
Investigating the Impact of Storage Conditions on
Microbial Community Composition in Soil Samples
Benjamin E. R. Rubin1,2*, Sean M. Gibbons3,4, Suzanne Kennedy5, Jarrad Hampton-Marcell3, Sarah
Owens3, Jack A. Gilbert3,6

1 Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, United States of America, 2 Department of Zoology, Field Museum of Natural
History, Chicago, Illinois, United States of America, 3 Argonne National Laboratory, Argonne, Illinois, United States of America, 4 Graduate Program in
Biophysical Sciences, University of Chicago, Chicago, Illinois, United States of America, 5 MO BIO Laboratories, Inc., California, United States of America,
6 Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America

Abstract

Recent advances in DNA sequencing technologies have allowed scientists to probe increasingly complex biological
systems, including the diversity of bacteria in the environment. However, despite a multitude of recent studies
incorporating these methods, many questions regarding how environmental samples should be collected and stored
still persist. Here, we assess the impact of different soil storage conditions on microbial community composition using
Illumina-based 16S rRNA V4 amplicon sequencing. Both storage time and temperature affected bacterial community
composition and structure. Frozen samples maintained the highest alpha diversity and differed least in beta diversity,
suggesting the utility of cold storage for maintaining consistent communities. Samples stored for intermediate times
(three and seven days) had both the highest alpha diversity and the largest differences in overall beta diversity,
showing the degree of community change after sample collection. These divergences notwithstanding, differences in
neither storage time nor storage temperature substantially altered overall communities relative to more than 500
previously examined soil samples. These results systematically support previous studies and stress the importance
of methodological consistency for accurate characterization and comparison of soil microbiological assemblages.
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Introduction

Advances in high-throughput DNA sequencing technology
allow us to characterize microbial diversity in environmental
samples at an unprecedented depth [1,2]. Soil microbial
communities have been particularly fruitful research subjects
for the application of next-generation sequencing techniques
(e.g. [3,4]). However, soil is an extremely heterogeneous
environment [5–7], and it is therefore essential that samples
from different locations be treated in as similar a way as
possible to prevent the introduction of potential biases. This
highly diverse environment combined with the extreme
sensitivity of modern amplicon sequencing approaches means
that small differences in sample preparation can drastically
alter the recovered species diversity [8,9]. Methods for
extracting DNA from soil have been discussed since culture
free studies of bacterial communities became possible [10–13];

however, the preservation techniques applied to the physical
sample are equally important for accurate representation of
these bacterial communities [14–17]. For example, both
storage time [18,19] and temperature [20] drive change in
community structure in human feces, sometimes affecting the
recovered relative abundance of certain taxa more than others
[21]. Furthermore, as interests in microbial ecology are shifting
towards differences in extremely rare taxa and minor structural
differences between highly similar samples (e.g. [22,23]), the
importance of effective and consistent sample preservation is
evident.

Lauber et al. [16] used 454 pyrosequencing to compare soil,
fecal and skin samples stored at different temperatures over
two weeks and concluded that variation between samples
outweighed differences due to variable storage conditions.
While these conclusions were promising, the sequencing depth
applied to each sample was relatively low (1,304-3,022
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sequences), which could lead to significant under-
representation of the ‘rare’ microbial taxa in these complex
communities and to misrepresentation of the relative
abundance of even the more common taxa. Here, we use
Illumina iTAG sequencing technology [24] to explore the impact
of storage temperature and storage time on the microbiome
profile of a single soil sample, observed at 5X the sequencing
depth of this previous study [16] and with higher temporal
resolution. Different second-generation sequencing platforms
can also yield different results on community composition (e.g.
[25,26]), requiring that each technology be examined
separately. Illumina is increasingly being used for evaluating
bacterial community composition but soil preservation
techniques have yet to be explored on this platform. Our
samples were analyzed with the laboratory protocols
implemented by the Earth Microbiome Project (EMP), which
are being used to process ~200,000 environmental samples
[27–30]. We also utilize data from over 500 soil samples
previously analyzed by the EMP to assess the significance of
changes within the samples tested here.

