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A B S T R A C T

Tumor suppressors play a major role in the etiology of human cancer, and typically achieve

a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of

tumor suppressors may occur through genetic mechanisms (such as loss of function mu-

tation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms

(such as promoter methylation or histone modification), or a combination of the two. We

report systematically derived status of 69 known or putative tumor suppressors, across

799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we

constructed a novel comprehensive computational framework for the assessment of tumor

suppressor functional “status”. This approach utilizes several orthogonal genomic data

types, including mutation data, copy number, LOH and expression. Through correlation

with additional data types (compound sensitivity and gene set activity) we show that

this integrative method provides a more accurate assessment of tumor suppressor status

than can be inferred by expression, copy number, or mutation alone. This approach has

the potential for a more realistic assessment of tumor suppressor genes for both basic

and translational oncology research.

ª 2013 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction mutation in a tumor suppressor gene is normally recessive
Tumor suppressor genes encode proteins that normally

inhibit tumor formation caused by abnormal cellular prolifer-

ation. Tumor suppressor proteins can participate in a variety

of processes such as negative regulation of the cell cycle, pos-

itive regulation of apoptosis, regulation of DNA damage

response, or other mechanisms (Stanbridge, 1990). The list of

tumor suppressor genes includes such names as TP53 (tumor

protein p53), RB1 (retinoblastoma), APC (adenomatous polypo-

sis coli), and BRCA1 (breast cancer 1, early onset). The inactiva-

tion of these and other tumor suppressor genes plays a major

role in many types of cancer (Jones and Thompson, 2009).

Unlike proto-oncogenes, where a single mutation can

be dominant and lead to cellular transformation, a single
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as long as there is a second functional copy of the gene

(Knudson, 1971). However, loss of function of both tumor sup-

pressor alleles may promote tumor growth or survival

providing that the loss of function is nearly or totally com-

plete. It is possible to infer loss of function of tumor suppres-

sor genes through a number of genomic measurements, such

as transcript expression, DNA copy number, and mutation.

The Cancer Cell Line Encyclopedia (CCLE, http://

www.broadinstitute.org/ccle/home) is a recently compiled

public resource that contains gene expression, chromosomal

copy number and massively parallel sequencing data from

nearly 1000 cancer cell lines (Barretina et al., 2012). These

matched datasets allow for the examination of distinct

mechanisms of tumor suppressor inactivation and also for
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“integrative analyses” of orthogonal data types. In order to

further extend the utility of the CCLE both for basic and trans-

lational oncology research communities, we have built a

comprehensive computational framework for assessing the

functional status of tumor suppressor genes. We have then

applied this framework to 69 known or putative tumor sup-

pressors across the CCLE. In this paper, we demonstrate that

this integrative method provides a more powerful and more

reliable tool for tumor suppressor gene analysis than simply

utilizing individual datasets.
2. Materials and methods

We compiled a list of 82 well-known and putative tumor sup-

pressor genes. Among these, 69 genes have mutation, copy

number and expression data available and, therefore, were

used for the present analysis (Supp. Table 1). We assembled

information from the literature on known loss of function

missense mutations (Table 1). At this time the number of
Table 1 e Known loss of function missense mutations.

Gene ENTREZ_ID AA.Change dbSNP Dominant
negative

CDKN2A 1029 H83Y

CDKN2A 1029 D84Y rs11552822

CDKN2A 1029 D108Y

CDKN2A 1029 P114L

MLH1 4292 V384D

PTEN 5728 R130G

PTEN 5728 R130Q

PTEN 5728 R173C

PTEN 5728 R173H

RB1 5925 C706F

STK11 6794 D194N

STK11 6794 D194V

STK11 6794 E199K

STK11 6794 P281L

TP53 7157 V143A N

TP53 7157 V157F Y

TP53 7157 R158L Y

TP53 7157 R158H N

TP53 7157 R175H rs28934578 Y

TP53 7157 Y220C Y

TP53 7157 M237I N

TP53 7157 G245S rs28934575 Y

TP53 7157 R248Q rs11540652 Y

TP53 7157 R248W Y

TP53 7157 R249S Y

TP53 7157 R273C Y

TP53 7157 R273H rs28934576 Y

TP53 7157 R273L Y

TP53 7157 R280K N

TP53 7157 R280S N

TP53 7157 R280T N

TP53 7157 R282G N

TP53 7157 R282W Y

VHL 7428 P81S rs5030806

VHL 7428 L85P rs5030828

VHL 7428 L89H rs5030807

VHL 7428 L158Q

VHL 7428 R167W rs5030820
clearly validated loss of function missense mutations is small

(only 38 entries covering 7 genes). However, it is likely that

there are other bona fide losses of functionmissensemutations

that have not been sufficiently validated or annotated.

