate for the proportional odds model. Instead of using
these general adjusted score equations for multinomial regression models, here, we propose
to obtain the bias corrected estimates for the proportional odds model via iterative updates of
pseudo-responses for univariate Poisson likelihoods.

In particular, for any multinomial regression model in which the probabilities are formulated
to sum to 1 (such as the proportional odds model), we show that the multinomial likelihood
is proportional to the likelihood from a collection of independent Poisson random variables.
Thus, although the proportional odds logistic regression model cannot be expressed as a log-
linear model so that the method of Kosmidis and Firth (2011) does not apply, we can use a
Poisson likelihood to solve the bias-corrected score equations in terms of simple iterative
updates of pseudo-responses for univariate Poisson likelihoods, as opposed to using the
general formulation in Kosmidis and Firth (2009) for multinomial likelihoods. For example,
using our approach with the proposed pseudo-responses, it is relatively straightforward to
implement the bias correction within existing statistical software (e.g., SAS Proc
NLMIXED). Thus, the potential advantage of our proposed method is in terms of ease of
implementation.

We emphasize that, even though both our approach for the proportional odds model and
Kosmidis and Firth’s (2011) approach for multinomial logistic regression models use a
likelihood that is a product of univariate Poisson distributions, our approach is for
multinomial regression models in which the probabilities (Poisson means), by construction,
are formulated to sum to 1, whereas Kosmidis and Firth’s (2011) approach relies on Poisson
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log-linear models in which the Poisson means are more generally formulated to be expected
counts. We discuss these differences in Appendix 2 of this paper.

The proposed method is motivated by a study of predictors of post-operative complications
(Gawande et al., 2007). In this study, 102 patients undergoing colon or rectal surgery at
Brigham and Women’s Hospital in Boston MA, USA were evaluated for predictors of the
ordinal outcome ‘major post-operative complications’ (1=none, 2=major complication,
3=death) within 30 days post-surgery, as part of the hospital’s National Surgical Quality
Improvement Program (NSQIP) cohort. In the NSQIP, a systematic sample of patients
undergoing general or vascular surgery in participating institutions were evaluated by
trained, audited surgical research nurses for preoperative comorbidities and post-operative
events within 30 days of surgery. The main predictor of interest in this study is the so-called
‘Surgical Apgar Score’, a 10-point measure that gauges intra-operative safety, according to
blood loss, lowest heart rate, and lowest mean arterial pressure obtained during the
operation. A score of 0 denotes a poor prognosis, while a score of 10 is the best prognosis
for recovery without complications. In previous analyses, Gawande et al. (2007) categorized
the Surgical Apgar Score into 5 categories: scores ranging from 0–2, 3–4, 5–6, 7–8, and 9–
10; further, in their analyses they treated these categories as nominal, not ordinal. A second
predictor of interest is the ASA score, a global assessment of the physical status of the
patient prior to surgery (Owens et al., 1978). The ASA score yielded a binary indicator of
preoperative disease status (1=systemic or worse disease, 0=mild or no disease). The
question of scientific interest in this study was whether the preoperative disease status and
intra-operative Surgical Apgar score can predict patients who will have post-operative
complications; the ability to discriminate patients in this way would allow surgeons to
appropriately alter the amount and intensity of post-operative monitoring and care. Table 1
presents descriptive statistics and the results of separate bivariate analyses of the
associations between the ordinal post-operative complications outcome and these two
predictors. Note, in this sample there are no patients with Surgical Apgar scores in the 0–2
range. The test for association between post-operative complications and the Surgical Apgar
score is based on a Kruskal-Wallis exact test (treating the categorical Surgical Apgar
predictor as nominal). The test for association between post-operative complications and the
binary ASA score is based on an exact Wilcoxon test. The preliminary results in Table 1
indicate that the Surgical Apgar score is significantly associated with post-operative
complications, but preoperative disease status is not.

