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Abstract This invited review starts with a brief introduction of retinal anatomy and magnetic res-

onance imaging techniques with contrast to optics, followed by a history and future perspective on

MRI applications to investigate the retinas of rodents, non-human primates and humans.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

The retina consists of multiple distinct stratified layers (Wassle
and Boycott, 1991). From the vitreo–retinal interface, these
layers are the nerve fiber layer (NFL) + ganglion cell

layer (GCL), inner plexiform layer (IPL), inner nuclear layer
(INL), outer plexiform layer (OPL), outer nuclear layer
(ONL), inner segment (IS), and outer segment (OS). The inter-

spersed plexiform layers are the synaptic links between the
adjacent nuclear layers. The thickness of the mammalian neu-
ral retina, excluding the choroid, is about 200 lm in rodents
(Cheng et al., 2006; Wassle and Boycott, 1991) and 300–

400 lm in humans (Bron et al., 1997; Buttery et al., 1991).
The retina is supported by two separate blood supplies, the

retinal and choroidal vessels. The retinal vasculature is mainly

localized in the ganglion cell layer, but projects capillaries into
the INL, IPL, and OPL (Bill, 1984; Harris et al., 1998;
Kaufman and Alm, 1992). The choroidal vasculature is located

beneath the photoreceptor layer, between the sclera and the
retinal pigment epithelium, a thin layer of epithelial cells at
the base of the photoreceptor outer segment. Choroidal vessels
do not extend into the photoreceptor layers (ONL, IS, OS)

which are in fact avascular. Choroid layer thickness is sparsely
reported. It has been reported to be 50 lm in rats by histology
which is susceptible to fixation artifacts, 90 lm in rats in vivo

(Cheng et al., 2006), and 200–300 lm in humans in vivo
(Alamouti and Funk, 2003; Schuman et al., 1995; Spaide
et al., 2008). The neural retina heavily relies on diffusion for

oxygen delivery, primarily from the choroidal vessels, and
transport of metabolites across the retinal pigment epithelium
(Bill, 1984; Harris et al., 1998; Kaufman and Alm, 1992). The

thickness of the choroid, which is not well documented, has
been reported to be 25–45 lm in rats (Cheng et al., 2006).
Importantly, the retinal and choroidal blood flows are regu-
lated very differently. Basal choroidal blood flow is much high-

er than retinal blood flow, which is similar to cerebral blood
flow. Choroidal blood flow is less responsive to many blood-
flow modulating factors compared to retinal blood flow which

responds robustly to many blood-flow modulating factors,
similar to cerebral blood flow regulation (Alm and Bill,
1970; Bill, 1984; Friedman et al., 1964; Harris et al., 1998;

Kaufman and Alm, 1992).

2. Optical imaging

Optical based imaging techniques have been widely utilized to
study the anatomy and physiology of the retina. Methods for
imaging retinal anatomy include fundus photography, optical

coherence tomography (Fujimoto et al., 1995), and scanning
laser ophthalmoscopy. With adaptive optics, spatial resolution
can be improved so that single cone and rod cells can be visu-
alized (Zawadzki et al., 2005). Methods to image blood flow

and velocity include fluorescein angiography (Preussner
et al., 1983), indocyanin-green angiography (Guyer et al.,
1993), laser Doppler velocimetry and flowmetry (Riva et al.,
1983, 2005), and laser speckle imaging (Cheng and Duong,

2007; Cheng et al., 2008). These techniques have been used
to study blood velocity and blood flow in large vessels or rel-
ative blood flow and oxygenation in tissue. Intrinsic optical

imaging detecting changes in scattering and blood oxygenation
has also been applied to study the retina (Grinvald et al., 2004;
Hanazono et al., 2007, 2008; Tsunoda et al., 2004a,b). Optical

techniques, except optical coherence tomography, are depth
limited. Most optical signals come from the retinal surface
with unknown extent of signal contamination from deeper lay-

ers. Optical techniques may be constrained to a small field of
view and may not be used in instances where disease-induced
opacity of the vitreous humor, cornea, or lens is present. More-
over, blood flow and blood velocity optical measurements are

limited to large surface vessels, which may not reflect local tis-
sue perfusion. Choroidal blood flow is generally inaccessible
with optics because choroid vessels are hidden behind the reti-

nal pigment epithelium. Nonetheless, optical imaging tech-
niques provide important and clinically relevant information
and have been widely utilized in the clinical settings.