Affymetrix U133Plus2 mRNA expression, Affymetrix SNP

6.0 data, OncoMap mutation calls (MacConaill et al., 2009),

exome data sequencing (Hodges et al., 2007), and pharmaco-

logical profiling data are available at the CCLE website. All

expression values are MAS5 normalized, with a 2% trimmed

mean of 150 (Hubbell et al., 2002). We summarized cutoffs

used for expression, copy number, and mutation data in

Table 2.

We have dividedmechanisms of inactivation of tumor sup-

pressors into three categories. Figure 1 illustrates each sub-

category with a simplified diagram.

The first category “G” is based completely on geneticmech-

anisms of inactivation of both alleles (Stanbridge, 1990;

Ponder, 2001) and, therefore, can be considered as the highest

confidence category.

The genetic category can be subdivided further into 2 sub-

categories:

1. The sub-category “G-M” is based on a homozygous

nonsense, frame shift, loss of function missense mutation

or heterozygous/homozygous dominant negative mutation.

2. The sub-category “G-D” is based on deletion of both alleles

(bi-allelic loss).

One way for a gene to appear in the sub-category “G-M” is to

have LOH statusderived fromAffymetrix SNP 6.0 data and aho-

mozygousmutation deduced from the exome sequencing data.

Any nonsense or frame shift mutation is considered to lead to

loss of function; however, only validated loss of function

missense mutations from Table 1 are used. Figure 1 illustrates

a sub-category “G-M” with the most likely scenario being the
Table 2 e Cutoffs for expression, copy number, and mutation data.

Copy number (CN) ratio <0.6 indicates “allelic loss”.

CN ratio is the ratio of signal intensity in a tumor sample

versus normal reference samples normalized to total DNA

quantity; thus a CN ratio of 1 corresponds to a diploid locus.

Copy number ratio <0.25 indicates “bi-allelic loss”, or complete

loss.

Copy number ratio >0.9 indicates the presence of both alleles.

Gene expression <32 is considered to be “not expressed”, when

the mean and median expression of this gene across all cell

lines are above 100. For calculation of mean and median gene

expression values, we discarded cell lines with CN ratio below

0.25, in order to decrease artificial under-estimation of

expression distributions of cell lines with remaining functional

DNA.

Gene expression >300 is considered as a “high confidence” level

of expression.

Mutation data: a minimum of 20 mutant reads defines a “trusted

mutation”, this is a conservative cutoff designed to minimize

false positive calls. No more than one read for the wild type

allele is allowed for homozygous calls.

(For reference, hybrid capture exome sequencing was

performed to an average depth of 60-fold.)

OncoMap mutations are considered to be heterozygous.

http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001


Figure 1 e Tumor suppressor inactivation categories. G e stands for genetic alteration, D e stands for deletion, Me stands for mutation, Ee stands

for absence of expression.

M O L E C U L A R O N C O L O G Y 7 ( 2 0 1 3 ) 7 9 1e7 9 8 793
loss of one allele and inactivation of the other by mutation.

However it is possible to have identical multiple copies of an

allele inactivated by the mutation. It is useful to keep in mind

that males have an automatic genetic “LOH” on the X chromo-

some, and females have a mosaic allele-specific expression

pattern due to random inactivation of one of two X chromo-

somes during early embryogenesis (Heard et al., 1997).

Another “G-M” mechanism is dominant negative muta-

tion. As can be seen from Table 1, only TP53 is considered to

have dominant negativemutations in the list of 69 tumor sup-

pressors that are examined here. OncoMap mutation calls are

also used for this sub-category.