Methods

Soil was collected from the mineral soil surface to a depth of
~6 inches underneath a native riparian California bay tree at
California Polytechnic State University (N 35° 18' 46.59'', W
120° 39' 7.26''). Carbon and nitrogen content were determined
by dry combustion on an Elementar vario MAX CN analyzer
(Hanau, Germany) and pH was determined using a 1:2 soil:
water mixture with a Fisher Scientific Accumet AB15 pH meter
(Pittsburgh, PA) and a Thermo Scientific Orion 8172BNWP
ROSS Sure-Flow pH electrode (Waltham, MA). There was
substantial organic matter buildup in this soil, but it is
serpentinite in nature with low calcium and high magnesium
content. The soil was thoroughly mixed to reduce the impact of
patchily distributed taxa and then partitioned into 36, 0.25 g
samples. Samples were stored at room temperature, 4°C, or
-20°C and metagenomic DNA was extracted after one, three,
seven, or 14 days following initial separation. Every sample
treatment was replicated in triplicate.

16S rRNA amplification and sequencing on the Illumina
MiSeq2000 were done by the EMP, following their standard
protocols [24,28] and their modifications to the MO BIO
PowerSoil DNA Isolation Kit procedure for extracting DNA
(www.earthmicrobiome.org/emp-standard-protocols). Raw
sequence data are available from NCBI’s Sequence Read
Archive under study accession number SRA068971.

All 523 soil samples previously sequenced by the EMP were
also used in this study. These samples were components of 12
distinct studies (EMP IDs: 632, 659, 722, 808, 1031, 1034,
1035, 1036, 1037, 1038, 1289, 1526). The identifiers of all
individual samples used are given in Table S7. We downloaded
the previously prepared open-reference OTU tables for each of
these studies from https://github.com/EarthMicrobiomeProject/
isme14.

We used QIIME [31] default parameters for quality filtering
(reads truncated at first low-quality base and excluded if: (1)
there were more than three consecutive low quality base calls

(2), less than 75% of read length was consecutive high quality
base calls (3), at least one uncalled base was present (4),
more than 1.5 errors were present in the bar code (5), any
Phred qualities were below three, or (6) the length was less
than 75 bases). We picked OTUs using open reference
UCLUST clustering against the February 4th, 2011 release of
the Greengenes database filtered at 97% identity. Reads that
did not match any sequences in the reference database at ≥
97% identity were clustered de novo. We required that all
OTUs have a count of at least two reads across all samples.
OTUs that were not represented in the Greengenes reference
tree were inserted into that tree using ParsInsert (http://
parsinsert.sourceforge.net) as implemented in QIIME so that
phylogenetic measures of beta diversity could be used.
Evenness was calculated using the equitability metric defined
in QIIME as: (Shannon entropy) / log2(number of observed
OTUs). Alpha diversities for all samples, including those from
other EMP studies, were calculated at a rarefaction depth of
6,700. For analyses that included only samples sequenced
here, we rarefied our OTU table to 6,700 reads per sample for
all beta diversity and supervised learning analyses and for
determining the significance of particular OTU differences
between treatments. We required the presence of an OTU in at
least 10 samples to test it for significant correlations and
differences in relative abundance between treatments.

For beta diversity analyses with previous EMP studies, we
made OTU tables comparable to our own by filtering all OTUs
not represented by the Greengenes reference set from all
tables and merging the results. This table was then filtered for
taxa represented by only a single read. Samples in this merged
table were rarefied to 4,200 reads for subsequent analyses that
utilized both the previously sequenced samples and the new
samples.

Bray-Curtis, weighted UniFrac and unweighted UniFrac
distances were used for all analyses of beta diversity. We used
both analysis of similarities (ANOSIM) and distance-based
redundancy analysis (db-RDA) to test for significant differences
in beta diversity between treatments and used db-RDA models
to evaluate the percent of variation explained by the different
treatments. We also used ANOSIM and db-RDA metrics to
compare just the communities comprised of rare (number of
reads ≤ 10) and common (number of reads ≥ 100) OTUs.
Differences in relative taxon abundance between treatments
were examined using analysis of variance (ANOVA) and
correlations between relative abundance and storage time
were evaluated with Pearson correlations. All p-values reported
for differences in taxa among treatments were FDR-corrected.
All ANOSIM and db-RDA tests of significance between
treatments used 10,000 permutations. We specified 10,000
trees in the forest for all supervised learning analyses.