3. Magnetic resonance imaging (MRI)

MRI provides relatively high-resolution anatomical, physio-

logical, and functional images of the entire body non-
invasively and in a single setting. MRI has no depth limitation
and offers a large field of view. To date, MRI is arguably the
method of choice for non-invasive anatomical imaging of

many organs since it provides exquisite soft tissue contrast
and structural details for clinical diagnosis. In addition, blood
flow, relative blood oxygenation, and brain function can also

be imaged. Anatomical, blood flow, vascular oxygenation
and functional MRI techniques are briefly described below.

Anatomical contrast in MRI arise from differences in spin

density, spin–lattice relaxation time (T1), spin–spin relaxation
time (T2) and apparent diffusion coefficient of water in tissue.
These MRI parameters vary depending on the properties of

the local tissue environment including water content, cellular
structure, macromolecule content, and ion concentrations.
Many diseases alter these biophysical parameters, causing vis-
ible changes in image contrast. Moreover, alterations of these

contrasts may be detectable in early stages before clinical
symptoms occur, providing opportunities for early detection.
In addition, the nascent capacity of anatomical MRI to distin-

guish different tissue types can be further enhanced by
exogenous contrast agents. For example, Gd-DTPA
(gadolinium-diethylene-tri-amine-pentaacetic acid), an estab-
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lished, clinically approved contrast agent can be used to en-
hance vascular signals.

Blood flow, an important physiological parameter, can be

quantitatively imaged using MRI. This can be done using an
exogenous intravenous contrast agent (dynamic susceptibility
contrast) or by magnetically labeling blood non-invasively to

provide endogenous contrast (arterial spin-labeling (Calamante
et al., 2002)). These blood-flow methods (Alsop and Detre,
1996; Detre et al., 1994; Duong et al., 2000b; Williams et al.,

1992; Wong et al., 1998a,b) are widely used to measure quan-
titative blood flow in the brain and have been cross validated
with autoradiography (Tsekos et al., 1998) and positron emis-
sion tomography (Liu et al., 2001; Zaini et al., 1999). Dynamic

susceptibility contrast MRI, which requires an injection of a
contrast agent, has better SNR for a single acquisition. How-
ever, it can only be performed once because of the long intra-

vascular half-life of the contrast agent. Arterial spin labeling
techniques, on the other hand, are totally non-invasive, and
the labeled water has a short half-life (�blood T1) making it

possible to perform repeated measurements which can be used
to augment spatial resolution, signal-to-noise ratio and to
monitor blood flow in real time (Calamante et al., 2002).

Relative blood oxygenation can also be imaged. The tech-
nique is referred to as the blood oxygenation level dependent
(BOLD) technique (Ogawa et al., 1990). BOLD MRI detects
differences in MR signal intensity that arise from changes in

oxygenation saturation of hemoglobin during brain activation.
Deoxyhemoglobin is paramagnetic and thus introduces intra-
voxel magnetic field inhomogeneity which alters the MR sig-

nal, while oxyhemoglobin is diamagnetic. Susceptibility-
sensitized MRI images are thus able to show changes in
regional deoxyhemoglobin content. A local reduction in

deoxyhemoglobin concentration will increase the BOLD sig-
nal, while an increase in deoxyhemoglobin will decrease the
BOLD signal. In the brain, when a specific region is activated

associated with stimulations (such as visual stimuli), local
blood flow increases to compensate for the increased metabolic
activity and oxygen consumption in the region. Such blood
flow increases will provide a boost in oxygen delivery in excess

of the increased oxygen consumption associated with increased
neural activities. Local oxygen saturation, therefore, increases
and deoxyhemoglobin concentration decreases. Techniques

that can measure blood flow and blood oxygenation can thus
be utilized to non-invasively image brain functions. These tech-
niques are referred to as functional MRI (fMRI) techniques

(Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al.,
1990, 1992).