The second category “E-G” is based on inactivation of one

allele by a genetic mechanism and loss of the expression of

the second allele. The loss of the expression could be due to

multiple reasons, such as loss of upstream signaling, muta-

tions in promoter and enhancer regions and epigenetic mech-

anism, such as promoter methylation and possible histone

modifications. The epigenetic mechanism of inactivation of

tumor suppressor genes is considered to be of fundamental

importance in tumorigenesis (Jones and Baylin, 2002). Since

epigenetic data is not available at this point for the majority

of the CCLE cell lines, gene expression data is used as a proxy

for the epigenetic mechanism; this substitution is not perfect,

however it provides a reasonable practical approach. This

“E-G” category can be further divided into two sub-categories:

1. The sub-category “E-G-D” is characterized by deletion of

one allele and absence of gene expression.

2. The sub-category “E-G-M” is characterized by nonsense,

frame shift or loss of function missense mutation on one

allele and absence of gene expression. Exome sequencing

data and OncoMapmutation calls are used for this sub-cate-

gory. Since the second category, in general, requires absence

ofmRNA expression, sub-category “E-G-M”willmostly cover

the scenarios when the mutation leads to mRNA decay.

The third category “E” is based on loss of the expression of

both alleles. As in the “E-G” category, epigenetic mechanisms
are likely playing an important role in the loss of the expres-

sion. Category “E-LOH” denotes LOH in addition to absence

of mRNA expression.

In order to help identify cell lines with functional wild type

tumor suppressors, we established the wild type category.

“Wild type” status is based on absence of non-synonymous

mutations, splice sites mutations, CN loss or LOH (based on

CN data).

The wild type category is further divided into two sub-

categories:

1. The sub-category “WT-E” has mRNA expression at “high

confidence” level.

2. The sub-category “WT” has mRNA expression below “high

confidence” level.

Finally, a catch-all category “0” is defined for cases which

do not qualify any of the above categories. Category “0” has

two additional sub-categories:

1. “0-D” is characterized by deletion of one allele.

2. “0-M” is characterized by heterozygous nonsense, frame

shift or loss of the function missense mutation.

Figure 2 illustrates category assignment by means of

simplified flow chart.

Main reason for using multiple data types is to detect

different ways of tumor suppressor genes inactivation. Also

multiple data types help dealing with occasional technical arti-

facts. Coverage drop at the TP53 R273Cmutation in SW1710 cell

line (Supp. Figure 1) is example of such scenario; in the case of

TP53R273Cmutation themutationaldataprovidedbyOncoMap

for that particularmutation helps to augment sequencing data.
3. Results

For the 69 tumor suppressors for which all data types are

available, we generated a systematic and comprehensive

http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001


Homozygous nonsense, frame shift, loss of function missense or heterozygous  dominant negative mutation
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Heterozygous nonsense, frame shift or loss of function missense mutation 

Absence of mRNA expression
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Absence of mRNA expression
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0

Figure 2 e Simplified flow chart of category assignments.
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matrix of tumor suppressor status across 799 CCLE cell lines

using categories described in the “Methods” section (Supp.

Table 2). A web-interface for selecting cell lines with desirable

status of tumor suppressor(s) is available at http://cancer.-

tools.glacombio.net. We also generated summaries of cate-

gories for all examined genes. In addition, we summarized

the counts for the categories for all 69 genes across all 799

cell lines in Supp. Table 3.

Table 3 shows the 25 most frequently disabled (i.e., func-

tionally inactive) genes, and Supp. Table 4 lists data for all

69 genes. As one would expect, CDKN2A, TP53, RB1, PTEN
Table 3 e Most prevalent genetically inactivated tumor suppressors acros