In addition to ANOSIM and db-RDA comparisons of soil
communities, we also evaluated differences between
treatments by comparing the mean beta diversity distances
between all samples in a particular treatment group. Lower
mean beta diversities between samples show greater similarity
in community composition. Therefore, these measures were
useful for evaluating how consistent communities remained
within treatment groups.
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Results

Sample characteristics
The pH of the homogenized soil sample was 6.74, total

nitrogen content was 0.811% and carbon content was 10.35%.
Recovered sequence counts for individual sub-samples ranged
from 7,239 to 18,444 (mean 12,391; Table S1). After clustering
and removal of OTUs represented by single sequences, counts
ranged from 6,897 to 17,850 (mean 11,752; Table S1).

Alpha diversity
Samples stored at room temperature (RT) had significantly

lower alpha diversity (measured as the absolute number of
observed taxa (richness), evenness, and Shannon diversity)
than those stored at -20°C (p < 0.0001, Table S2 Figure 1) and
significantly lower evenness and Shannon diversity than those
stored at 4°C (p < 0.01). Frozen (-20°C) samples had
significantly greater alpha diversity than refrigerated (4°C)
samples (p << 0.0001, Table S2). Samples extracted on days
three and seven had significantly higher alpha diversities than
those extracted on days one and 14 by all three metrics (p <
0.05). Additionally, samples extracted on day seven had
significantly higher evenness than those extracted on day three
(p = 0.001). The range of alpha diversities from this study was
less than the ranges of alpha diversities within other individual
EMP studies (Table S3).

Beta diversity
Beta diversities differed significantly between storage times

according to both ANOSIM and distance-based redundancy
analyses using all three distance metrics (p < 0.01, Table S4
Figure 2). Time remained an influential factor when samples
stored at the same temperature were compared across time
points, removing the confounding effect of temperature (Table
S4). Temperature was similarly analyzed without the
confounding effect of time but communities significantly differed
between temperatures only when stored for one day and for 14
days (Table S4). Significant differences between times held for
both the rare and common communities, except that
unweighted UniFrac metrics did not show significant
differences in the rare community between times.

Average beta diversity distances between samples within
temperature treatments were significantly lower in both 4°C
and -20°C stored samples, compared with those stored at RT
(T-tests, p < 0.05) for weighted UniFrac and Bray-Curtis
distances (Table S5). Beta diversities within samples stored for
three days and seven days were significantly higher than those
stored for one and 14 days (p < 0.05, Table S5 Figure 1).

All communities examined for this study grouped very tightly
relative to all other EMP soil samples in PCoA plots, despite
the presence of other soils also collected from temperate
biomes (Figure 3). Communities differed significantly between
the samples analyzed here and all other EMP soils (p < 0.001,
Table S4).

Relative abundance differences by treatment
Of 2,781 OTUs tested, a single OTU in the order

Actinomycetales differed significantly in relative abundance
between temperature treatments (RT > 4°C > -20°C; ANOVA,
FDR-corrected p = 0.000006). This OTU was relatively
common, making up between 0.06% and 0.2% of the
sequences in the samples compared. No OTUs differed
significantly in relative abundance between time treatments.
However, three bacterial families differed significantly in
relative abundance between time treatments; the
Rubrobacteraceae (Day 14 > Day 1 > Day 7 > Day 3; p =
0.040), the Planococcaceae (Day 1 > Day 7 > Day 14 > Day 3;
p = 0.027), and the Bradyrhizobiaceae (Day 14 > Day 7 > Day
1 > Day 3; p = 0.045). The Patulibacteraceae was the only
family to significantly differ in relative abundances between
temperature treatments (RT > 4°C > -20°C; p = 0.039). Of the
bacterial orders present, Rhizobiales (Day 14 > Day 7 > Day 1
> Day 3; p = 0.020), Rubrobacterales (Day 14 > Day 1 > Day 7
> Day 3; p = 0.015), and Acidimicrobiales (Day 1 > Day 3 >
Day 14 > Day 7; p = 0.036) differed significantly in relative
abundance between storage times. It should be noted that the
Bradyrhizobiaceae is a family within Rhizobiales and
Rubrobacteraceae is a family within Rubrobacterales. A single
class, the Thermomicrobia, differed significantly between time
treatments (Day 14 > Day 7 > Day 3 > Day 1; p = 0.037).
Relative abundances of all taxa that differed significantly
between temperature and time treatments are shown in the
PCoA plots in figures S3, S4, and S5.