In the medical literature, models for complications often differ by gender; for example,
gender differences have been found in cardiac surgery (Guru et al., 2006); thoracic surgery
(Falcoz et al., 2007); and vascular surgery (Nguyen et al., 2009). Thus, it is of secondary
interest to examine the associations separately for males and females. Because it is of
interest to examine the joint effects of disease status and Surgical Apgar score on post-
operative complications, we initially fit a cumulative logistic model (setting ‘no
complications’ as the reference category for the ordinal outcome) with Surgical Apgar and
ASA scores as nominal and dichotomous covariates respectively. For the overall sample
(102 patients), maximum likelihood (ML) estimates of the regression parameters produced
by three widely used software packages (SAS Proc LOGISTIC, the R function polr, and the
Stata command ologit) were identical. However, in analyses restricted to the male sample,
none of these three packages converged to a unique solution to the maximum likelihood
equations. Further, with a total of only 19 complications or deaths overall (10 in males and 9
in females), the standard maximum likelihood estimates could potentially be badly biased.
These observations led us to explore alternative approaches that yield less biased estimates
of the proportional odds logistic regression parameters in small samples.
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In Section 2, we briefly describe the underlying multinomial distribution for the categorical
response, and show that the corresponding likelihood can be expressed as the likelihood
from a collection of independent Poisson random variables whose means are constrained to
sum to 1. We describe a general bias correction for this Poisson formulation of the
likelihood. In Section 3, we apply the bias correction to the proportional odds logistic
regression model. In Section 4, we apply this approach in regression analyses of the data
from the study of post-operative complications (Gawande et al., 2007). In Section 5, we
present results of a small-scale simulation study of bias correction for the proportional odds
model. In the example and simulations, we also compare our approach to the ad hoc bias-
reduction approach proposed by Clogg et al (1991); the latter approach adds a small constant
to each subject’s multinomial outcome in the sample.

2 Multinomial and Poisson Likelihoods for Categorical Data
Suppose we have n independent subjects, where the ith individual’s (i = 1, 2, …, n) response
Yi is multinomial and, without loss of generality, can equal any value in (j = 1, …, J). We let
the indicator random variable Yij equal 1 if the ith individual has response value j and equal

0 otherwise, with . Each individual is assumed to have a Q × 1 vector of covariates,
xi = [xi1, …, xiQ]′. Note, we do not define xi here to include intercepts for separate
multinomial levels, it only contains the subject covariates such as age, gender, etc. Then, we
denote the probability of response j given xi as

where β is a R × 1 vector of parameters, and . In general, the vector β can contain
different intercepts, and possibly different regression coefficients, for each multinomial level
j (hence R, the dimension of β, is greater than Q, the dimension of the covariate vector xi.)
The model for pij for the proportional odds model (the focus of this paper) is given in the
following section.

The probability mass function for subject i is multinomial

Next, we show that the multinomial likelihood can be transformed into a Poisson likelihood

as long as . If the Yij were independent Poisson random variables with mean
E(Yij) = pij then the corresponding Poisson likelihood would be proportional to

(1)

where . Note that in this Poisson likelihood formulation, pi+ is required to be
positive. If, however, the pij’s are formulated so that they sum to 1 over the j’s for every
subject, then the Poisson and multinomial likelihoods are proportional. In Appendix 1 we
show that the score equations for β and the expected information are identical under the
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multinomial and Poisson likelihood formulations (subject to constraint that ).
Consequently, likelihood inferences will be identical based on either likelihood. In
particular, provided that the term e−pi+ is not a function of any unknown regression
parameters (a condition that is satisfied if pi+ = 1 for all i) then the Poisson and multinomial
likelihoods are proportional. In general, linear and log-linear models for pij are not
formulated so that pi+ = 1, and thus the Poisson and multinomial likelihoods will not be
proportional for these types of models.