Another common fMRI method is the arterial spin label-
ing technique which dynamically measure blood flow

changes in response to stimulations. Blood-flow fMRI can
be made more sensitive to blood flow in smaller vessels
which better reflect local tissue perfusion and avoid contam-

ination from large draining veins, which are prominent in
typical BOLD fMRI. Moreover, blood-flow fMRI is easier
to interpret because it measures a single physiological

parameter, in contrast to BOLD fMRI which is affected
by multiple physiological parameters, such as blood flow,
blood volume, and blood oxygenation. However, blood-flow

fMRI has lower temporal resolution and poorer sensitivity
per unit time due to much lower signal-to-noise ratio com-
pared to BOLD fMRI (Duong et al., 2001b). BOLD and
blood-flow fMRI techniques have also been used to study
neurovascular coupling in the brain to study brain physiol-
ogy and functions.

By comparison, the spatiotemporal resolution of MRI is

low relative to optical imaging techniques. With rapid
improvements in MRI technologies, the spatial and temporal
resolutions of MRI have sufficiently advanced to allow ana-

tomical, physiological and functional imaging of cortical layers
and columnar structure in the brain (Cheng et al., 2001; Duong
et al., 2000a, 2001a; Goense and Logothetis, 2006; Kim et al.,

2000; Silva and Koretsky, 2002). This allows non-invasive lon-
gitudinal investigation of very small structures in vivo.

The remainder of this paper will describe a brief history and
future perspective on the multimodal MRI applications to im-

age the retinas of rodents, non-human primates and humans.
4. MRI of the retina

4.1. Rodent retina

4.1.1. Anatomical MRI

Layer-specific structural MRI has been reported in rats (Cheng

et al., 2006), cats (Shen et al., 2006), and mice (Chen et al.,
2008). Relaxation times and apparent diffusion coefficients
have been reported in rats (Nair et al., 2010), cats (Shen

et al., 2006), and mice (Chen et al., 2008). At these spatial res-
olutions, only three to four layers were detected. Layer thick-
nesses and assignments were compared with histology in these
studies.

Gd-DTPA enhanced MRI can be used to enhance the reti-
nal vessels and the choroidal vessels, bounding the retina.
The retinal vessels consist of non-fenestrated capillaries which

are impervious to many tracers, including Gd-DTPA, and
tight-junctions between retinal epithelial cells in the choroidal
circulation prevent the passage of large molecules into the neu-

ral retina, including Gd-DTPA (Vinores, 1995). Therefore,
Gd-DTPA will enhance the signal in retinal and choroidal ves-
sels, but the avascular photoreceptor layers in the retina should

not show any enhancement. Gd-DTPA enhanced MRI has
been reported in rat (Cheng et al., 2006) and cat (Shen et al.,
2006) retinas. Gd-DTPA enhanced MRI aids in the assignment
of histological layers of the retina to MRI layers.

Manganese is both an MRI contrast agent and a calcium
analog. Unlike calcium, Mn is trapped in the intracellular
space with a half life of few days (Cotzias et al., 1968; Newland

et al., 1987), and thus selectively enhances intracellular water
MRI signals. Manganese-enhanced MRI (MEMRI) has been
utilized to map increased calcium-dependent neural activity

and regional differences in basal calcium activity in the brain
(Duong et al., 2000b; Lin and Koretsky, 1997) as well as to im-
prove anatomic contrast (Aoki et al., 2004; Lee et al., 2005).

Duong et al. explored the use of MEMRI to improve anatomic
contrast among retinal layers (Duong et al., 2008). MnCl2 was
injected directly into the vitreous and imaged at 25 · 25 lm in-
plane resolution 24 h after injection. High-contrast MEMRI of

normal retinas revealed seven distinct bands of alternating hy-
per- and hypo-intensities. The signal intensity profiles across
the retinal thickness showed a diffuse bright band closest to

the vitreous (#1) and three bright bands (#3, #5 and #7)
interspersed among three dark bands (#2, #4, and #6). To
confirm vascular layer boundaries, Gd-DTPA was injected

intravenously in the same animal. Gd-DTPA enhancement
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was consistently seen in retinal layers #1–#3 and in layer #7
but not in the sclera, vitreous or in retinal layers #4–#6.