Relative abundances differed between storage times within
samples stored at -20°C for the Planococcaceae (Day 7 > Day
14 > Day 1 > Day 3; p = 0.011) and the Haliangiaceae (Day 3 >
Day 1 > Day 7 > Day 14; p = 0.036). The order
Nitrososphaerales differed significantly in relative abundance
between time treatments within the 4°C samples (Day 14 >
Day 1 > Day 7 > Day 3; p = 0.031). The class Thaumarchaeota
differed significantly in relative abundance between time
treatments within 4°C samples (Day 14 > Day 1 > Day 7 > Day
3; p = 0.016).

Correlations between relative abundance and storage
time

Both the Alphaproteobacteria (r = 0.54, p = 0.028) and the
Thermomicrobia (r = 0.54, p = 0.015) classes were significantly
positively correlated with storage time. The relative abundance
of the order Rhizobiales was also positively correlated with
storage time (r = 0.60, p = 0.012). There was a significant
negative correlation between the Haliangiaceae and storage
time within samples stored at -20°C (r = -0.89, p = 0.018) and a
positive correlation between the Hyphomicrobiaceae and
storage time within samples stored at RT (r = 0.90, p = 0.011).

Supervised learning classification
Supervised learning analysis, based on 10-fold cross-

validation, failed to consistently distinguish between either time
or temperature treatments. However, supervised learning
easily distinguished between the 13 EMP studies represented
here with an error of only 3.6% (±2.3%; random is 78%). All
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samples sequenced for the present study were accurately
assigned with probabilities of 88% or greater.

Interactions between time and temperature
The proportion of variance in the distances between

communities explained by temperature and time treatments
was nearly identical both when measured as marginal effects

and when first conditioned on the variance explained by the
other factor (Table S6), indicating that little if any interaction
exists between these two storage variables. The proportion of
variance explained by either variable, marginally or
conditionally, was always under 3%. Despite potentially
significant effects of these variables, their influence was still

Figure 1.  Mean ± standard error of: (A) and (B) evenness (equitability) between storage times and storage temperatures,
respectively; (C) and (D) unweighted UniFrac distances between samples within each time and temperature treatment,
respectively.  
doi: 10.1371/journal.pone.0070460.g001
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Figure 2.  Principal coordinates plots showing similarities of samples between temperature treatments and time
treatments.  Pairwise unweighted UniFrac distances were used to generate plots.
doi: 10.1371/journal.pone.0070460.g002
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Figure 3.  Principal coordinates plots of all Earth Microbiome Project sequenced soil samples based on unweighted
UniFrac (A), weighted UniFrac (B), and Bray-Curtis (C) distances.  The samples analyzed for this study are represented by
open red triangles. All other samples are colored by biome: blue = polar desert, green = tundra, orange = temperate, black = warm
desert, cyan = tropic. Filled triangles = EMP study 632, filled squares = 659, inverted open triangles = 722, inverted filled triangles =
1035, filled circles = 808, open diamonds = 1031, open squares = 1034, open circles = 1036, '+’s = 1037, 'X’s = 1038, and'*’s =
1526.
doi: 10.1371/journal.pone.0070460.g003
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quite limited. In contrast, the proportion of variation in the EMP
data explained by sample origin was 47%.

Discussion

Overall, alpha diversity was significantly influenced by both
storage temperature and storage time. The reasons for
significantly higher alpha diversities on days three and seven
are unclear, though may be a result of higher evenness on
these days allowing for the detection of a greater number of
rare taxa. It is likely that the members of the community
continued to interact over time and, as each sample was
quarantined from the others, caused the structure to change
and the communities to diverge. The differences in the
phylogenetic community comparison metric, UniFrac, within the
three and seven day treatments mean that particular bacterial
clades became extinct or fell below the limit of detection after
only a few days of storage, but for which clades this happened
first was unpredictable. This community decay likely occurs, to
some extent, regardless of storage conditions.