Because  is satisfied for the proportional odds regression model (discussed in
more detail in Section 3), removal of the first-order bias of the maximum likelihood
estimator for this model can be based on either the multinomial or Poisson likelihoods. The
bias corrections yield identical results because the likelihoods are proportional, and the
correction is based on the asymptotic variance of the parameter estimates which is shown in
Appendix 1 to be the same under the two models. However, by substituting a Poisson
likelihood (with constrained means) for the multinomial likelihood, it is more
straightforward to base the bias correction on a likelihood that is formulated in terms of the
product of univariate Poisson random variables than on a likelihood for a multinomial
random variable. Next, we describe the score equations for the Poisson likelihood and
discuss how the bias correction can be made in terms of iterative updates of
‘pseudoresponses’, an approach first described by Firth (1993). In Appendix 1, we show
that, from first principles without directly using the proportionality property, the score
equations for the multinomial likelihood are identical to those for the Poisson likelihood.

The Poisson likelihood score equations for β are given by

(2)

where Dij = ∂pij(β)/∂β. Using the first-order bias correction for a univariate outcome given
in Firth (1993) and Box (1971), the score equations in (2) can be modified by replacing yij
with the ‘pseudo-response’

(3)

where

(4)

In (4), Var(β̂) is the asymptotic variance-covariance matrix of β̂ (estimated via the inverse of

the observed or expected information matrix) and  is a (R × R) matrix of second
derivatives of pij with respect to the R × 1 vector of parameters β. To obtain the first-order

bias-corrected estimate of β, one can iterate between updating  given a current estimate of

β, and then re-estimating β given the updated  by solving (2), until the estimates of β
converge. Typically, the quantities aij in (3) are small and positive, and their inclusion tends
to reduce the impact of sampling zeros (so-called ‘empty cells’ or ‘0 cells’) and increase the
likelihood of convergence; however, in general, there is no guarantee of convergence.
Finally, it is worth re-emphasizing that this bias correction based on a Poisson likelihood

formulation does require a model for pij that constrains . Next, we consider a

Lipsitz et al. Page 5

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



specific application of this bias correction to the proportional odds logistic regression model.
The focus of this paper is on the proportional odds logistic regression model for ordinal
responses; however, in Appendix 2, we briefly discuss the implementation of our Poisson
likelihood approach applied to a multinomial logistic regression model for nominal
(unordered) responses, and contrast our approach with the Poisson log-linear approach of
Kosmidis and Firth (2011).

3 Proportional Odds Logistic Regression Model
The proportional odds logistic regression model can be written as

(5)

for j = 1, …, J − 1 where πij is a ‘cumulative probability’, xi is a Q × 1 vector of covariates
as discussed above, β0j is an intercept for cutpoint j, and β1 is an Q × 1 vector of parameters.
The regression parameters can be grouped together to form the (Q + J − 1) × 1 vector

. The probability of response level J, piJ, is

Then,

(6)

for j = 1, …, J where we define πiJ = 1 and πi0 = 0 since piJ = 1 − πi,J−1 and pi1 = πi1 − 0.
The contribution to the likelihood for subject i can be re-written as

The Poisson formulation of the multinomial likelihood is now used to obtain a simple bias
correction term. As was discussed in Section 2, if we specify the Yij’s as Poisson, the
Poisson and multinomial likelihoods are proportional provided that pi+ = 1 for all subjects.
Thus, we must show that pi+ = 1. Using the model for pij in (6),

for all i. This establishes that the Poisson and multinomial likelihoods are proportional for
the proportional odds logistic regression model.