Gene symbol G# E-G# G-M# G-D# E-G-

CDKN2A 231 16 0 231 16

CDKN2B 215 0 0 215 0

TP53 179 39 176 3 21

RB1 36 5 29 7 3

PTEN 20 9 14 6 9

SMAD4 20 0 6 14 0

KDM6A 15 0 1 14 0

APC 13 2 13 0 2

NF1 10 0 7 3 0

TGFBR2 8 21 0 8 15

MLH1 7 1 6 1 0

FHIT 6 0 0 6 0

CDH1 5 0 2 3 0

STK11 5 0 3 2 0

NF2 4 6 3 1 6

MSH2 4 5 2 2 4

ARID1A 4 2 3 1 1

DLC1 4 0 2 2 0

VHL 3 4 3 0 4

SMARCB1 3 1 0 3 0

ATM 3 0 3 0 0

RUNX1 3 0 0 3 0

LATS2 2 17 0 2 17

TSC2 2 1 1 1 1

CREBBP 2 1 1 1 1
andAPC are among themost frequently disabled genes in can-

cer cell lines. CDKN2A appears to be the most frequently

disabled gene in the CCLE. In about 76% of cases CDKN2A is

likely to be inactivated by DNA deletion of both alleles. This

is a larger proportion than expected, although the effect may

be partially explained by small genomic size of the CDKN2A

locus (only 25 kb). CDKN2B is disabled almost as often as

CDKN2A, but because it is located just 6 kb from CDKN2A lo-

cus these two loci may be deleted together. Not surprisingly,

TP53 is inactivated in about 50% cases by dominant negative

mutations (Petitjean et al., 2007). As expected for most of the
s CCLE.

D# E-G-M# E# E-LOH# WT-E# WT#

0 42 15 97 101

0 0 0 18 218

18 0 37 84 89

2 0 7 295 5

0 2 7 398 0

0 0 0 6 353

0 0 0 0 132

0 0 1 226 141

0 0 0 13 419

6 52 30 235 96

1 18 4 350 2

0 0 0 5 232

0 0 0 183 234

0 0 0 0 414

0 0 3 224 197

1 0 0 519 66

1 0 2 98 251

0 0 0 103 241

0 0 0 13 413

1 0 0 288 157

0 0 1 169 120

0 0 0 6 496

0 52 25 214 88

0 1 2 24 427

0 0 0 426 5

http://cancer.tools.glacombio.net
http://cancer.tools.glacombio.net
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001


Table 4 e TP53 inactivation categories and Nutlin-3 insensitivity.

TP53 inactivation Fisher exact p-value
for Nutlin-3 insensitivity

Genetic Inactivation 3.69E�07

Epigenetic/Genetic Inactivation 3.43E�03

Epigenetic Inactivation 2.95E�02

Epigenetic/Genetic Inactivation

and Epigenetic Inactivation

2.82E�04

Epigenetic/Genetic Inactivation,

Epigenetic Inactivation and

Genetic Inactivation

1.03E�08
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classical tumor suppressor genes, multiple number of

different mechanisms of inactivation is observed in collection

of 799 cancer cell lines. This points to the importance of sys-

tematic and comprehensive characterization of tumor sup-

pressor genes status in cancer models based on “integrative

analyses” of orthogonal data types.

Nutlin-3 is an inhibitor of MDM2-driven TP53 protein

degradation (Vassilev, 2004; Kubbutat et al., 1997). Mechanisti-

cally, only cell lines with wild type TP53 can be potentially

sensitive to this inhibitor as confirmed in part by sensitivity

of wild type MEFs cells and by the loss of sensitivity in TP53

knockout MEFs (Efeyan et al., 2007). We can use this knowl-

edge to assess our integrative approach to assessing tumor

suppressor status. Figure 3 shows the relationship between

TP53 status and sensitivity to Nutlin-3. Cell lines with IC50

below 4.5 mM are considered to be sensitive to Nutlin-3 and

cell lines with IC50 above 6.5 mM are considered to be insensi-

tive to Nutlin-3 (The IC50 is concentration at which the drug

response reached an absolute inhibition of 50%). As illustrated

by Figure 3, all cell lines with TP53 inactivated by any mecha-

nism are insensitive to Nutlin-3. Table 4 shows that each inac-

tivation category is statistically significantly enriched for

insensitive cell lines in comparison to wild type ones, by the

Fisher’s exact test.

Table 4 also illustrates that combiningmultiple inactivation

categories leads to more significant statistical results. In cell

lines with inactivated TP53 one would expect to see a drop in

TP53-driven signaling. The KEGG and BIOCARTA (http://

www.biocarta.com/genes/allpathways.asp) representations of

the TP53 signaling pathway are well-established references
Out of 237 insensitive cell lines:
121 have TP53 inactivated by Genetic me
33   have TP53 inactivated by Epigenetic 
19   have TP53 inactivated by Epigenetic 

Wild Type

Genetic Inactivation
Epigenetic / Genetic Inactivation
Epigenetic Inactivation

TP53 status by color:

Figure 3 e Nutlin-3 sensitivity across 491 CCLE cell lines in relation to TP

marked by color. All cell lines with TP53 inactivated by any mechanism are i

categories. TP53 Genetic Inactivation status covers: G-M and G-D catego

TP53 Epigenetic/Genetic Inactivation status covers: E-G-M and E-G-D c
(Kanehisa et al., 2012). Pathway activity scores were calculated

for 4162 MSigDB gene sets covering multiple gene sets sources

including KEGG and BIOCARTA (Breslin et al., 2005; Lee et al.,

2008; Guo et al., 2005; Liberzon et al., 2011). Correlation coeffi-

cients were calculated between each TP53 inactivation cate-

gory/wild type category and TP53 pathway activity scores

based on KEGG and BIOCARTA gene sets. Table 5 summarizes

results of correlation calculations, as anticipated negative cor-

relations are observed for each inactivation category. Out of

4162 correlation coefficients for each inactivation category,

the correlation coefficients for BIOCARTA TP53 pathway have

the most negative values in 4 out of 5 cases. The statistical sig-

nificance of the distribution of TP53 pathway activity scores be-

tween cell lines from particular inactivation category and wild

type cell lines is confirmed by t-test. As indicated by above ob-

servations, the consideration of multiple mechanisms of inac-

tivation provides us with a more complete and informative
chanism
/ Genetic mechanism
mechanism

53 status. Each dot represents cell line with TP53 inactivation status

nsensitive to Nutlin-3. TP53Wild Type status covers: WT-E andWT

ries. TP53 Epigenetic Inactivation status covers E-LOH category.

ategories.

http://www.biocarta.com/genes/allpathways.asp
http://www.biocarta.com/genes/allpathways.asp
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001


Table 5 e TP53 inactivation categories and KEGG & BIOCARTA TP53 signaling pathways.

TP53 inactivation Correlation coefficient
and rank for KEGG TP53

signaling pathway

t-test p-value for
KEGG TP53 signaling

pathway scores

Correlation coefficient
and rank for BIOCARTA
TP53 signaling pathway

t-test p-value for
BIOCARTA TP53

signaling pathway
scores

Genetic Inactivation �0.35 (2) 1.15E�10 �0.45 (1) 2.41E�17

Epigenetic/Genetic Inactivation �0.35 (4) 4.40E�07 �0.45 (2) 1.42E�11

Epigenetic Inactivation �0.39 (2) 2.67E�08 �0.51 (1) 2.47E�14

Epigenetic/Genetic Inactivation

and Epigenetic Inactivation

�0.44 (3) 1.77E�12 �0.57 (1) 3.18E�21

Epigenetic/Genetic Inactivation,

Epigenetic Inactivation and

Genetic Inactivation

�0.39 (2) 3.95E�16 �0.51 (1) 2.54E�27
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landscape of TP53 inactivation and better genomic character-

izations of cell lines models.

PD-0332991 is a CDK4/6 inhibitor and mechanistically only

cell lineswithwild type RB1 can be potentially sensitive to this

inhibitor (Finn et al., 2009). Supp. Figure 2 shows the relation-

ship between RB1 status and sensitivity to PD-0332991. Cell

lines with IC50 below 4.5 mM are considered to be sensitive to

PD-0332991 while cell lines with IC50 above 6.5 mM are consid-

ered to be insensitive to PD-0332991. As illustrated by Supp.

Figure 2 all cell lines with RB1 inactivated by any mechanism

are insensitive to PD-0332991. Supp. Table 5 shows that each

inactivation category by itself is not statistically significantly

enriched for insensitive cell lines in comparison to wild type

ones, however statistical significance is reached by combining

multiple inactivation categories.

The above examples for TP53 and RB1 clearly demonstrate

that accounting for multiple mechanisms of tumor suppres-

sor genes inactivation leads to amuchmore accurate determi-

nation of tumor suppressor functional status. Such enhanced

accuracy could be useful component in efforts to improve

preclinical stratification of anticancer therapeutics.
4. Discussion

The approach presented in this article and its application to

CCLEwill significantly improve the characterization of the sta-

tus of tumor suppressor genes in cancer cell line models. In

the future, we aim to further refine this methodology along

the following lines.

The ability to accurately differentiate between two muta-

tions affecting two different alleles and mutations affecting

just one allele is limited by the length of sequencing reads.