The results for samples stored at different temperatures were
clear. Alpha diversity was highest and differences between
samples were lowest when samples were frozen, and the
opposite applied when samples were stored at room
temperature. Our results based on soil from a temperate
climate suggest that best practices for storing soil samples for
microbial analyses should include freezing, especially when
fine-scale community resolution is needed for investigating the
distribution of rare taxa. However, our data are based on soil
from just a single site in a single climate. Communities and
even specific taxa from different environments (e.g. tropical
versus tundra soils) may respond differently to such conditions
and other precautions may be required for preserving soil that
normally experiences subzero temperatures in nature.
Additional studies that include soil from a wide variety of
climates would be highly useful.

Although no individual OTUs (97%) differed significantly in
relative abundance between time treatments, three families,
three orders, and a class of bacteria did. These differences are
only detectable at higher taxonomic levels, showing that entire
clades increase and decrease in aggregate over time, as was
found for certain bacterial taxa in human fecal samples [21].
Despite the variations in relative abundance over time,
correlations between time and taxon relative abundance were
infrequent, indicating that relative abundances do not vary
linearly with time but, rather, shift somewhat unexpectedly.
Changes in the representation of large clades of bacteria also
indicate that the metagenomic content of the community, not
just 16S rRNA diversity, is almost certainly changing as well. A
similarly designed study incorporating metagenome shotgun
sequencing [32,33] – a more sensitive and information-rich
method than the 16S rRNA sequencing implemented here –
would yield useful additional insights.

While these results encourage consistency in sample
storage and preparation, our comparisons with other EMP soil
samples suggest that soil communities will, even after two
weeks at room temperature, be far more similar to their original
communities than to other soil samples, including those from

similar biotic zones (Figure 3). And, although alpha diversities
do shift within stored communities over time and temperature,
the scale over which they shift is far lower than the range of soil
alpha diversities across EMP data sets. However, the
dissimilarity between the samples analyzed here and other
EMP soils taken from around the world is not surprising and,
while illustrating that soil communities do not change drastically
over the times and temperatures examined, these differences
tell us little about the degree of difference we might see
between multiple samples taken from the same site. We take
this as further indication that samples must be treated with
consistency. Faithfully maintaining community structure is
difficult over times and temperatures but consistency can
prevent bias.

Lauber et al. [16] found that the impacts of different
preservation methods on soil microbial communities were
rather minor and that even samples preserved at different
temperatures for different lengths of time can still be useful for
community analysis. Our results largely support their findings;
differences in preservation time and temperature are unlikely to
drastically change community structure and composition.
However, as technology allows for more resolved
investigations of microbial environments, even very small
alterations in the presence or relative abundance of taxa due to
experimental treatments can significantly interfere with
community comparisons. We must, therefore, be cautious;
factors that we may typically not consider as influential may
now drive observable differences between samples.

Supporting Information

Figure S1.  Principal coordinates plots based on weighted
UniFrac distances showing similarities of samples
between temperature and time treatments.  (TIF)

Figure S2.  Principal coordinates plots based on Bray-
Curtis distances showing similarities of samples between
temperature and time treatments.  (TIF)

Figure S3.  Principal coordinates plots based on
unweighted UniFrac distances. Point sizes represent
relative abundance of taxa indicated in each plot.  Colors
and shapes in (A) and (B) correspond to different temperature
treatments and in (C) through (I) to different time treatments as
in Figure 2.
(TIF)

Figure S4.  As in Figure S3 except PCoA is based on
weighted UniFrac distances.  (TIF)

Figure S5.  As in Figure S3 except PCoA is based on Bray-
Curtis distances.  (TIF)

Table S1.  Sequencing throughput by sample.  (XLS)

Table S2.  T-test results of differences in alpha diversity
between treatments.  (XLS)
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Table S3.  Ranges of alpha diversities for samples from all
EMP studies examined here.  (XLS)

Table S4.  ANOSIM and RDA comparisons of beta diversity
of all combinations of treatments.  (XLS)

Table S5.  T-test results of differences in within treatment
beta diversity.  (XLS)

Table S6.  Marginal and conditional proportions of
variance in current study sample communities explained
by storage time and temperature.  (XLS)

Table S7.  All EMP samples utilized in this study.  (XLS)
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