To formulate the pseudo-responses in (3) required for the bias correction, we need to

calculate . For simplicity, we rewrite (5) as
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where zij is a (Q + J − 1) × 1 design vector that includes the Q × 1 vector of covariates xi and

also indicators for the intercepts at each response level, and  is
described above. Then, for the cumulative logistic model,

and, for the pseudo-response,

Thus, for the Poisson formulation of the cumulative logistic regression model, the pseudo-
response equals

for j = 2, …, J − 1. Note, when j = 1, pi1 = πi1, so that

and when j = J, piJ = 1 − πi,J−1, so that

In principle, this bias-corrected approach based on a Poisson likelihood can be fit within the
generalized linear models framework. In practice, though, the mean for Yij under a
proportional odds logistic model, pij = E[Yij|zij, zi,j−1] = πij − πi,j−1, is not a standard option
for Poisson regression in widely-used software for generalized linear models. Thus, we
implemented the bias correction using an optimization procedure for non-linear regression
models, SAS Proc NLMIXED (SAS Institute Inc, 2010). We note that the pseudo-response
is straightforward to calculate since the predicted cumulative probabilities (π̂ij), and the
variance of the predicted cumulative log odds (Var(logit(π̂i,j−1))), are typically standard
output of any non-linear regression program, including SAS Proc NLMIXED. Thus,
although the algorithm is not very complicated, it did require us to write a special-purpose
program to maximize the cumulative logistic model via a Poisson likelihood. Specifically, a
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SAS macro, which embeds SAS Proc NLMIXED (SAS Institute Inc, 2010), was written to
implement the bias-corrected proportional odds regression estimator; SAS Proc NLMIXED
calculates variances based on the inverse of the observed information. The SAS macro is
provided in the online supplement to this paper.

4 Application to Study of Surgical Complications
In this section, we apply the proposed methodology to the analysis of the surgical
complications data described in the Introduction. The study includes 102 patients
undergoing colorectal surgery at Brigham and Women’s Hospital. The outcome is the
ordinal variable ‘major post-operative complications’ (1=none, 2=major complication,
3=death) within 30 days post-surgery. There are two main predictors of interest: the 4-level
categorical ‘Surgical Apgar Score’ and the dichotomous preoperative disease status
(1=systemic or worse disease, 0=mild or no disease) of the patient. A priori, our surgical
colleagues conjectured that patients with worse (lower) Surgical Apgar scores and systemic
or worse preoperative disease would be more likely to have post-operative complications.

To examine the joint relationship between post-operative complications and these two
covariates, we fit the proportional odds logistic regression model,

(7)

for j = 2, 3, where Apgar(k:ℓ)i = 1 is the Surgical Apgar score equals k or ℓ (Surgical Apgar
score 9–10 is the reference category); and Diseasei equals 1 if the patient has systemic or
worse preoperative disease, and 0 otherwise. Note, in a slight departure from notation used
in earlier sections where we defined πij in terms of cumulating over lower values of the
ordinal outcome, for ease of interpretation, here we accumulate over higher values of the
ordinal post-operative complications outcome. In particular, we model two ‘cumulative’
probabilities: the probability of complications or death pr[Yi ≥ 2] and the probability of
death pr[Yi = 3].

Table 2 gives the estimates of β obtained using the bias-corrected method for the data based
on the total sample (n = 102), as well as the standard ML estimates of β (the latter were
obtained using SAS Proc LOGISTIC). For comparison, we also give the results using the ad
hoc bias correction approach proposed by Clogg et al. (1991). The Clogg et al. approach
requires creation of J − 1 additional responses for each subject associated with the same
covariates; these J −1 additional observations take on the J −1 values that the original Yi did
not; k = 1, …, J; k ≠ Yi. The original Yi is assigned weight 1 + 1/(nJ) and the J − 1 new
observation are assigned weight 1/(nJ) in subsequent analysis that treats all observations as
independent. This procedure effectively adds nJ × 1/(nJ) = 1 observation to the original
dataset.

Of note, in Table 2, there were no convergence problems with ML for the analysis of data
using the entire sample. However, there were some differences in the odds ratio (OR)
estimates for the effects of Surgical Apgar obtained from the two approaches. For example,
the estimated odds ratio for Surgical Apgar 3–4 versus Surgical Apgar 9–10 is e2.869 = 17.6
using standard maximum likelihood and e2.440 = 11.5 using the bias-corrected estimator, a
relative difference of 54%. The estimate from the Clogg et al. approach fell in between,
e2.785 = 16.2, although closer to standard maximum likelihood. When these estimates are
compared to their standard errors, all three methods lead to the same conclusion that the
largest effect on post-operative complications is for Surgical Apgar 3–4 versus Surgical
Apgar 9–10 (P < 0.05); however, the relative magnitudes of the effect estimates are
discernibly different for the three methods. From the results of the three methods, the
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preoperative disease status does not appear to significantly affect complications in this
sample.