4.1.2. Blood flow MRI

Li et al. was the first to report blood flow of the rat retina using
MRI (Li et al., 2008). Arterial spin labeling was implemented
to measure quantitative basal blood flow and blood-flow fMRI

changes during physiological stimulation. Blood-flow MRI in
the rat retina was performed using gradient-echo echo-planar
imaging at 90 · 90 · 1000 lm. Muir et al. markedly improved

spatial resolution to visualize the retinal and choroid blood
flow (Muir and Duong, 2010, in press) using a novel blood
flow MRI method (Muir et al., 2008).

4.1.3. fMRI of physiological challenges

Cheng et al. investigated a layer-specific neurovascular cou-
pling in the retina using BOLD fMRI in rats in response to

physiological stimuli (Cheng et al., 2006). High resolution
BOLD fMRI was obtained during hyperoxic (100% O2) and
hypercapnic (5% CO2 + 21% O2) challenges with air as the

baseline (Cheng et al., 2006). Data were acquired with spin-
echo echo-planar imaging at 90 · 90 · 1000 lm with diffusion
weighting to suppress the overwhelmingly strong but fast-

diffusing vitreous signal. Layer-specific BOLD fMRI
responses were detected in two bands on the inner and outer
edges of the retina. The two bands, corresponding to the reti-
nal and choroidal vasculature, responded differently to the

stimuli, indicative of differences in blood-flow regulation. Nair
et al. used blood volume fMRI to image responses to hyperox-
ic and hypercapnic challenges with air as the baseline in the rat

retinas at considerably high spatial resolution (Nair et al.,
2011). This was made possible with a blood-pool contrast
agent (monocrystalline iron oxide nanocolloid, MION). Their

results with respect to the different responses of the retinal and
choroid vascular layers are consistent with those of Cheng
et al. (Cheng et al., 2006).
4.1.4. fMRI of visual stimulations

Duong et al. was the first to report BOLD fMRI responses to
visual stimuli in cat retinas. BOLD fMRI of visual stimuli in

rat retinas was recently reported (De La Garza et al., 2010,
in press). These findings offered no laminar resolution. Shih
et al. utilized MION contrast agent and resolved retinal and
choroidal responses in the retinas (Shih et al., 2010, in press).

They also investigated changing luminances, wavelengths (col-
ors) and flicker frequencies. Retinal vessels were very respon-
sive to visual stimuli and exhibited characteristic tuning

curves, whereas choroidal vessels showed small percent
changes and did not exhibit characteristic tuning curves.

4.2. Large non-human-primate retina on clinical scanner

Translation of retinal MRI applications from rodents to hu-
mans is faced with two major challenges: (i) hardware that lim-

its spatial resolution and signal-to-noise ratio on clinical MRI
scanners, and (ii) eye movements in awake humans. As a first
step toward translation, Zhang et al. (Zhang et al., 2010b, in
press) investigated the feasibility of multimodal retinal MRI

on anesthetized/paralyzed large non-human primate (baboon)
using a standard clinical 3-Tesla MRI scanner. Baboon was
chosen because the retina of baboon, compared to rodent, is
evolutionarily closer to that of human, likely better recapitu-
lates many human retinal diseases. The size of the baboon

eye and the thickness of baboon retina are more similar to
those of humans compared to rodents. Baboons have fovea
in contrast to rodents and cats. Anesthesia and paralysis were

used to exclude movement artifacts, such that we could focus
on evaluating hardware feasibility, pulse sequence protocols
and parameters for high-resolution multimodal MRI of the

retinas on a clinical scanner. These multimodal MRI protocols
included anatomical MRI, basal blood flow MRI, BOLD
fMRI of hyperoxic challenge and blood flow fMRI of hyper-
capnic challenge (Zhang et al., 2010b, in press). This study pre-

sents a novel approach to visualize anatomical, physiological
(BOLD and blood flow) and functional MRI of large non-
human-primate retinas on a clinical scanner, and this serves

as a first step toward translation.
4.3. Applications to retinal diseases

Multimodal MRI has also been applied to study retinal
degeneration (Cheng et al., 2006; Li et al., 2009), diabetic
retinopathy (Berkowitz et al., 2004), and glaucoma (Calkins

et al., 2008; Chan et al., 2008) on rodent models.

