Skip to main content
. Author manuscript; available in PMC: 2014 Jan 1.
Published in final edited form as: J R Stat Soc Ser C Appl Stat. 2012 Oct 22;62(2):233–250. doi: 10.1111/j.1467-9876.2012.01057.x

Table 2.

Comparison of proportional odds logistic regression parameter estimates for the post-operative surgical complications data, full sample (n=102)

Effect Approach Estimate SE Z-statistic P-value
Intercept (j ≥ 2) Standard MLa 2.436 1.072 2.27 0.023
ML:Bias-Corrected 2.055 0.922 2.23 0.027
Clogg et al. 2.363 1.038 2.28 0.023
Intercept (j = 3) Standard MLa 4.385 1.186 3.70 <0.001
ML:Bias-Corrected 3.819 1.026 3.72 <0.001
Clogg et al. 4.254 1.145 3.71 <0.001
Apgar 3–4 Standard MLa 2.869 1.262 2.27 0.023
ML:Bias-Corrected 2.440 1.147 2.13 0.034
Clogg et al. 2.785 1.230 2.26 0.024
Apgar 5–6 Standard MLa 1.156 1.155 1.00 0.317
ML:Bias-Corrected 0.845 1.015 0.83 0.406
Clogg et al. 1.110 1.122 0.99 0.323
Apgar 7–8 Standard MLa 0.261 1.134 0.23 0.818
ML:Bias-Corrected −0.029 0.992 −0.03 0.977
Clogg et al. 0.246 1.099 0.22 0.823
Pre-operative Standard MLa 0.390 0.550 0.71 0.478
Disease ML:Bias-Corrected 0.376 0.534 0.70 0.482
Clogg et al. 0.376 0.541 0.69 0.487
a

Standard ML is not bias-corrected, with convergence criterion: relative change in the log-likelihood between successive iterations is less than 0.000001