As discussed in the Introduction, predictive models for complications are often different for
males (n = 53) and females (n = 58) (Guru et al., 2006; Falcoz et al., 2007; Nguyen et al.,
2009). Therefore, in secondary analyses, we examined the estimated effects for (7)
separately for males and females. Table 3 presents descriptive statistics stratified by gender;
the estimates of the regression parameters are given in Table 4. Although it is not
immediately transparent from Table 3, when restricted to the sample of males, there is quasi-
complete separation of data points. The definition of separation for ordinal data relies on the
same definition as for binary data. For binary data, separation occurs when there is no
overlap in the covariate values with Y=0 and with Y=1. Agresti (2010) defines separation
for cumulative logit models (such as the proportional odds model) in terms of whether
separation occurs for each of the possible collapsings of contiguous categories of the ordinal
response to a binary response.

We note that the convergence criterion used for maximum likelihood is that the relative
change in the log-likelihood between successive iterations is less than 0.000001. The ML
estimates for males reported in Table 4 are based on 10 iterations using the above
convergence criterion (we note that three widely used software packages, SAS Proc
LOGISTIC, Stata command ologit, and the R function polr, all produced the same estimates
with this convergence criterion). Although the likelihood converged to a finite value, many
of the ML estimates in Table 4 for the sample of males appear to be diverging to infinity.
When there is quasi-complete (or complete) separation, the ML parameter estimates for the
variable (or variables) with separation do not exist. In contrast, the bias-corrected estimator
yields finite estimates that have been shown, in simulations (including the following
section), to have good sampling properties; however, we caution that somewhat greater care
is required in interpreting the bias-corrected estimates when there is quasi-complete
separation. Also, the results of the Clogg et al. approach for males give estimates that are
much larger in magnitude than the estimates from our bias-corrected procedure. Based on
the bias-corrected analyses of the data, (as opposed to standard ML or the Clogg et al.
method), the study investigators had greater confidence reporting the results for the total
sample since the associations did not appear to differ by gender.

In summary, the results of analyses of the surgical complications data highlight how
standard proportional odds logistic regression and the bias-corrected method can produce
discernibly different estimates of effects. However, to examine the finite sample bias of
these approaches, we conducted a simulation study; the results of the simulation study are
reported in the next section.

5 Simulations for the Proportional Odds Model
In this section, we study the finite sample bias in estimating β for the proportional odds
logistic regression model using maximum likelihood, the bias-corrected method proposed in
this paper, as well as the alternative approach for bias correction for multinomial regression
models proposed by Clogg et al. (1991). We note that we present the results of our bias-
corrected approach based on the observed information. We also ran simulations using the
expected information and there was very little difference between using either the observed
or expected information with respect to the bias-correction.

We consider a proportional odds logistic regression model with three covariates,
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j = 1, .., J − 1, where J = 5. We performed three sets of simulations. In all simulations, the
intercepts were set to β0j = logit(j/J) (for j < 5).