4.4. Human retina

Zhang et al. (Zhang et al., 2010a, in press) demonstrated, for the

first time, a novelMRI application to detect BOLD fMRI signal
changes associated with oxygen and carbogen challenges in the
unanesthetized human retina without depth limitation at rea-

sonably high spatiotemporal resolution on a clinical 3 Tesla
scanner. These findings indicate that clinical scanners have suf-
ficient SNR, gradient strength, and stability to perform retinal

BOLD fMRI in unanesthetized humans. This was made
possible by optimizing a custom-designed eye coil, and the
MRI sequence and sequence parameters so that they are free

of susceptibility artifacts. Eye movement can be effectively
managed with eye fixation, synchronized blinks, and post-
processing image co-registration. BOLD fMRI has the
potential to provide a valuable tool to study the retinal physiol-

ogy and pathophysiology, including how vascular oxygenation
is regulated at the tissue level in the normal retina in vivo, and
how retinal diseases may affect oxygen response in the retina.

This study provides encouraging data to further explore BOLD
fMRI of the retina in unanesthetized humans. Additional
improvement in spatial resolution and sensitivity is expected.

Peng et al. (Peng et al., 2010, in press) demonstrated a proof
of concept that quantitative basal blood flow and its responses
to hypercapnic challenge in unanesthetized human retina can

be imaged using non-invasive MRI. A custom-designed eye
surface coil improves SNR in the posterior retina compared
to standard head volume coils, pseudo-continuous arterial
spin-labeling technique improves sensitivity for blood flow

measurement, and high turbo-spin echo acquisition yields
images free of susceptibility artifacts. Synchronized eye blink
minimizes eye movement and synchronized respiration reduces

physiological fluctuation, respectively. The advantage of
blood-flow MRI are: (i) non-invasive, (ii) depth-resolved and
unhindered by media opacity, (iii) quantitative, allowing com-

parison across subjects, and (iv) sensitive, capable of detecting
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changes associated with mild hypercapnic inhalation. MRI has
the potential to provide a valuable tool to study how blood
flow is regulated in the normal retina (i.e., neurovascular cou-

pling), and how retinal diseases may affect basal blood flow
and blood-flow regulation in vivo. Although improvement in
spatial resolution is needed, this study sets the stage for further

exploration of blood flow MRI of the human retina in normal
and diseased states. Maliki et al. also recently reported blood
flowMRI of the human retina albeit at lower spatial resolution

(Maleki et al., 2010, in press).

5. Future perspectives

This review summarizes a brief history of development and
application of lamina-specific anatomical, physiological and
functional MRI to study the normal and diseased retinas.

MRI reveals multiple anatomical layers within the retina, the
retinal and choroid vascular layers, and the unique differential
regulations of hemodynamics of the two vascular layers. The
key advantages of MRI are it is non-invasive, has depth reso-

lution and it offers multimodal (structural, physiological and
functional) information. The key disadvantages of MRI are
it has higher cost and lower spatiotemporal resolution which

makes it more susceptible to eye movement in awake subjects
relative to optical imaging techniques to date. MRI application
to the retina is still in its infancy. It has many potential appli-

cations in animal models of retinal diseases. It has been trans-
lated to human applications. However, its clinical efficacy
remain to be demonstrated.

There are many remaining challenges, and along comes

with exciting opportunities for new development and discov-
ery. The key challenges include: (1) improvement of spatiotem-
poral resolution and sensitivity, which includes developing and

optimizing new arrayed detectors, pulse sequences as well as
high-field scanners, (2) minimization of eye movements with
cue blinks and fixations, and (3) improvement of image co-

registration algorithms to improve alignment. With rapid
advances in MRI technologies, we anticipate that there will
be substantial improvement in the near future and MRI appli-

cations in the retina will broaden. Given the lack of competing
depth-resolved, physiological imaging techniques and the chal-
lenges in obtaining quantitative blood flow (and other physio-
logical) data in the in vivo retinas, MRI approaches to image

retinal physiology and function warrant further investigations.
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