This limitation may have important implications. For example,

in the case of APC,which is often disabled in colorectal cancers,

a loss of function mutation affecting the first allele and also a

different loss of function mutation affecting the second allele

may occur relatively frequently. For example, in familial colo-

rectal cancers one allele may be disabled by a germ line loss

of function mutation while the other allele may be disabled

by somatic loss of function mutation (Fodde, 2002). Therefore,

in the case of APC, the total number of cell lines identified by

our framework approach as being genetically inactivated is

likely to be underestimated. This situation is likely to improve

as publicly available datasets become more refined, but in the
meantime our estimates will represent minimum numbers of

cell lines in such cases.

It is likely that there are bona fide losses of functionmissense

mutations thathavenot beensufficiently validatedor clearly an-

notatedand thereforedidnot appear inTable 1.Onceagain, pub-

licdatabasesareanevolvingresourceandshouldnotberegarded

aseither fullyaccurateor fullycomplete. In future, thecreationof

amore comprehensive and reliable resource of clearly validated

loss of function (as well as gain of function)missensemutations

in cancer would be a very useful cancer genetics tool. Hopefully,

ongoing efforts like the MutaDATABASE (Bale et al., 2011) and

ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) projects will

help to establish such a resource. Also, as can be seen in Table

1, some of the validated somatic loss of function mutations are

found in dbSNP (Sherry et al., 2001), and are not always explicitly

noted to be somatic variants or pathogenic alleles. Therefore, in

order to prevent the incorrect removal of somatic mutations,

extra stepsmustbe takenwhenusingdbSNPasafilter to remove

germ line SNPs from cancer samples sequencing.

RNA-seq datawill be generated for the CCLE collection dur-

ing the next phase of the CCLE project (Mortazavi et al., 2008).

We expect that these new data will assist in themore accurate

identification of cell lines inwhich there is a lack of expression

of particular genes. This would also allow examination of

allele-specific expression and, therefore, could help to identify

cases in which alleles that are only inactivated by mutation

are expressed. Exome sequencing data has a variable read

depth, with the highest coverage approximately in the middle

of capture probes and gradually decreasing coverage as the

distance increases. Asmentioned before OncoMapmutational

data helps to augment sequencing data at some locations.

RNA-seq data would help to further improve distribution of

read depth coverage here.

Genetic and epigenetic regulation of many tumor suppres-

sors is complemented by posttranslational regulation. For

example, TP53 has recently been referred to as one of the

group of “massively regulated genes” with several alternative

splicing sites and alternative translation initiation sites

together generating potentially as many as ten distinct iso-

forms of the gene product (Hollstein and Hainaut, 2010). At

the posttranslational level, the biological activity of TP53 de-

pends on its intracellular concentration and can bemodulated

by conformational changes, different intracellular localiza-

tion, DNA-binding activity and interactions with other pro-

teins. The accumulation and activity of the protein are also

http://www.ncbi.nlm.nih.gov/clinvar/
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
http://dx.doi.org/10.1016/j.molonc.2013.04.001
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regulated by suite of posttranslational modifications that

can include phosphorylation, acetylation, ubiquitination,

sumoylation, neddylation, methylation and glycosylation.

For example negative regulation of TP53 is provided in part

by the MDM2 and MDM4 proteins, which are important deter-

minants of TP53 abundance and subcellular localization.

Some of the tumor suppressors can be haploinsufficient

(Payne and Kemp, 2005) and, in this case, the decrease in

mRNA expression alone could have substantial tumor pro-

moting effects. Future work on incorporating considerations

of posttranslational regulations and haploinsufficiency may

improve characterization of tumor suppressor genes status

in cancer models.
5. Conclusions

Using several orthogonal genomic data types, includingmuta-

tion data, copy number, loss of heterozygosity, and functional

expression we have developed a novel comprehensive

computational framework for the assessment of tumor sup-

pressor functional “status”. We applied this approach to a

panel of 69 known or putative tumor suppressors, across 799

samples of the Cancer Cell Line Encyclopedia and showed

that it provides a more accurate assessment of tumor sup-

pressor status than can be inferred by expression, copy num-

ber, or mutation alone. This approach has the potential for a

more realistic assessment of tumor suppressors for both basic

and translational oncology research.
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