For the first set of simulations, we let (β1, β2, β3) = (−1, −1, −.06) and specified covariate
distributions which gave approximately equal probabilities across all response categories. In
particular, in the first set of simulations, the covariates were simulated independently with
xi1 ~ Bern(0.05), xi2 ~ N(0, 1), and xi3 ~ N(0, 8). For this first set of simulations, the average
marginal probabilities are

In the second set of simulations, we again let (β1, β2, β3) = (−1, −1, −.06), but specified
covariate distributions which produced small probabilities in all response categories except J
= 5. In particular, the covariates were again simulated independently with xi1 ~ Bern(0.05),
xi2 ~ N(0, 1), but with xi3 distributed as lognormal with median of 54 and scale parameter
0.35 (the latter distribution is similar to that for age of adults). For this second set of
simulations, the average marginal response probabilities are

In the third set of simulations, to explore possible problems caused by a large regression
parameter, we let (β1, β2, β3) = (4, 1, .06). The covariate distributions were the same as in
the first set of simulations: xi1 ~ Bern(0.05) and xi2 ~ N(0, 1), and xi3 ~ N(0, 8). However,
with (β1, β2, β3) = (4, 1, .06), this configuration produced small probabilities in all response
categories except J = 1. In particular, for this third set of simulations, the average marginal
probabilities are

Due to the small probabilities associated with the majority of response categories, we expect
the second and third sets of simulations to produce larger biases for standard maximum
likelihood.

We conducted simulations for two different sample sizes, n = 40 and n = 80. For each
simulation configuration, 2500 simulation replications were performed. The convergence
criterion for maximum likelihood is that the relative change in the log-likelihood between
successive iterations is less than 0.000001; we report the percentage of simulation
replications in which this convergence criterion was not met. When ML fails to converge,
we use the estimates from the 25th iteration (the default maximum number of iterations in
SAS Proc LOGISTIC).

Tables 5, 6, and 7 present the relative biases defined as 100(β̂ − β)/β, the root mean square
error, and the coverage probabilities of 95% Wald confidence intervals for the three sets of
simulations, respectively. We present results for all simulation replications, and also for the
subset of simulation replications when ML converges. The latter results can be
considered ’conditional on the likelihood convergence criterion.’
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For the first set of simulations (Table 5), with approximately equal probabilities in all 5
categories, the standard MLE has relative bias greater than 10% for all parameters when n =
40, and between 5% and 10% for n = 80. In contrast, the bias-corrected approach has
negligible bias for both samples sizes. The Clogg et al. approach has between 5% and 10%
relative bias for n = 40, and less than 5% for n = 80; in general, the Clogg et al. approach has
greater relative bias than the bias-corrected approach, but less than standard ML. Overall,
the RMSE is slightly smaller for the bias-corrected approach versus both the Clogg et al. and
standard ML approaches. With simulation standard errors for coverage probabilities of
approximately 0.44%, the coverage probabilities for both sample sizes and across all
approaches attain the nominal 95% level.

For the second set of simulations (Table 6), with small probabilities in the first four response
categories, ML converged for 90% of the simulation replications when n = 40, and 99%
when n = 80. From the results including all simulation replications, it is apparent that the
relative bias of the MLE can be very large in small samples (n = 40), with relative bias as
large as 250%. Applying the bias correction to ML proposed in this paper reduces the bias to
minimal levels (less than 5%). With n = 80, the ML approach can still yield appreciable bias,
whereas applying the first-order correction to ML results in negligible bias. The Clogg et al.
approach gives much smaller bias than standard ML (between 10% and 15% for n = 40, and
less than 5% when n = 80). The RMSE is similar for the bias-corrected approach and the
Clogg et al approach, but can be much larger for standard ML. Although some of the
coverage probabilities are as high as 97%, in general, the coverage probabilities appear to
agree with the nominal 95% level. When restricted to the simulation replications where ML
converged, as might be expected, there is far less bias for standard ML when compared to
the results from all simulation replications.

The third set of simulations (Table 7), with small probabilities in the last four response
categories (and a large β1 = 4), give similar results to the second set. ML converged much
less often than the second set, with 57% of the simulation replications converging when n =
40, and 63% when n = 80. From the results including all simulation replications, the relative
bias of the MLE can be very large in small samples (n = 40), with relative bias as large as
115%. Applying the bias correction to ML proposed in this paper reduces the bias to
minimal levels (again less than 5%). With n = 80, the ML approach can still yield
appreciable bias, whereas applying the first-order correction to ML results in negligible bias.
The Clogg et al. approach gives much smaller bias than standard ML (between 5% and 10%
for n = 40, and less than 5% when n = 80. In general, the RMSE is slightly smaller for the
bias-corrected approach versus the Clogg et al approach, and again can be much larger for
standard ML. When restricted to the simulation replications where ML converged, again
there is far less bias for standard ML when compared to the results from all simulation
replications; similar to before, the bias-corrected and Clogg et al approaches tend to have
greater bias when compared to the results from all simulation replications.

Although Wald confidence intervals are known to be conservative (Hauck and Donner,
1977; Heinze and Schemper, 2002; and Bull et al, 2007) with large β’s, we found in the last
set of simulations with β1 = 4, that the coverage probabilities agree with the nominal 95%
level. However, we cannot generalize based on this one simulation setup, so one would still
want alternatives to obtain confidence intervals. Based on the results of theorem 1 of
Kosmidis and Firth (2009), we cannot use a penalized likelihood approach with the
proportional odds model to obtain confidence intervals, thus we suggest using the bootstrap
as an alternative to obtain confidence intervals with large estimated regression coefficients.
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6 Conclusion
In this paper we have described a simple implementation of Firth’s (1993) bias correction in
the proportional odds logistic regression model. By exploiting the connection between the
multinomial and Poisson likelihoods (subject to a model that constrains the means to sum to
1 within subjects), we derived a bias correction based on univariate Poisson distributions.
This bias correction adds a function of both the ‘predicted probabilities’ and the ‘variance of
the linear predictor’ to the indicator for each outcome category; this is turn is used to form a
‘pseudo-response’ that replaces the original indicator. This pseudo-response is relatively
simple to calculate, and leads to an iterative algorithm that is straightforward to implement.
Because the proportional odds model is likely the most widely used regression model for
ordinal categorical data, the approach to bias correction described in our manuscript should
be useful to applied statisticians.

Although not specifically discussed in this paper, the proposed method can also be used for
any multinomial model that constrains the multinomial probabilities to sum to 1, including
the non-proportional odds model (Williams and Grizzle, 1972) and multinomial models with
non-canonical link functions (e.g., probit or complementary log-log link). We note that
Kosmidis and Firth’s (2011) bias correction approach was specifically developed for the
multinomial logistic regression model for nominal (unordered) data. In particular, Kosmidis
and Firth (2011) apply Birch’s (1963) connection between Poisson log-linear models for cell
counts and multinomial logistic regression models; this requires the addition of a nuisance
parameter to the Poisson log-linear model for each subject. This nuisance parameter
corresponds to the multinomial total for each subject; because it is an ‘unknown’ parameter,
it must also be estimated from the data at hand. Although the focus of this paper has been on
the proportional odds logistic regression model, we note that if our approach is applied to
the multinomial logistic regression model for nominal (unordered) responses as outlined in
Appendix 2, no additional nuisance parameters need to be included in the model in the
Poisson likelihood; the pij’s in (1) are simply the multinomial model probabilities. However,
the resulting expression for the pseudo-response for the multinomial logistic model is not as
simple as in the case of the proportional odds model.

Finally, the results of the simulations demonstrate that the proposed method can greatly
reduce the finite sample bias of maximum likelihood for estimating the regression
parameters of the proportional odds logistic regression model. Interestingly, even in
simulations where none of the response categories were rare, the standard maximum
likelihood approach was found to have substantial bias in small samples. However, because
of the broad range of possible data configurations, it is difficult to draw definitive
conclusions from the results of the simulation studies. Nonetheless, in the simulations
reported here, the bias-corrected method performs discernibly better than the standard
likelihood approach, suggesting that the bias-corrected method could be adopted as a first-
line choice in regression analyses of ordinal outcomes.
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Appendix 1

Multinomial Likelihood Equations
Here we show that the score equations for β from the multinomial likelihood are identical to
the score equations given by (2) in Section 2. We also show that the expected information is
identical under the multinomial and Poisson likelihood formulations (the observed
information will be the same since the score equations are the same).

We denote the J × 1 vector of multinomial indicator random variables for subject i as Yi =
[Yi1, …, YiJ]′. Although the Yij’s sum to 1 for each i, we adopt the convention of
McCullagh and Nelder (1989) and include all J indicators in the outcome vector. Further,
E(Yi|xi) = pi = [pi1, …, piJ]′, and the variance-covariance matrix of Yi equals

where Diag(pi) is a diagonal matrix with the elements of pi on the diagonal. Note that

because , Var(Yi) has rank J − 1. McCullagh and Nelder (1989, p.167) define the
generalized inverse of Vi as

i.e., a diagonal matrix with 1/pij on the diagonal. This generalized inverse has rank J and
satisfies the property that

Then, under any model with the constraint , the multinomial maximum likelihood
equations for β are

(8)

where Dij = ∂pij(β)/∂β, and the jth column of Di equals Dij (see, for example, McCullagh and
Nelder, 1989, pp. 171–172). Note that these are identical to the Poisson score equations
given by (2) in Section 2.

The observed information matrix can be written as

where the kth column of Ai has typical element
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(9)

Note that under both the multinomial and Poisson formulation outlined in Section 2, the first
moment of Yi equals pi, i.e., E(Yi − pi) = 0. Therefore,

and E(Ai) = 0. Thus, the expected (Fisher) information matrix equals

under both the multinomial and Poisson formulation outlined in Section 2. This establishes

that bias correction, which is a function of  where Var(β̂) can be based on either
the observed or expected information is the same whether based on the multinomial

likelihood or by substituting a Poisson likelihood subject to the model constraining .

Appendix 2

Multinomial Logistic Regression
Here we briefly discuss implementation of our first-order bias correction approach for a
multinomial logistic regression model for nominal (unordered) responses. We also show that
our approach is not appropriate when the multinomial logistic regression model is expressed
in terms of a Poisson log-linear model with subject-specific effects.

In a slight departure from the notation in previous sections, the multinomial logistic
regression model can be written as

(10)

where xij is the covariate vector corresponding to multinomial level j (ordinarily, xij contains
the covariates xi plus an indicator for the intercept for level j) and βj are the regression
parameters corresponding to level j (often βJ is set to 0 for identifiability). Since this
multinomial logistic model has the constraint

satisfied by definition, we can use the Poisson likelihood approach discussed in this paper
with pij specified as in (10). The pseudo-responses have the same form as in (3), with aij =

0.5 . Although it has a closed form and can be calculated in a matrix software
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package (e.g., R or SAS Proc IML), the resulting expression for the pseudo-response for the
multinomial logistic model is not as simple as in the case of the proportional odds model
that is the focus this paper.

Next, suppose the multinomial logistic regression model is written as a Poisson log-linear
model. In particular, the Poisson log-linear model for pij is

where β0i is an effect for the ith subject. Using properties of sufficient statistics for a log-
linear model with a Poisson distributed outcome, these subject-specific β0i’s constrain

. In this paper (before applying the bias correction approach), we assume

the general situation where all subjects have unique covariates so that . Then, for

the Poisson log-linear model, since , it follows that . In this case, it is
easily shown that the estimate of βj will be the same from directly maximizing the
multinomial likelihood or by fitting the Poisson log-linear model.

However, our implementation of the bias-correction cannot be applied to the Poisson log-
linear model. The reason is as follows. If we directly attempted to apply our bias-correction
approach to a Poisson log-linear model, in the iterative bias-correction algorithm, we have
the pseudo-response

where aij > 0, so that

Thus, our implementation of the bias-correction, which requires , cannot be
applied to a Poisson log-linear model version of the multinomial logistic regression model.
For the Poisson log-linear formulation of the multinomial logistic regression model,
Kosmidis and Firth (2011) give an elegant approach to implementing the first-order bias-
correction.
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